
सामाज्य विज्ञान आठवीं कक्षा

प्रथमावृत्ती : २०१८ © महाराष्ट्र राज्य पाठ्यपुस्तक निर्मिती व अभ्यासक्रम संशोधन मंडळ, पुणे ४११००४.

इस पुस्तक का सर्वाधिकार महाराष्ट्र राज्य पाठ्यपुस्तक निर्मिती व अभ्यासक्रम संशोधन मंडळ के अधीन सुरक्षित है। इस पुस्तक का कोई भी भाग महाराष्ट्र राज्य पाठ्यपुस्तक निर्मिती व अभ्यासक्रम संशोधन के संचालक की लिखित अनुमित के बिना प्रकाशित नहीं किया जा सकता।

शास्त्र विषय समिती:

डॉ. चंद्रशेखर वसंतराव मुरुमकर, अध्यक्ष

- डॉ. दिलीप सदाशिव जोग, सदस्य
- डॉ. सुषमा दिलीप जोग, सदस्य
- डॉ. पुष्पा खरे, सदस्य
- डॉ. इम्तियाज एस. मुल्ला, सदस्य
- डॉ. जयदीप विनायक साळी. सदस्य
- डॉ. अभय जेरे, सदस्य
- डॉ. सुलभा नितिन विधाते, सदस्य
- श्रीमती मृणालिनी देसाई, सदस्य
- श्री. गजानन शिवाजीराव सूर्यवंशी, सदस्य
- श्री. सुधीर यादवराव कांबळे, सदस्य
- श्रीमती दिपाली धनंजय भाले, सदस्य
- श्री. राजीव अरुण पाटोळे, सदस्य-सचिव

मुखपृष्ठ एवं सजावट:

श्री. विवेकानंद शिवशंकर पाटील कृ. आशना अडवाणी

अक्षरांकन:

मुद्रा विभाग, पाठ्यपुस्तक मंडळ, पुणे.

संयोजक:

श्री. राजीव अरुण पाटोळे विशेषाधिकारी, शास्त्र विभाग पाठ्यपुस्तक मंडळ, पुणे.

निर्मिती:

श्री. सच्चितानंद आफळे मुख्य निर्मिती अधिकारी

> श्री. राजेंद्र विसपुते निर्मिती अधिकारी

शास्त्र विषय अभ्यास गट:

डॉ. प्रभाकर नागनाथ क्षीरसागर

डॉ. विष्णू वझे

डॉ. प्राची राहूल चौधरी

डॉ. शेख मोहम्मद वाकीओद्दीन एच.

डॉ. अजय दिगंबर महाजन

डॉ. गायत्री गोरखनाथ चौकडे

श्री. प्रशांत पंडीतराव कोळसे

श्री. संदीप पोपटलाल चोरडिया

श्री. सचिन अशोक बारटक्के

श्रीमती श्वेता दिलीप ठाकूर

श्री. रूपेश दिनकर ठाकूर

श्री. दयाशंकर विष्णू वैद्य

श्री. सुकुमार श्रेणिक नवले

श्री. गजानन नागोरावजी मानकर

श्री. मोहम्मद आतिक अब्दुल शेख

श्रीमती अंजली लक्ष्मीकांत खडके श्रीमती मनिषा राजेंद्र दहिवेलकर श्रीमती ज्योती मिलींद मेडिपलवार श्रीमती दिप्ती चंदनिसंग बिश्त श्रीमती पुष्पलता रविंद्र गावंडे श्रीमती अनिता राजेंद्र पाटील श्रीमती कांचन राजेंद्र सोरटे श्री. राजेश वामनराव रोमन श्री. नागेश भिमसेवक तेलगोटे

श्री. शंकर भिकन राजपूत

श्री. मनोज रहांगडाळे

श्री. हेमंत अच्युत लागवणकर

श्रीमती ज्योती दामोदर करणे

श्री. विश्वास भावे

भाषांतरकार

श्रीमती साधना भांडगे, श्री कैलाश वंजारी, श्रीमती रंजना मदाने, श्री हरीश शिवाल, श्रीमती माया नाईक, श्रीमती अनुपमा सुरेश पाटील, समीक्षक

श्रीमती अनुपमा सुरेश पाटील, श्रीमती माया नाईक

कागद

70 जी.एस.एम. क्रिमवोव्ह

मुद्रणादेश

मुद्रक

प्रकाशक

श्री. विवेक उत्तम गोसावी नियंत्रक पाठ्यपुस्तक निर्मिती मंडळ, प्रभादेवी, मुंबई-25.

उद्देशिका

हिंम, भारत के लोग, भारत को एक संपूर्ण प्रभुत्व-संपन्न समाजवादी पंथनिरपेक्ष लोकतंत्रात्मक गणराज्य बनाने के लिए, तथा उसके समस्त नागरिकों को :

सामाजिक, आर्थिक और राजनैतिक न्याय, विचार, अभिव्यक्ति, विश्वास, धर्म और उपासना की स्वतंत्रता, प्रतिष्ठा और अवसर की समता

प्राप्त कराने के लिए, तथा उन सब में

> व्यक्ति की गरिमा और राष्ट्र की एकता और अखंडता सुनिश्चित करने वाली **बंधुता** के लिए

बढ़ाने के लिए

दृढ़संकल्प होकर अपनी इस संविधान सभा में आज तारीख 26 नवंबर, 1949 ई. (मिति मार्गशीर्ष शुक्ला सप्तमी, संवत् दो हजार छह विक्रमी) को एतद् द्वारा इस संविधान को अंगीकृत, अधिनियमित और आत्मार्पित करते हैं ।

राष्ट्रगीत

जनगणमन - अधिनायक जय हे

भारत - भाग्यविधाता ।

पंजाब, सिंधु, गुजरात, मराठा,
द्राविड, उत्कल, बंग,

विंध्य, हिमाचल, यमुना, गंगा,
उच्छल जलिधतरंग,

तव शुभ नामे जागे, तव शुभ आशिस मागे,
गाहे तव जयगाथा,

जनगण मंगलदायक जय हे,
भारत - भाग्यविधाता ।

जय हे, जय हे, जय जय, जय हे ।।

प्रतिज्ञा

भारत मेरा देश है । सभी भारतीय मेरे भाई-बहन हैं ।

मुझे अपने देश से प्यार है । अपने देश की समृद्ध तथा विविधताओं से विभूषित परंपराओं पर मुझे गर्व है ।

मैं हमेशा प्रयत्न करूँगा/करूँगी कि उन परंपराओं का सफल अनुयायी बनने की क्षमता मुझे प्राप्त हो ।

मैं अपने माता-पिता, गुरुजनों और बड़ों का सम्मान करूँगा/करूँगी और हर एक से सौजन्यपूर्ण व्यवहार करूँगा/करूँगी।

मैं प्रतिज्ञा करता/करती हूँ कि मैं अपने देश और अपने देशवासियों के प्रति निष्ठा रखूँगा/रखूँगी। उनकी भलाई और समृद्धि में ही मेरा सुख निहित है।

प्रस्तावना

विद्यार्थी मित्रों,

तुम सभी का आठवीं कक्षा में स्वागत है। नए पाठ्यक्रम पर आधारित सामान्य विज्ञान की इस पाठ्यपुस्तक को तुम्हारे हाथों में देते हुए हमें विशेष आनंद का अनुभव हो रहा है। प्राथमिक स्तर से अबतक तुमने विज्ञान का अध्ययन विभिन्न पाठ्यपुस्तकों द्वारा किया है। कक्षा आठवीं से तुम विज्ञान की मूलभूत संकल्पनाओं और प्रौद्योगिकी का अध्ययन एक अलग दृष्टिकाण से और विज्ञान की विविध शाखाओं के माध्यम से कर सकोगे।

'सामान्य विज्ञान' इस पाठ्यपुस्तक का मूल उद्देश्य अपने दैनिक जीवन से संबंधित विज्ञान और प्रौद्योगिकी 'समझो और दूसरों को समझाओ' है । विज्ञान की संकल्पनाओं, सिद्धांतों और नियमों को समझते समय उनका व्यवहार के साथ सहसंबंध समझ लो । इस पाठ्यपुस्तक से अध्ययन करते समय 'थोड़ा याद करो', 'बताओ तो' इन कृतियों का उपयोग पुनरावृत्ति के लिए करो । 'निरीक्षण करो और चर्चा करो', 'करके देखो' जैसी अनेक कृतियों से तुम विज्ञान सीखने वाले हो । ये सभी कृतियाँ तुम अवश्य करो । 'थोडा सोचो', 'खोजो', 'विचार करो' जैसी कृतियाँ तुम्हारी विचार प्रक्रिया को प्रेरणा देंगी ।

