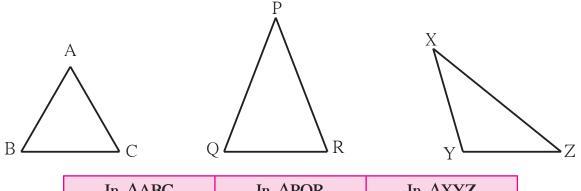


 Δ ABC has three sides. Line segment AB is one side. Write the names of the other two sides. Δ ABC has three angles. \angle ABC is one of them. Write the names of the other angles.

Points A, B and C are called the vertices of the triangle.


A triangle is a closed figure made by joining three non-collinear points by line segments.

The vertices, sides and angles of a triangle are called the parts of the triangle.

Types of Triangles - Based on Sides

Measure the sides of the following triangles in centimetres, using a divider and ruler. Enter the lengths in the table below. What do you observe?

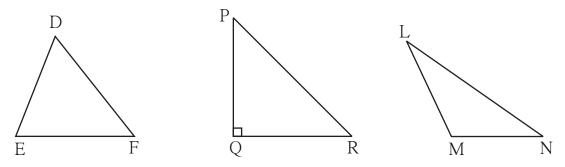
'Length of line segment AB' is written as l(AB).

In $\triangle ABC$	In APQR	In AXYZ
l(AB) = cm	l(QR) = cm	l(XY) = cm
l(BC) = cm	l(PQ) = cm	l(YZ) = cm
l(AC) = cm	l(PR) = cm	l(XZ) = cm

In the table above, the lengths of all sides of ΔABC are equal. Therefore, this triangle is an equilateral triangle. 'Lateral' refers to the sides of a figure.

A triangle with all three sides equal is called an equilateral triangle.

In Δ PQR, the length of the two sides PQ and PR are equal. Δ PQR is called an isosceles triangle.


A triangle with two equal sides is called an isosceles triangle.

The lengths of the sides of ΔXYZ are all different. Such a triangle is called a scalene triangle.

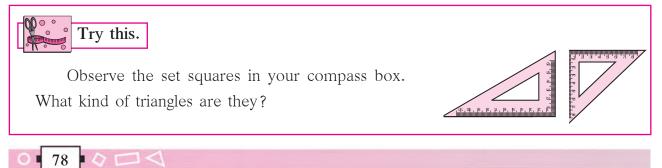
A triangle with no two sides equal is called a scalene triangle.

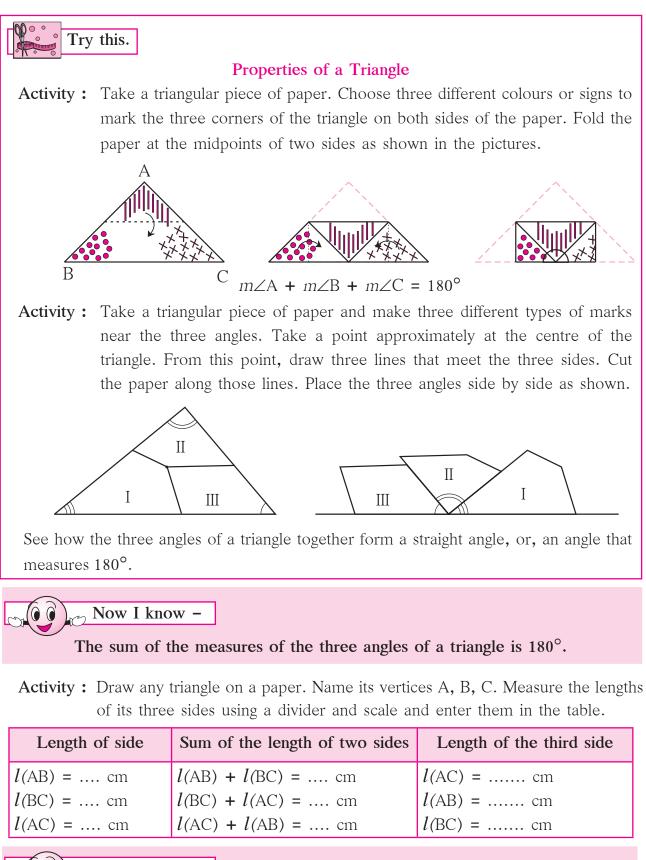
Types of Triangles - Based on Angles

Measure all the angles of the triangles given below. Enter them in the following table.

In DEF	In APQR	In ALMN
Measure of $\angle D = m \angle D =^{\circ}$ Measure of $\angle E = m \angle E =^{\circ}$ Measure of $\angle F = =^{\circ}$	Measure of $\angle Q = \dots = \dots^{\circ}$	Measure of $\angle M = \dots^{\circ}$
Observations: All three angles are acute angles.	One angle is a right angle and two are acute angles.	One angle is an obtuse angle and two are acute.

In the figures above, ΔDEF is an acute angled triangle.

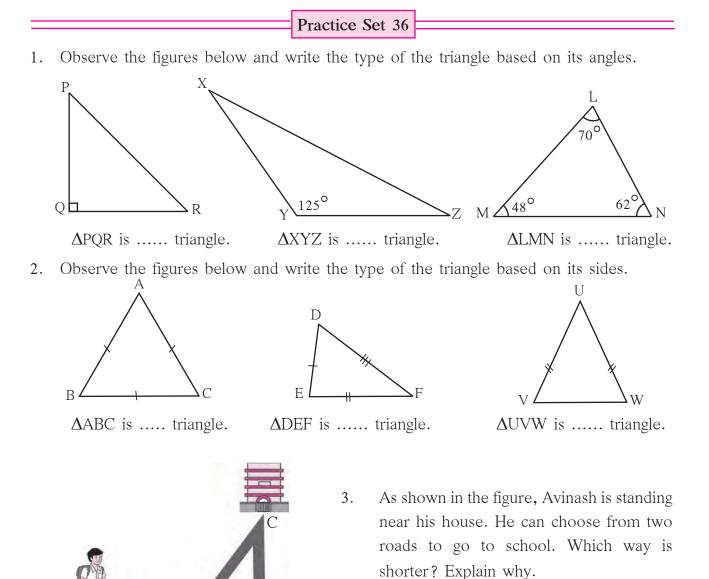

A triangle with all three acute angles is called an acute angled triangle.


 Δ PQR is a right angled triangle.

A triangle with one right angle is a right angled triangle.

 Δ LMN is an obtuse angled triangle.

A triangle with one obtuse angle is called an obtuse angled triangle.



Now I know -

The sum of the lengths of any two sides of a triangle is always greater than the length of the third side.

79

- 4. The lengths of the sides of some triangles are given. Say what types of triangles they are.
 - (1) 3 cm, 4 cm, 5 cm
 - (3) 4.3 cm, 4.3 cm, 4.3 cm

- (2) 3.4 cm, 3.4 cm, 5 cm
 (4) 3.7 cm, 3.4 cm, 4 cm
- 5. The lengths of three segments are given for constructing a triangle. Say whether a triangle with these sides can be drawn. Give the reason for your answer.
 - (1) 17 cm, 7 cm, 8 cm
 - (3) 9 cm, 6 cm, 16 cm

80

(5) 15 cm, 20 cm, 25 cm

- (2) 7 cm, 24 cm, 25 cm
- (4) 8.4 cm, 16.4 cm, 4.9 cm
- (6) 12 cm, 12 cm, 16 cm

ଅଷଷ