पाठ्यपुस्तक में अनेक प्रयोगों का समावेश किया गया है। ये प्रयोग, उनका कार्यान्वन और उस समय आवश्यक निरीक्षण तुम स्वयं, सावधानीपूर्वक करो तथा आवश्यकतानुसार अपने शिक्षकों, अभिभावकों और कक्षा के सहपाठियों की सहायता लो। तुम्हारे जीवन की अनेक घटनाओं में विद्यमान विज्ञान का रहस्योद्घाटन करने वाली विशेषतापूर्ण जानकारी और उसपर आधारित विकसित हुई प्रौद्योगिकी इस पाठ्यपुस्तक की कृतियों के माध्यम से स्पष्ट की गई है। वर्तमान तकनीकी के गतिशील युग में संगणक, स्मार्टफोन आदि से तुम परिचित ही हो। पाठ्यपुस्तक से अध्ययन करते समय सूचना एवं संचार प्रौद्योगिकी के साधनों का सुयोग्य उपयोग करो, जिससे तुम्हारा अध्ययन सरलतापूर्वक होगा। परिणामकारक अध्ययन के लिए अप के माध्यम से क्यू. आर. कोड द्वारा प्रत्येक पाठ से संबंधित अधिक जानकारी के लिए उपयुक्त साहित्य उपलब्ध है। उसका अभ्यास के लिए निश्चित उपयोग होगा।

कृति और प्रयोग करते समय विभिन्न उपकरणों, रासायनिक सामग्रियों के संदर्भ में सावधानी बरतो और दूसरों को भी सतर्क रहने को कहो। वनस्पतियों, प्राणियों से संबंधित कृतियाँ, अवलोकन करते समय पर्यावरण संवर्धन का भी प्रयत्न करना अपेक्षित है, उन्हें हानि न पहुँचे यह ध्यान रखना तो आवश्यक ही है।

इस पाठ्यपुस्तक को पढते समय, अध्ययन करते समय और समझते समय उसका पसंद आया हुआ भाग और उसीप्रकार अध्ययन करते समय आने वाली परेशानियाँ, निर्मित होने वाले प्रश्न हमें अवश्य बताओ।

तुम्हें तुम्हारी शैक्षणिक प्रगति के लिए हार्दिक शुभकामनाएँ।

पुणे

दिनांक: १८ अप्रैल २०१८, अक्षय्य तृतीया

भारतीय सौर दिनांक : २८ चैत्र १९४०

(डॉ. सुनिल मगर)

संचालक

महाराष्ट्र राज्य पाठ्यपुस्तक निर्मिती व अभ्यासक्रम संशोधन मंडळ, पुणे.

शिक्षकों के लिए

- कक्षा तीसरी से कक्षा पाँचवी तक परिसर अध्ययन के माध्यम से दैनिक जीवन के सरल विज्ञान को आपने बताया है तथा
 छटवीं से आठवीं की पाठ्यपुस्तकों द्वारा विज्ञान से परिचित करवाया है।
- विज्ञान शिक्षण का वास्तविक उद्देश्य यह है कि दैनिक जीवन में घटित होने वानी घटनाओं के बारे में तर्कपूर्ण और विवेकपूर्ण विचार किया जाए ।
- कक्षा आठवीं के विद्यार्थियों की आयु को ध्यान में रखते हुए आसपास घटित होने वानी घटनाओं के बारे में उनकी जिज्ञासा, उन घटनाओं के पीछे छुपे कार्यकारणभाव खोजने की शोधवृत्ति और स्वयं नेतृत्त्व करने की भावना इन सबका अध्ययन के लिए समुचित उपयोग करने के अवसर विद्यार्थियों को देना आवश्यक है।
- विज्ञान सीखने की प्रक्रिया में अवलोकन, तर्क, अनुमान, तुलना करने और प्राप्त जानकारी का अनुप्रयोग करने के लिए प्रयोग कौशल्य आवश्यक है इसलिए प्रयोगशाला में किए जाने वाले प्रयोग करवाते समय इन कौशल्यों को विकसित करने का प्रयत्न अवश्य करना चाहिए। विद्यार्थियों द्वारा आने वाले सभी अवलोकनों के पाठ्यांकों को स्वीकार करके अपेक्षित निष्कर्ष तक पहँचने के लिए उन्हें सहायता करना चाहिए।
- विद्यार्थियों के विज्ञान संबंधी उच्च शिक्षण की नींव माध्यमिक स्तर के दो वर्ष होते हैं, इस कारण हमारा दायित्व है कि उनकी विज्ञान के प्रति अभिरूचि समृद्ध और संपन्न हो । विषयवस्तु और कौशल्य के साथ वैज्ञानिक दृष्टिकोण और सर्जनात्मकता विकसित करने के लिए आप सभी हमेशा की तरह ही अग्रणी होंगे ।
- विद्यार्थियों को अध्ययन में सहायता करते समय 'थोड़ा याद करो' जैसी कृति का उपयोग करके पाठ के पूर्वज्ञान का पुन:परीक्षण किया जाना चाहिए तथा विद्यार्थियों को अनुभव से प्राप्त ज्ञान और उसकी अतिरिक्त जानकारी एकत्रित करके पाठ की प्रस्तावना करने के लिए पाठ्यांश के प्रारंभ में 'बताओ तो' जैसे भाग का उपयोग करना चाहिए। यह सब करते समय आपको ध्यान में आने वाले विविध प्रश्नों, कृतियों का भी अवश्य उपयोग कीजिए। विषयवस्तु के बारे में स्पष्टीकरण देते समय 'आओ करके देखें' (यह अनुभव आपके द्वारा देना है।) तथा 'करो और देखों' इन दो कृतियों का उपयोग पाठ्यपुस्तक में प्रमुख रूप से किया गया है। पाठ्यांश और पूर्वज्ञान के एकत्रित अनुप्रयोग के लिए 'थोड़ा सोचों', 'इसे सदैव ध्यान में रखों' के माध्यम से विद्यार्थियों के लिए कुछ महत्त्वपूर्ण सूचनाएँ या आदर्शमूल्य दिए गए हैं। 'खोजों', 'जानकारी प्राप्त करों', 'क्या तुम जानते हो?', परिचय वैज्ञानिकों का, संस्थानों के कार्य जैसे शीर्षक पाठ्यपुस्तक से बाहर की जानकारी की कल्पना करने के लिए, अतिरिक्त जानकारी प्राप्त करने के लिए स्वतंत्र रूप से संदर्भ खोजने की आदत लगने के लिए हैं।
- यह पाठ्यपुस्तक कक्षा में पढकर और समझाकर सिखाने के लिए नहीं है, अपितु इसके अनुसार कृति करके विद्यार्थियों द्वारा ज्ञान कैसे प्राप्त किया जाए, इसका मार्गदर्शन करने के लिए है। पाठ्यपुस्तक का उद्देश्य सफल करने के लिए कक्षा में अनौपचारिक वातावरण होना चाहिए। अधिक से अधिक विद्यार्थियों को चर्चा, प्रयोग और कृति में भाग लेने के लिए प्रोत्साहित कीजिए। विद्यार्थियों द्वारा किए गए उपक्रमों, प्रकल्पों आदि के विषय में कक्षा में प्रतिवेदन प्रस्तुत करना, प्रदर्शनी लगाना, विज्ञान दिवस के साथ विभिन्न महत्त्वपूर्ण दिन मनाना जैसे कार्यक्रमों का आयोजन अवश्य कीजिए।
- पाठ्यपुस्तक में विज्ञान और प्रौद्योगिकी की विषयवस्तु के साथ सूचना एवं संचार प्रौद्योगिकी को समाहित किया गया है। विभिन्न संकल्पनाओं का अध्ययन करते समय उनका उपयोग करना आवश्यक होने के कारण उसे अपने मार्गदर्शन के अंतर्गत करवा लीजिए, इसीप्रकार Q. R. Code के आधार पर विद्यार्थियों को अतिरिक्त जानकारी दी जाए।

मुखपृष्ठ एवं मलपृष्ठ: पाठ्यपुस्तक की विभिन्न कृतियाँ, प्रयोग और संकल्पना चित्र

DISCLAIMER Note: All attempts have been made to contact copy righters (©) but we have not heard from them. We will be pleased to acknowledge the copy right holder (s) in our next edition if we learn from them.

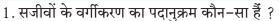
अध्ययन निष्पत्ति : कक्षा आठवीं

अध्ययन में सुझाई गई शैक्षणिक प्रक्रिया -

- अध्ययनकर्ता को जोड़ी से/समूह में/व्यक्तिगत स्वरूप
 में सर्वसमावेशक कृति करने के लिए अवसर प्रदान करना और निम्न मृददों के लिए प्रोत्साहित करना ।
- परिसर, प्राकृतिक प्रक्रिया, घटना को देखना, स्पर्श करना, स्वाद लेना, सुगंध लेना, सुनना इन्हें ज्ञानेंद्रियों से खोजना ।
- प्रश्न उपस्थित करना और मनन, चर्चा, रचना, सुयोग्य कृति, भूमिका, नाटक, वादिववाद, सूचना एवं संचार प्रौद्योगिकी की सहायता से उत्तर खोजना ।
- कृति, प्रयोग, सर्वेक्षण, क्षेत्रभेंट इत्यादि के दरम्यान प्रेक्षणों को नोट करना ।
- नोट की गई जानकारी का विश्लेषण करना, परिणामों का अर्थ लगाना, अनुमान ज्ञात करना, सामान्यीकरण करना, मित्र तथा प्रौढ़ व्यक्तियों के साथ मिलकर निष्कर्ष निकालना।
- नई कल्पना प्रस्तुत करना, नई रचना/उदाहरण, तुरंत विस्तार करना इत्यादि द्वारा सर्जनशीलता प्रदर्शित करना।
- सहकार्य, सहयोग, सत्य विवरण देना, संसाधनों का उचित उपयोग इत्यादि मूल्यों को अंगीकृत करना, स्वीकारना और उनकी प्रशंसा करना।
- पिरसर में घटित होने वाली विविध आपदाओं के प्रति, संकटों के प्रति जागरूक रहना और कृति करना।
- खगोलीय संकल्पनाओं को जानकर उस संदर्भ में मानव द्वारा की गई प्रगति समझ लेना ।
- वैज्ञानिक अविष्कारों की बातों पर चर्चा करना और उनका महत्त्व समझ लेना ।
- पर्यावरण का रक्षण करने के लिए प्रयत्न करना ।
 उदा. खाद, कीटकनाशकों का उपयोग, पर्यावरण संवर्धन के लिए प्रयत्न करना इत्यादि ।
- उपलब्ध साधन सामग्री का उपयोग, रचना और नियोजन योग्य पद्धित से दर्शाना ।
- प्राकृतिक संसाधनों के अत्यधिक उपयोग के परिणामों के विषय में अन्य को संवेदनशील करना ।

अध्ययनार्थी –

- गुणधर्म, संरचना और कार्य के आधार पर पदार्थ और सजीव में अंतर स्पष्ट करते हैं। जैसे कि प्राकृतिक और मानविनर्मित धागे, संपर्क और असंपर्क बल, विद्युत चालक तथा विद्युत अवरोधक द्रव, वनस्पति तथा प्राणी कोशिका, अंडज तथा जरायुज प्राणी।
- गुणधर्म/विशेषताओं के आधार पर पदार्थ और सजीव का वर्गीकरण करते हैं । उदा. धातु और अधातु, लाभदायक और हानिकारक सूक्ष्मजीव, लैंगिक और अलैंगिक प्रजनन, खगोलीय पिंड, नवीकरणीय तथा अनवीकरणीय प्राकृतिक स्रोत इत्यादि ।
- जिज्ञासा के कारण निर्मित होने वाले प्रश्नों के उत्तर खोजने के लिए आसान परीक्षण करते हैं । उदा. ज्वलन के लिए आवश्यक शर्तें क्या हैं । अचार और मुख्बे में नमक और शक्कर का उपयोग क्यों किया जाता है? एकसमान गहराई पर द्रव समान दाब क्यों प्रयुक्त करता है?
- प्रक्रिया और घटना इनका कारणों से संबंध जोडते है । उदा.
 धुएँ की निर्मिति एवं हवा के प्रदुषकों का अनुपात, स्मारकों को होने वाली हानि और अम्लीय वर्षा इत्यादि ।
- प्रक्रिया और घटना स्पष्ट करते हैं । उदा. मानव और प्राणी इनमें विविध क्रिया (श्वसन, रक्ताभिसरण इत्यादि), ध्वनि निर्मित और प्रसरण, विद्युतधारा के रासायनिक गुणधर्म, बहुविध प्रतिबिंब निर्मिति होना, ज्योति की संरचना इत्यादि ।
- रासायनिक अभिक्रिया के लिए शाब्दिक समीकरण लिखते हैं, उदा. धातु और अधातु इनकी हवा, पानी और अम्ल इत्यादि के साथ होने वाली अभिक्रिया।
- आपतन कोण और परावर्तन कोण का मापन करते हैं।
- सूक्ष्मजीव, प्याज की झिल्ली, मानव के गाल की कोशिका इत्यादि की स्लाईड तैयार करते हैं और उनकी सूक्ष्मदर्शकीय विशेषताएँ बताते हैं।
- नामांकित आकृति/प्रवाह तालिका बनाते हैं । उदा.
 कोशिका की रचना, हृदय की रचना, श्वसन संस्थान,
 प्रायोगिक विन्यास, तंतुवाद्य, पेरीस्कोप इत्यादि मानव नेत्र
 मानवीय प्रजनन अंग, प्रायोगिक विन्यास इत्यादि ।


- अपने आसपास उपलब्ध सामग्रियों का उपयोग करके प्रतिकृति तैयार करते हैं तथा उनके कार्य स्पष्ट करते हैं । उदा. एक तार वाला विद्युतदर्शक, अग्निशामक इत्यादि ।
- रचना, नियोजन, उपलब्ध स्रोतों के उपयोग इत्यादि के बारे में सर्जनशीलता प्रदर्शित करते हैं।
- जिन वैज्ञानिक संकल्पनाओं को सीख रहे हैं उनका दैनिक जीवन में उपयोग करते हैं, उदा. पानी का शुद्धिकरण, जैविक विघटनशील और अजैविक विघटनशील कचरा पृथक करना, फसल का उत्पादन बढ़ाना। योग्य धातुओं एवं अधातुओं का विभिन्न कारणों के लिए उपयोग, घर्षण बढ़ाना, कम करना, पौगंडावस्था संबंधी दंतकथा और नकारात्मक रूढियों को आव्हान देना, इत्यादि।
- वैज्ञानिक अविष्कारों के बारे में चर्चा और उनका महत्त्व समझ लेते हैं।
- पर्यावरण का संरक्षण करने के लिए प्रयत्न करते हैं । उदा. संसाधन स्रोतों का विवेकपूर्ण उपयोग करना, खादों और कीटकनाशकों का नियंत्रित उपयोग करना, पर्यावरण आपदओं का सामना करने के उपाय सुझाना इत्यादि ।
- प्राकृतिक संसाधनों के अत्यधिक उपयोग के बारे में अन्य लोगों को संवेदनशील करते हैं।
- ईमानदारी, वस्तुनिष्ठता, सहयोग तथा भय और पूर्वाग्रह से मुक्ति ये मूल्य प्रदर्शित करते हैं।
- विश्व की निर्मिति और अंतरिक्ष प्रौद्योगिकी में मानव की प्रगति स्पष्ट करते हैं।
- सूचना एवं संचार प्रौद्योगिकी के विविध साधनों का संकल्पनाएँ समझने के लिए उपयोग करते हैं।

पृष्ठ क्रमांक अ.क्र. पाठ का नाम सजीव सृष्टि एवं सूक्ष्मजीवों का वर्गीकरण 1 1. 2. 3. धारा विद्युत और चुंबकत्व23 4. 5. 6. 7. 8. 12. अम्ल, क्षारक की पहचान83 13. रासायनिक परिवर्तन और रासायनिक बंध89

1. सजीव सृष्टि एवं सूक्ष्मजीवों का वर्गीकरण

- 2. सजीवों को पहचानने की जो 'द्विनाम पद्धति' उपयोग में लाई जाती हैं, उसकी खोज किसने की ?
- 3. दिवनाम पद्धति से नाम लिखते समय कौन से पदानुक्रम का विचार किया जाता हैं ?

जैवविविधता एवं वर्गीकरण की आवश्यकता (Biodiversity and need of classification)

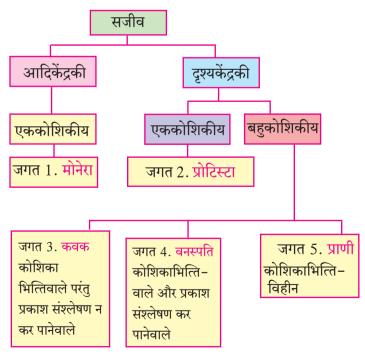
पिछली कक्षा में हमने देखा की भौगोलिक परिवेश, अन्नग्रहण, संरक्षण ऐसे विभिन्न कारणों के कारण पृथ्वी पर पाए जानेवाले सजीवों में अनुकूलन दिखाई देता हैं। अनुकूलन अपनाते समय एक ही प्रजाति के सजीवों में भी विभिन्न बदलाव होते हुए दिखाई देते हैं।

2011 की गणना के अनुसार पृथ्वीपर जमीन और समुद्र में पाए जानेवाले सभी सजीवों को मिलाकर लगभग 87 दस लाख प्रजातियाँ ज्ञात हैं। इतनी बड़ी संख्या में पाए जाने वाले सजीवों का अध्ययन करने के लिए उन्हें समूहों में विभाजित करना चाहिए, ऐसी आवश्यकता महसूस हुई। सजीवों में पाई जानेवाली समानताओं और विभिन्नताओं को ध्यान में रखते हुए उनके समूह और उपसमूह बनाए गए।

सजीवों के समूह और उपसमूह बनाने की इस प्रक्रिया को जैविक वर्गीकरण कहते हैं।

इतिहास के पन्नो सें

इ.स. 1735 में कार्ल लिनिअस ने सजीवों को दो जगतो में विभाजित किया वनस्पति और प्राणी (Vegetabilia & Animalia) I


इ.स. 1866 साल में हेकेल ने 3 जगतो की कल्पना की, जिसमें प्रोटिस्टा, वनस्पति और प्राणी का समावेश था। इ.स. 1925 में चॅटन ने फिरसे सजीवों के दो समूह किए – आदिकेंद्रकी और दृश्यकेंद्रकी।

इ.स. 1938 में कोपलँड ने सजीवों को 4 जगतों में विभाजित किया – मोनेरा, प्रोटिस्टा, वनस्पति और प्राणी।

रॉबर्ट हार्डींग व्हिटाकर (1920- 1980) मे अमेरिकन परिस्थिति विज्ञानशास्त्री (Ecologist) थे, उन्होने इ.स. 1969 में सजीवों का 5 समूहों में विभाजन किया।

वर्गीकरण के लिए व्हिटाकर ने आगे दिए मापदंडों को विचार में लिया।

- कोशिका की जटिलता (Complexity of cell structure) : आदिकेंद्रकी और दृश्यकेंद्रकी
- सजीवों के प्रकार / जटिलता (Complexity of organisms): एककोशिकीय और बहुकोशिकीय
- पोषण का प्रकार (Mode of nutrition):
 वनस्पति स्वयंपोषी , कवक परपोषी
 (मृतअवशेषों से अन्न शोषण), प्राणी– परपोषी
 और भक्षण
- 4. **जीवन शैली** (Life style) : उत्पादक वनस्पति, भक्षक प्राणी, विघटक कवक
- 5. वंशावली संबंध (Phylogenetic relationship): आदिकेंद्रकी से दृश्यकेंद्रकी, एककोशिकीय से बहुकोशिकीय

1.1 पंचजगत वर्गीकरण पद्धति

जगत 1: मोनेरा (Monera)

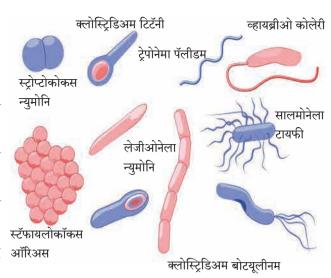
कृति . किसी साफ काँच पट्टी पर दही या छाछ की छोटीसी बूँद लेकर उसपर थोड़ा पानी डालकर मिला लो । उसपर धीरे से कव्हर स्लिप रख दो । सुक्ष्मदर्शी के नीचे काँचपट्टी का निरीक्षण करो । तुम्हें क्या दिखाई दिया ? हलचल करने वाले, बिल्कुल छोटे तिनके जैसे सूक्ष्मजीव अर्थात लॅक्टोबॅसिलाय जीवाण् ।

मोनेरा इस जगत में सभी प्रकार के जीवाणुओं और ऑरिअस नीलहरित शैवाल का समावेश होता हैं।

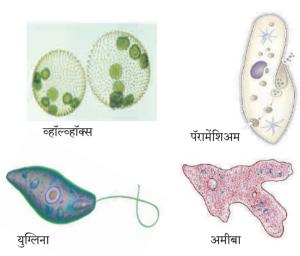
विशेषताएँ :

- 1. ये सभी सजीव एक कोशिकीय होते हैं।
- 2. स्वयंपोषी या परपोषी होते हैं।
- 3. ये आदिकेंद्रकी होते हैं जिनमें आवरणयुक्त केंद्रक या कोशिका अंगक नहीं पाए जाते।

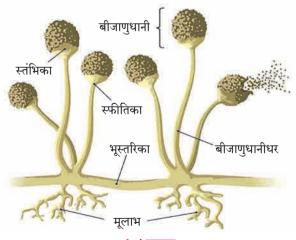
जगत 2 : प्रोटिस्टा (Protista)


कृति : किसी डबरे से पानी की एक बूँद काँचपट्टीपर रखकर सुक्ष्मदर्शी के नीचे उसका निरीक्षण करो । कुछ अनिश्चित आकारवाले सुक्ष्मजीव हलचल करते दिखाई देंगे । ये सजीव अमीबा हैं ।

विशेषताएँ :


- प्रोटिस्टा जगत के सजीव एककोशिकीय होते हैं और कोशिका में आवरणयुक्त केंद्रक पाया जाता हैं।
- 2. प्रचलन हेतु कूटपाद या बाल जैसे रोमक या कशाभिकाँए होती हैं।
- 3. स्वयंपोषी उदा. युग्लिना, व्हॉल्व्हॉक्स कोशिका में हिरतलवक होते हैं । परपोषी उदा. अमीबा, पैरामिशियम, प्लास्मोडियम, आदि ।

जगत 3 : कवक (Fungi)


कृति: ब्रेड या रोटी का टुकड़ा पानी से थोड़ा-सा भिगाओं और किसी डिबिया में रखकर ढक्कन से उसे ढँक दो। दो दिनों बाद खोलकर देखो। उस टुकड़े पर कपास के जैसे सफेद तंतुओं की वृद्धि हुई दिखाई देगी। उनमें से कुछ तंतुओं का सुक्ष्मदर्शी के नीचे निरीक्षण करो।

1.2 मोनेरा जगत के विविध सजीव

1.3 प्रोटीस्टा जगत के सजीव

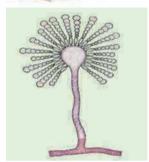
1.4 **कवक**

कार्य संस्थाके : राष्ट्रीय विषाणु संस्था, पुणे (National Institute of Virology, Pune) यह विषाणुओं के संदर्भ में संशोधन का कार्य करती है। भारतीय चिकित्सा अनुसंधान परिषद के अंतर्गत सन 1952 में इस संस्था की स्थापना की गई।

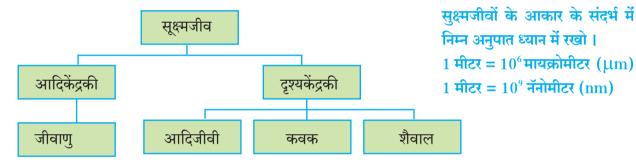
विशेषताएँ:

- 1. कवक जगत में परपोषी, असंश्लेषी और दृश्यकेंद्रकी सजीवों का समावेश होता हैं।
- 2. बहसंख्य कवक मृतोपजीवी होते हैं, सड़े गले कार्बनिक पदार्थों पर जीवित रहते हैं।
- 3. कवकों की कोशिकाभित्ति 'कायटिन' नामक जटिल शर्करा से बनी होती हैं।
- 4. कुछ कवक तंतुमय होते हैं जिनके कोशिकाद्रव्य में अनगिनत केंद्रक होते हैं।
- 5. कवक किण्व (बेकर्स यीस्ट) फफूंदी, ॲस्परजिलस, (भुट्टे पर पाई जानेवाली फफूंदी), पेनिसिलिअम, कुकूरमुत्ता (मशरूम)

व्हिटाकर के बाद वर्गीकरण की कुछ पद्धितयाँ प्रतिपादित गई। फिर भी आज तक कई वैज्ञानिक व्हिटाकर के पंचजगत वर्गीकरण को ही प्रमाण मानते हैं, यही इस पद्धित की सफलता हैं।

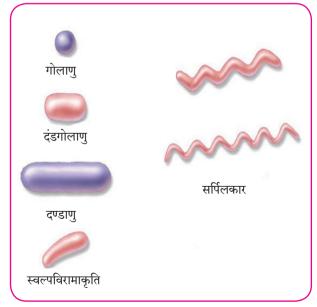


व्हिटाकर के वर्गीकरण पद्धति के गुण दोषों को स्पष्ट करो।


सूक्ष्मजीवों का वर्गीकरण (Classification of microbes)

पृथ्वीपर पाए जाने वाले सजीवों में सूक्ष्मजीवों की संख्या सर्वाधिक हैं । उनके अध्ययन के लिए उनका निम्नप्रकार से विभाजन किया गया हैं।

1.5 कुछ कवक



1.6 सूक्ष्मजीवों का वर्गीकरण

1. जीवाणु (Bacteria):

(आकार - 1 μm से 10 μm)

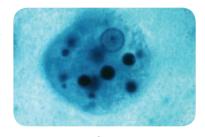
- एक ही कोशिका स्वतंत्र सजीव (एककोशिकीय सजीव स्वतंत्र कोशिका) के रूप में जीवन यापन करती हैं। कभी-कभी बहुत सारे जीवाणू समूह में रहकर बस्तियाँ (Colonies) बनाते हैं।
- 2. जीवाणु की कोशिका आदिकेंद्रकी होती हैं। कोशिका में केंद्रक और आवरणयुक्त अंगक नहीं पाए जाते, कोशिकाभित्ति होती हैं।
- 3. प्रजनन सामान्यतः द्विविभाजन (एक कोशिका के दो भाग होना) पद्धति से होता है।
- 4. अनुकूल परिस्थिति में जीवाणु बहुत तेजी से बढ़ते हैं और 20 मिनट में संख्या के दोगुने हों सकते हैं।

1.7 कुछ जीवाणु

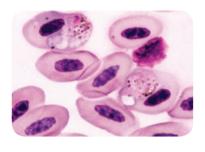
- 2. आदिजीवी (Protozoa): (आकार लगभग 200 μm)
- 1. मिट्टी, मीठे पानी तथा समुद्र में पाए जाते हैं । कुछ अन्य सजीवों के शरीर में रहकर रोगों का कारण बनते हैं ।
- 2. दृश्यकेंद्रकी कोशिका वाले एक कोशिकीय सजीव।
- 3. आदिजीवी की कोशिकारचना, संचलन के अंग, पोषण पद्धति में विविधता दिखाई देती हैं।
- 4. प्रजनन दिवविभाजन पद्धति से होता है।

उदा. अमीबा, पैरामिशियम - मटमैले पानी में पाए जाते हैं, स्वतंत्र जीवनयापन करते हैं।

एन्टामिबा हिस्टोलिटिका - आँव होने का कारण प्लाज्मोडियम व्हायवॅक्स - मलेरिया (शीतज्वर) होने का कारण युग्लीना - स्वयंपोषी


- 3. कवक (Fungi) : (आकार लगभग 10 μm से 100 μm)
- 1. सडे गले पदार्थ, वनस्पति एवं प्राणियों के शरीर, कार्बानिक पदार्थों में पाए जाते हैं।
- 2. दृश्यकेंद्रकी एककोशकीय सूक्ष्मजीव कवक की कुछ प्रजातियाँ आँखों से दिखाई देती हैं।
- 3. मृतोपजीवी होते हैं, कार्बानिक पदार्थों से अन्नशोषण करते हैं।
- 4. प्रजनन लैंगिक पद्धति से और द्विविभाजन और मुकुलन जैसी अलैंगिक पद्धति से होता हैं। उदा. यीस्ट, कॅन्डीडा, मशरूम
- 4. शैवाल (Algae): (आकार लगभग 10 μm से 100 μm)
- 1. पानी में बढ़ते हैं।
- 2. दृश्यकेंद्रकी, एककोशकीय, स्वयंपोषी सजीव
- 3. कोशिका में स्थित हरितलवकों की सहायता से प्रकाशसंश्लेषण करते हैं। उदा. युग्लिना, क्लोरेल्ला, क्लॅमिडोमोनास

शैवाल की कुछ प्रजातियाँ एककोशिकीय हैं, अन्य सभी शैवाल बहुकोशकीय होकर निरी आँखों से दिखाई देते हैं।


- 5. विषाणु (Virus): (आकार लगभग 10 nm से 100 nm) विषाणुओं को सामान्यतः सजीव नहीं माना जाता या वे सजीव-निर्जीव की सीमारेखा के मध्य हैं ऐसा कहा जाता हैं, परंतु इनका अध्ययन सूक्ष्मजैविवज्ञान (Microbiology) में किया जाता हैं।
- विषाणु अतिसूक्ष्म अर्थात जीवाणुओं की तुलना में 10 से 100 गुना छोटे होते है। वे केवल इलेक्ट्रॉन सुक्ष्मदर्शी से ही दिखाई दे सकते हैं।
- 2. स्वतंत्र कणों के रूप में पाए जाते हैं। विषाणु अर्थात DNA (डीऑक्सीरायबो न्युक्लिक अम्ल) या RNA (रायबो न्युक्लिक अम्ल) से बना हुआ लंबा अणु है जिसपर प्रथिन का आवरण होता है।
- 3. वनस्पित और प्राणियों की जीवित कोशिका में ही वे रह सकते हैं और उन कोशिकाओंकी सहायता से विषाणु स्वयं के प्रिथन बनाते हैं और स्वयं की असंख्य प्रतिकृतियाँ निर्माण करते हैं। इस के बाद पोषक (Host) कोशिकाओं को नष्ट करके यह प्रतिकृतियाँ मुक्त होती हैं और ये स्वतंत्र विषाणु पुनः नई कोशिकाओं को संक्रमित करते हैं।
- 4. विषाणुंओं के कारण वनस्पतियों और प्राणियों में विभिन्न रोग होते हैं।

पॅरामेंशिअम

एन्टामिबा

प्लास्मोडिअम

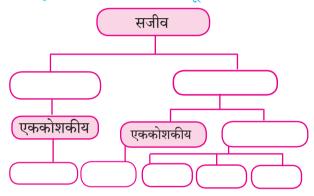
सॅकरोमायसिस

क्लोरेल्ला

टोमॅटो – विल्ट विषाणु 1.8 कुछ सूक्ष्मजीव

क्या तुम जानते हो?

मनुष्य - पोलियो विषाणु, इन्फ्लुएन्झा विषाणु, HIV-एड्स विषाणु आदि पशु - पिकोर्ना विषाणु (Picorna virus)


वनस्पति - टमाटर विल्ट विषाणु, तंबाकु मोझाईक विषाणु आदि । जीवाणु - बॅक्टेरिओफाज विषाणु जीवाणुओं पर हमला करते हैं ।

इंटरनेट मेरा मित्र

विभिन्न सूक्ष्मजीवों के चित्र और उनकी विशेषताओं के बारे में जानकारी प्राप्त कर के तालिका बनाओ।

स्वाध्याय

- 1. जीवाणु, आदिजीवी, कवक, शैवाल, आदिकेंद्रकी, दृश्यकेंद्रकी, सूक्ष्मजीव इनका वर्गीकरण व्हिटाकर पद्यति से करो।
- 2. सजीव, आदिकेंद्रकी, दृश्यकेंद्रकी, बहुकोशिकीय, एककोशिकीय, प्रोटिस्टा, प्राणी, वनस्पति, कवक की सहायता से पंचजगत वर्गीकरण पूरा करो।

3. मेरा जोडीदार खोजो।

अ	ق
कवक	क्लोरेल्ला
प्रोटोजोआ	बॅक्टेरियोफेज
विषाणु	कॉन्डिडा
शैवाल	अमीबा
जीवाणु	आदिकेंद्रकी

4. दिए गए कथन सही या गलत लिखकर उनका स्पष्टीकरण लिखो ।

- अ. लॅक्टोबॅसिलाय ये हानिकारक जीवाणु हैं।
- आ. कवकों की कोशिका भित्ति कायटिन से बनी होती हैं।
- इ. अमीबा कूटपादों की सहायता से संचलन करता हैं।
- ई. प्लाज्मोडियम के कारण आँव होती हैं।
- उ. टोमॅटोविल्ट यह जीवाणुजन्य रोग है।

5. उत्तर लिखो।

- अ. व्हिटाकर वर्गीकरण पद्धति के लाभ लिखो।
- आ. विषाणुंओं की विशेषताएँ लिखो।

- इ. कवकों का पोषण कैसे होता है।
- ई. मोनेरा जगत में कौन कौन से सजीवों का समावेश होता है ?

6. पहचानो तो मैं कौन?

- अ. मुझमें केंद्रक या प्ररसकलायुक्त कोशिका अंगक नहीं होते ।
- आ. मुझमें केंद्रक, प्ररसकलायुक्त कोशिका अंगक होते है।
- इ. मैं सडेगले कार्बनिक पदार्थों पर जीवनयापन करता हूँ।
- ई. मेरा प्रजनन सामान्यतः द्विविभाजन पद्धित से होता हैं ।
- उ. मैं मेरे समान प्रतिकृति का निर्माण करता हूँ।
- ऊ. मेरा शरीर अंगहीन हैं और मैं हरे रंग का हूँ।

7. सही आकृतियाँ बनाकर नामांकित करो।

- अ. जीवाणुओं के विभिन्न प्रकार
- आ. पैरामिशियम
- इ. बॅक्टेरिओफाज
- 8. आकार के अनुसार दिए गए नामों को आरोही क्रम में लिखो ।

जीवाणु, कवक, विषाणु, शैवाल

उपक्रमः

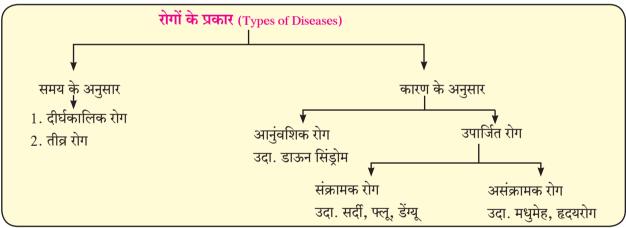
- अ. इंटरनेट की सहायता से विभिन्न रोगकारक जीवाणुओं और उनसे होनेवाले रोगों की जानकारी प्राप्त कर उसकी तालिका बनाओ।
- आ. तुम्हारे इलाके में स्थित किसी पॅथॉलॉजी प्रयोगशाला में जाकर वहाँ के विशेषज्ञों से सूक्ष्मजीव, उनकी निरीक्षण पद्धति और विभिन्न सुक्ष्मदर्शियों के संदर्भ में विस्तारपूर्वक जानकारी प्राप्त करो।

2. स्वास्थ्य और रोग

थोडा याद करो।

- स्वास्थ्य खराब के कारण तुमने कभी विद्यालय से छुट्टी ली है क्या?
- 2. हमारा स्वास्थ्य खराब होता हैं, अर्थात निश्चित रूप से हमें क्या होता है ?
- 3. बीमार होने के पश्चात कभी-कभी औषधोपचार न लेते हुए भी हमें कुछ समय बाद ठीक लगने लगता है, तो कभी-कभी डॉक्टर के पास जाकर नियमित रूप से औषधोपचार लेते हैं। ऐसा क्यों होता है? स्वास्थ्य (Health)

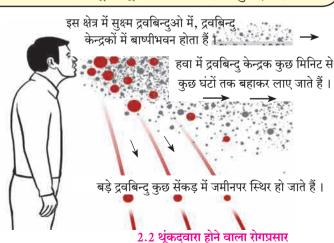
रोगों का केवल अभाव ही स्वास्थ्य नहीं हैं अपितु शारीरिक, मानसिक और सामाजिक दृष्टि से पूर्णतः तंदुरस्त होने की स्थिति को ही स्वास्थ्य कहते हैं।



2.1 ज्वर का मापन

रोग का क्या अर्थ है ?

शरीर की क्रियात्मक अथवा मानसशास्त्रीय दृष्टिकोण के अनुसार शरीर के महत्त्वपूर्ण जैविक क्रिया में रूकावट निर्माण करने वाली स्थिति ही रोग हैं। प्रत्येक रोग के विशेष लक्षण होते हैं।


रोगों के प्रकार : तुमने मधुमेह, सर्दी, अस्थमा, डाऊन सिंड्रोम, हृदय विकार ऐसे विभिन्न रोगों के नाम सुने होगें। इन सभी रोगों के कारण और लक्षण भिन्न-भिन्न होते हैं। विभिन्न रोगों का वर्गीकरण निम्ननुसार किया जाता हैं।

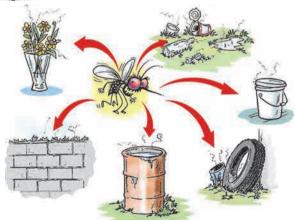
温

बताओ तो

- नीचे दिए गए रोगों का प्रसार कौन-से माध्यम से होता हैं ?
 (पीलिया, मलेरिया, दाद, क्षय, डेंग्यू, अतिसार(पेचिश), नायटा, स्वाईन फ्ल्यू)
- 2. रोगजंतू का क्या अर्थ है?
- 3. संक्रामक रोगों का क्या अर्थ है?

अ. संसर्गजन्य/संक्रामक रोग: दूषित हवा, पानी, भोजन अथवा वाहक (कीटक व प्राणी) इनके माध्यम से फैलने वाले रोग ही संक्रामक रोग होते हैं।

रोगों के नाम	कारक	संक्रमण के माध्यम	लक्षण	उपाय तथा उपचार
क्षय (Tuberculosis)	जीवाणु (मायकोबॅक्टेरिअम ट्युबरक्युली)	रोगी के थूँक से, हवाद्वारा प्रसार, रोगी के संपर्क में दीर्घकाल रहना, रोगी की वस्तुओं का उपयोग करना।	अधिक समय तक खाँसी, थूँक के साथ खून गिरना वजन घटना, श्वासोच्छ्वास में कष्ट होना।	बी. सी.जी. टीका लगवाना, रोगी को अन्य लोगों से अलग रखना, नियमित रूप से औषधियाँ लेना, DOT यह उपचार पूर्णतः व नियमित लेना चाहिए।
पीलिया (Hepatitis)	विषाणु (हेपॅटीटीस A,B,C,D,E)	पानी, रोगी की उपयोग की हुई सुईयाँ, रक्त आधान ।	भूख कम लगना, गाढी पीली पेशाब, थकावट, जी मचलाना, उल्टी, धूसर विष्ठा (राख जैसे रंग की विष्ठा)	पानी उबालकर और छानकर पीना चाहिए, शौचालय का उपयोग करने के पूर्व और पश्चात हाथ साबुन से धोने चाहिए ।
पेचिश (अतिसार) (Diarrhoea)	जीवाणु, विषाणु, शिगेला बॅसीलस, एन्टामिबा हिस्टोलीटीका	दूषित पानी और भोजन	पेट में दर्द, पानी की तरह पतले जुलाब	खाद्यपदार्थ ढँककर रखना चाहिए। पानी उबालकर तथा छानकर पीना चाहिए। जल संजीवनी (ORS) लेनी चाहिए।
हैजा (Cholera)	जीवाणु (व्हिब्रियो कॉलरी)	दूषित भोजन तथा पानी	उल्टियाँ और बार-बार जुलाब, पेट में दर्द, पैरों में अकड़न पैदा होती हैं।	स्वच्छता रखनी चाहिए, खुले भोज्यपदार्थ नहीं खाना चाहिए, पानी उबालकर पीना चाहिए, कॉलरा प्रतिबंधक टीका लगवाना चाहिए।
विषमज्वर (Typhoid)	जीवाणु (सालमोनेला टायफी)	दुषित भोजन तथा पानी	भूख कम होना, सिरदर्द, जी मचलाना, पेट पर लाल- लाल फुँसियाँ आना, अतिसार, $104^{\circ}F$ तक ज्वर आना।	स्वच्छ तथा निर्जतुंक पानी पीना, टीका लगवाना, गंदे पानी का निपटारा उचित प्रकार से करना चाहिए।


तालिका पूर्ण करो।

2.3 कुछ संक्रामक रोग

आंत्रशोथ, मलेरिया, प्लेग, कुष्ठरोग, जैसे विविध रोगों की जानकारी प्राप्त करो और ऊपर दिये अनुसार सारणी तैयार करो ।

निरीक्षण करो तथा चर्चा करो।

2.4 परिसर की अस्वच्छता

इंटरनेट मेरा मित्र

- 1. चेचक (Chicken pox) रोग की जानकारी, कारण, लक्षण तथा उपाय खोजो।
- 2. अधिक जानकारी प्राप्त करो । अ. पल्स पोलिओ अभियान आ. WHO
- चित्र में पानी संचित की गई वस्तुएँ तुम्हें कहाँ कहाँ दिखाई देती हैं ?
- 2. चित्र के आधार पर तुम्हें कौन-से खतरों की कल्पना होती हैं ?

वर्तमान स्थिति के कुछ महत्त्वपूर्ण रोग

- 1. विद्यालय में 'स्वच्छ हाथ' उपक्रम का क्यों आयोजन किया जाता हैं?
- 2. बारिश के मौसम में पानी उबालकर क्यों पीना चाहिए ?
- 3. व्यक्तिगत स्वच्छता किस प्रकार रखते हैं?

डेंग्यू (Dengue): सग्रंहित पानी में मच्छर अंडे देते हैं तथा उनकी वृद्धि के लिए पोषक वातावरण निर्मित होकर उनकी संख्या बढ़ती हैं। मच्छरों की विभिन्न प्रजातियाँ अलग-अलग रोगों का प्रसार करती हैं। उनमें से एडिस इजिप्ती प्रकार के मच्छरद्वारा डेंग्यू नामक संक्रामक रोग का प्रसार होता हैं। यह रोग फ्लेवी व्हायरस प्रकार के डेन -1, 2 विषाणु के कारण होता हैं।

लक्षण

- 1. तेज बुखार, तेज सिरदर्द, उल्टियाँ होना।
- 2. सबसे महत्त्वपूर्ण आँखो में अधिक दर्द होता हैं।
- 3. रक्त में रक्त पट्टिकाओं की (platelets) संख्या कम होने के कारण शरीर के अंदर रक्तस्त्राव होना।

निरीक्षण करो तथा चर्चा करो।

नीचे दर्शाई अनुसार आकृति के चित्रों का निरीक्षण करके उनका वर्णन चौखट में लिखो और कक्षा में चर्चा करो।

2.5 डेंग्यू : कारण तथा प्रतिबंधात्मक उपाय

स्वाईन फ्लू: संसर्ग होने के कारण

- स्वाईन फ्ल्यू का संसर्ग सूअर इस प्राणी द्वारा तथा मानवद्वारा होता हैं।
- स्वाईन फ्ल्यू के विषाणु का प्रसार रोगी के पसीने से होता
 हैं तथा नाक तथा गले के स्नाव व थूँक से होता हैं।

जानकारी प्राप्त करो ।

तुम्हारे परिसर में पंचायत, नगरपालिका, महानगरपालिका मच्छरों के प्रसार के प्रतिबंध के लिए कौन-सी उपाय करती हैं?

क्या तुम जानते हो?

मलेरिया यह मादा एनॉफिलीज मच्छर के कारण होता हैं तो हाथी रोग मादा क्युलेक्स मच्छर से होता हैं। एनॉफिलीज और एडिस मच्छर स्वच्छ पानी में पाए जाते हैं तो क्युलेक्स मच्छर दूषित पानी, गटरों, नालियों में पाए जाते हैं।

स्वाईन फ्लू के लक्षण

- दम लगना अथवा श्वसन में रूकावट निर्माण होना ।
- गले में खिंचखिंच, शरीर में दर्द होता हैं।

स्वाईन फ्लू का निदान: स्वाईन फ्लू के निदान के लिए रोगी के गले के द्रव पदार्थ का नमुना प्रयोगशाला में जाँच के लिए भेजा जाता हैं। 'राष्ट्रीय विषाणु विज्ञान संस्था (नॅशनल इन्स्टिट्यूट ऑफ व्हायरॉलॉजी – एन. आय.व्ही.), पुणे' और 'राष्ट्रीय संचारी रोग संस्था (नॅशनल इन्स्टिट्यूट ऑफ कम्युनिकेबल डिसिजेस – एन.आय.सी.डी) दिल्ली' की प्रयोगशाला में जाँच करने की व्यवस्था उपलब्ध हैं।

क्या तुम जानते हो?

मार्च 2009 में मेक्सिको देश में सर्वप्रथम इस रोग से पीड़ित रोगी निदर्शन में आए । स्वाईन फ्लू इन्फ्लुएन्सा ए (H_1N_1) विषाणु के कारण होता हैं । यह रोग सूअरों में पाए जाने वाले विषाणुओं के कारण होता हैं । सूअर के संपर्क में रहने वाले व्यक्तियों को इन विषाणुओं की बाधा हो सकती हैं ।

एड्स (AIDS): एड्स (AIDS - Acquired Immuno Deficiency Syndrom) यह रोग HIV (Human Immuno Deficiency Virus) विषाणु के कारण मानव को होता हैं। इसमें मानव को प्राकृतिक रोगप्रतिकारशक्ति धीरे-धीरे क्षीण होने के कारण विभिन्न रोगों से वह पीड़ित हो जाता हैं। वैद्यकीय प्रयोगशालामें की गई जाँच द्वारा प्राप्त नतीजे के बिना एड्स के निदान को निश्चित नहीं किया जा सकता हैं। उसका निश्चित निदान करने के लिए ELISA यह रक्त की जाँच हैं। एड्स के लक्षण व्यक्तिसापेक्ष होते हैं।

इसे सदैव ध्यान में रखो।

- HIV ग्रस्त व्यक्ति को स्पर्श करने पर, साथ में भोजन करने पर, व HIV ग्रस्त व्यक्ति की सेवा करने पर एडस नहीं होता हैं।
- HIV ग्रस्त व्यक्ति के साथ सामान्य व्यवहार रखना चाहिए।

क्या तुम जानते हो?

एच. आय.व्ही. विषाणु प्रथम आफ्रिका में बंदर की एक विशेष प्रजाति में पाया गया। 'नॅशनल एड्स कंट्रोल प्रोग्राम' और 'यू एन एड्स' के अनुसार भारत में 80 से 85 प्रतिशत असुरक्षित विषम लैंगिक संबंध से फैल रहा हैं।

प्राणियों दवारा होने वाला रोगप्रसार

बताओ तो

- 1. चूहो, मूसों को नष्ट करने के लिए तुम्हारे घर में कौन से उपाय करते हैं?
- 2. पालतु कृत्तों, बिल्लियों, पिक्षयों की स्वास्थ्यसंबंधी देखभाल की सावधानी क्यों ली जाती हैं?
- 3. क्या कबूतर, घुमंतु प्राणियों और मानवीय स्वास्थ्य का कुछ संबंध हैं?
- 4. चूहों, मूसों, तिलचिट्टों का मानव स्वास्थ्य पर क्या परिणाम होता हैं?

रेबीज (Rabies): रेबीज एक विषाणुजन्य रोग हैं। यह रोग रेबीज से प्रभावित कुत्ते, खरगोश, बंदर, बिल्ली आदि के काटने से होता हैं। इस रोग के विषाणु तंत्रिकातंतुओं द्वारा मस्तिष्क में प्रवेश करते हैं। जल का डर (Hydrophobia) इस रोग का प्रमुख लक्षण हैं। इस रोग में रोगी को पानी से डर लगता हैं इसीलिए इसे जलांतक भी कहा जाता हैं। रेबीज जानलेवा रोग हैं, परंतु रोग होने से पूर्व टीका देकर उससे संरक्षण कर सकते हैं। कुत्ते के काटने के बाद इस रोग के लक्षण 90 से 175 दिन में दिखाई देते हैं।

रेबीज रोग के लक्षण

- 1. 2 से 12 हप्ते तक ज्वर रहता हैं।
- 2. रोगी अतिशयोक्तिपूर्ण कृति करता हैं।
- 3. पानी से डर लगता हैं।

इंटरनेट मेरा मित्र

- 1. इंटरनेट पर रेबीज रोग संबंधी विविध व्हिडियो देखो।
- 2. रेबीज रोगों के प्रतिबंधात्मक उपचार की जानकारी प्राप्त करो और सूची तैयार करके मित्रों के साथ चर्चा करो।

- 1. प्राणियों के रहने की जगह, पिंजरे, रसोईघर तथा भोजन के स्थान पर क्यों नहीं होने चाहिए?
- 2. रेबीज रोग को कौन से लक्षणोंद्वारा पहचानोगे?
- **ब.** असंक्रामक रोग: वे रोग जो संक्रमित व्यक्ति (रोगी) से स्वस्थ व्यक्ति में स्थानांतरित नहीं होते, उन्हें असंक्रामक रोग कहते हैं। ऐसे रोग कुछ विशेष कारणों से व्यक्ति के शरीर में ही उत्पन्न होते हैं।
- 1. कर्करोग (Cancer): कोशिकाओं की अनियंत्रित और असामान्य वृद्धि को कर्करोग कहते हैं। कर्करोग की कोशिकाओं के समूह अथवा गाँठ को ट्यूमर (Tumor) कहते हैं। कर्करोग, फेफड़ों, मुँह, जीभ, जठर, स्तन, गर्भाशय, त्वचा इन अंगों में तथा रक्त या अन्य ऊतकों में हो सकता हैं।

कारण : अधिक मात्रा में तंबाकु, गुटखा, धूम्रपान, मद्यपान करना, आहार में तंतुमय अन्नपदार्थों (फल तथा सिब्जियों) को समावेश न होना, अधिक मात्रा में जंकफुड (वडापाव, पिझ्झा, आदि) खाना । इस प्रकार और भी अन्य कारण हो सकते हैं । आनुवंशिकता भी एक कारण हो सकता हैं ।

लक्षण

- 1. दीर्घकालीन खाँसी, आवाज में परिवर्तन होना, खाते समय गले में दर्द होता है।
- 2. उपचार करने पर ठीक न होने वाला दाग या सूजन।
- 3. स्तन में गाँठ निर्माण होना ।
- 4. अकारण वजन कम होना।

चर्चा करो

कर्करोग पर प्रतिबंध किस प्रकार करना चाहिए इसपर चर्चा करो और पोस्टर तैयार करके कक्षा में लगाओ।

क्या तुम जानते हो?

कर्करोग पर आधुनिक निदान व उपचार पद्धित : कर्करोग का निदान करने के लिए टिशू डायग्नोसिस, सी.टी.स्कॅन, एम.आर.आय.स्कॅन, मॅमोग्राफी बायप्सी, आदि तंत्रो का उपयोग किया जाता हैं। उपचार में रसायनोपचार, किरणोंपचार शल्यचिकित्सा इन प्रचलित पद्धितियों के साथ-साथ रोबोटिक सर्जरी, लॅप्रोस्कॉपिक सर्जरी ऐसी उपचार पद्धितियों का उपयोग किया जाता हैं।

इसे सदैव ध्यान में रखो।

आहार पर उचित नियंत्रण रखने पर कुछ प्रकारों के कर्करोग से संरक्षण हो जाता हैं। कर्करोग पर आधुनिक उपचार के साथ-साथ शारीरिक व्यायाम करने से अधिक लाभ होता हैं तंबाकू सेवन, धूम्रपान जैसे व्यसनों से दूर रहो।

बताओ तो

बिना शक्कर की चाय लेने वाले या मीठे पदार्थ का सेवन टालने वाली व्यक्ति क्या तुम्हें मालूम हैं? उनके दवारा ऐसा करने का क्या कारण होगा ?

2. मधुमेह (Diabetes) : स्वादुपिंड में निर्मित होनेवाला इन्सुलिन संप्रेरक रक्त की ग्लूकोज शर्करा की मात्रा पर नियंत्रण रखता है । इन्सुलिन की मात्रा कम होने पर शर्करा की मात्रा नियंत्रित नहीं होती, इस विकार को मधुमेह कहते हैं ।

इन लक्षणों की ओर ध्यान न देना उचित नही हैं।

- रात में मुत्रविसर्जन को बार-बार जाना, वजन में वृद्धि
 या कमी होना ऐसे लक्षण दिखाई देते हैं।
- मधुमेह के कारण : आनुवंशिकता अधिक मोटापा
- व्यायाम या कष्ट का अभाव मानसिक तनाव

प्रतिबंधात्मक उपचार : डॉक्टर की सलाह से आहार, औषधी और व्यायाम अपनाकर नियंत्रण करना।

क्या तुम जानते हो?

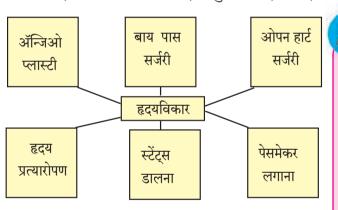
वर्तमान में साधारणतः देश में सात करोड मधुमेह के रोगी हैं। विश्व में सबसे अधिक मधुमेह के रोगी भारत में हैं।

3. हृदयविकार (Heart Diseases) : हृदय की पेशियों को रक्त अर्थात ऑक्सीजन तथा पोषक पदार्थों की कम आपूर्ति होने पर हृदय की कार्यक्षमता कम होती है । इस कारण हृदय को अधिक कार्य करना पड़ता हैं और तनाव से दिल का दौरा पड सकता हैं । दिल का दौरा पडने पर तुंरत डॉक्टर की सलाह व औषधपचार अत्यावश्यक हैं ।

इन लक्षणों को नजर अंदाज नहीं करना चाहिए।

* सीने में असहनीय दर्द होना, सीने के दर्द के कारण कंधे, गर्दन और हाथ में दर्द, हाथ सिकुडना, पसीना आना, बैचेनी से कंपन महसूस होना।

इंटरनेट मेरा मित्र


इंटरनेट पर मधुमेह की जानकारी देनेवाले विविध विडियो देखो । महत्त्वपूर्ण जानकारी को नोट करो और समूह में कक्षा में PPT प्रस्तुतीकरण करो ।

इसे सदैव ध्यान में रखो ।

प्रत्येक रोग का एक विशेष वैज्ञानिक कारण होता हैं। दैवी प्रकोप अथवा अन्य व्यक्तियों के द्वेष से रोग नहीं होते हैं। उचित चिकित्सकीय उपचार से ही रोग ठीक होते हैं। तंत्र-मंत्र, जादूटोना के कारण रोग ठीक नहीं होते हैं।

हृदयविकार के कारण: धूम्रपान करना, मद्यपान, मधुमेह, उच्च रक्तदाब, मोटापा, शारीरिक कष्ट की कमी, व्यायाम का अभाव, निरंतर बैठे काम करना, आनुवंशिकता, तनाव, अतिक्रोध और चिंता ।

इसे सदैव ध्यान में रखो ।

हृदयविकार पर प्राथमिक उपचार

प्रथमतः 108 नंबर पर रूग्णवाहिका को फोन करो । रोगी के कंधे हिलाकर उसकी चेतना को पहचानो । रोगी को कठोर पृष्ठभाग पर लेटाकर वैज्ञानिक पद्धति से रोगी के सीने पर दाब दो । इस पद्धित को कॉम्प्रेशन ओन्ली लाईफ सपोर्ट (C.O.L.S.) कहते हैं । इसमें एक मिनट में 100 से 120 दाब की गित से कम से कम 30 बार सीने के मध्यभाग में दाब देना चाहिए।

- 1.तुमने कभी दादा-दादी को काढा (अर्क) लेते हुए या कुछ चाटने वाले पदार्थ (चाटण) लेते हुए देखा है क्या ? उनके साथ उससंबंधी चर्चा करो।
- 2. घृतकुमारी, हल्दी, अदरक, लहसुन इनका उपयोग औषधी के रूप में कौन-सी बिमारी के लिए और किस प्रकार करते हैं, इसकी जानकारी दादा-दादी से प्राप्त करो।

इंटरनेट मेरा मित्र

आयुर्वेदिक, होमिओपॅथी, निसर्गोपचार, ॲलोपॅथी, युनानी इन चिकित्सकीय पद्धतियों संबंधी इंटरनेट से जानकारी प्राप्त करो।

औषधियों का दुरूपयोग: कभी-कभी डॉक्टर की सलाह न लेकर कुछ व्यक्ति अपने आप औषधियाँ लेते हैं। उनका अधिक मात्रा में उपयोग करने से हमारे शरीर पर दुष्परिणाम होते हैं। जैसे अधिक मात्रा में या बार बार वेदनाशामक (Pain Killers) लेने से तंत्रिका तंत्र, उत्सर्जन तंत्र, यकृत इनपर विपरीत परिणाम होता हैं। प्रतिजैविकों (Antibiotic) का अधिक उपयोग करने से जी मचलना, पेट में दर्द, पतली जुलाब, शरीर पर लाल चकते (Rash) आना, जीभ पर सफेद (श्वेत) दाग पडना आदि लक्षण दिखाई देते हैं।

गरीब रोगी महँगी औषधियाँ खरीद नहीं सकता । क्या ऐसे समय में उनके लिए कुछ विकल्प उपलब्ध होंगे और कौन से?

जेनेरिक औषधियाँ: जेनेरिक औषधियों को सामान्य औषधियाँ भी कहते हैं। इन औषधियों की निर्मिति तथा वितरण किसी पेटंट के बिना किया जाता हैं। ये औषधियाँ ब्रॅन्डेड़ औषधियों के समतुल्य और उसी दर्जे की होती हैं। जेनेरिक औषधियाँ तैयार करते समय उस औषधियों के घटकों का अनुपात अथवा उन औषधियों का फॉर्मूला तैयार मिलने के कारण उसके संशोधन का खर्च बच जाता है। इस कारण जेनेरिक औषधियों की कीमत ब्रॅन्डेड औषधियों की कीमत से बहुत कम होती हैं।

2.6 जेनेरिक औषधियाँ

सूचना और संप्रेषण प्रौद्योगिकी के साथ

जेनेरिक औषधियों को तुम Healthkart और Jan Samadhan इस मोबाइल ॲप की सहायता से आसानी से प्राप्त कर सकते हो । वे ऑप तुम्हारे घर के मोबाइल पर डाऊनलोड करो । जरूरत पड़ने पर उसका उपयोग करो ।

जीवनशैली और बिमारी: जीवनशैली का अर्थ आहार-विहार इसमें हरदिन की दिनचर्या तथा आहार का समावेश होता हैं। आजकल देर से उठना, देर से सोना, भोजन के समय में परिवर्तन, व्यायाम तथा कष्ट के कार्य का अभाव होना, जंकफुड खाना ऐसी बातों का अनुपात बढ़ गया हैं। इसलिए बीमार पड़ने का अनुपात बढ़ गया हैं। बीमार होने का अनुपात कम करना हैं, तो उचित जीवनशैली को अपनाना अत्यंत आवश्यक हैं। इन में उचित नींद, उचित आहार, इसके अलावा योगासन, प्राणायाम और व्यायाम करना आवश्यक हैं। इसी प्रकार व्यायाम भी अपने शरीर की क्षमता के अनुसार ही करना जरूरी हैं। प्राणायम तथा योगासन विशेषज्ञ व्यक्तियों के मार्गदर्शन में करना चाहिए विविध प्राणायम तथा योगासन के विडियो देखो।

टीकाकरण (Vaccination) : रोग न हो इसलिए उसका प्रतिबंध करने के लिए टीकाकरण करना भी उतना ही महत्त्वपूर्ण हैं । तुम्हारे पास के अस्पताल से टीकाकरण की तालिका प्राप्त करके उसका अध्ययन करें। ।

क्या तुम जानते हो?

- * प्रधानमंत्री जन औषधी योजना 1 जुलै 2015 में भारत सरकार ने घोषित की । इस योजना के अंतर्गत उच्च दर्जे की औषधियों को कम कीमत में जनता को उपलब्ध कर देते हैं । उसके के लिए 'जन औषधी स्टोअर्स' शुरू किए गए हैं ।
- * भारतीय कंपनियाँ अधिक पैमाने पर जेनेरिक औषिधयों का निर्यात करती हैं। परंतु देश में मात्र ब्रॅन्डेड कंपनी के नाम से ही अधिक कीमत पर औषिधयों को बेचा जाता हैं। अमेरिका में 80% जेनेरिक औषिधयों का उपयोग किया जाता हैं अतः औषिधयों पर खर्च होने वाले सैकड़ों अरब रूपयों की वहाँ बचत होती हैं।

आओ मनाए स्वास्थ्य दिन विशेष

7 अप्रैल - विश्व स्वास्थ्य दिवस 14 जून - विश्व रक्तदान दिवस 29 सितंबर - विश्व हृदय दिवस 14 नवंबर - विश्व मधुमेह दिवस

महत्त्व जानो

रक्तदान: रक्तदाता के एक युनिट रक्तदान से एक समय में कम से कम तीन रोगियों की जरूरत पूर्ण होती हैं। जैसे कि लालरक्तकण, श्वेतरक्तकण, रक्तपिट्टका। एक वर्ष में चार बार रक्तदान करने पर 12 रोगियों की जान बचा सकते हैं। नेत्रदान: मृत्यू के बाद हम नेत्रदान कर सकते हैं। इस के कारण अंधे व्यक्तियों को दृष्टि मिल सकती हैं।

स्वाध्याय

- 1. अंतर स्पष्ट करो ।
 - संक्रामक और असंक्रामक रोग
- 2. असंगत शब्द पहचानो ।
 - अ. मलेरिया, पीलिया, हाथीरोग, डेंग्यू
 - आ. प्लेग, एड्स, हैजा क्षय.
- 3. एक से दो वाक्य में उत्तर लिखो।
 - अ. संक्रामक रोग फैलाने वाले माध्यम कौन-कौन से हैं?
 - आ. पाठ के अतिरिक्त असंक्रामक रोगों के कौन-से नाम तुम बता सकते हो ?
 - इ. मधुमेह, हृदयविकार इनके प्रमुख कारण कौन-से हैं?
- 4. तो क्या निष्पन्न होगा/तो क्या टाल सकोगे तो किन-से रोगों पर नियंत्रण होगा?
 - अ. पानी उबालकर व छानकर पीना ।
 - आ. धूम्रपान, मद्यपान न करना।
 - इ. नियमित संतुलित आहार लेना व व्यायाम करना।
 - ई. रक्तदान के पूर्व रक्त की उचित जाँच की।
- 5. परिच्छेद पढकर प्रश्नों के उत्तर दो।

''गौरव 3 वर्ष का हैं। वह और उसका परिवार सामान्य बस्ती (झोपडपट्टी) में रहते हैं। सार्वजिनक शौचालय उसके घर के पास हैं। उसके पिताजी को मद्यपान करने की आदत हैं। उसकी माताजी को संतुलित आहार का महत्त्व पता नहीं हैं।''

- अ. ऊपर्युक्त स्थिति में गौरव को कौन-कौनसी बीमारियाँ हो सकती हैं ?
- आ. उसे तथा उसके अभिभावकों को तुम क्या मदद करोगे ?
- इ. गौरव के पिताजी को कौनसी बिमारी होने की संभावना हैं ?
- 6. नीचे दिए गए रोगों के प्रतिबंधात्मक उपाय लिखो।
 - अ. डेंग्यू आ. कर्करोग इ. एड्स

- 7. महत्त्व स्पष्ट करो।
 - अ. संतुलित आहार
 - आ. व्यायाम/योगासन
- 8. सूची बनाओ।
 - अ. विषाणुजन्य रोग
 - आ. जिवाणुजन्य रोग
 - इ. कीटकोंदवारा फैलने वाले रोग
 - ई. आनुवांशिकता के कारण होने वाले रोग
- कर्करोग की आधुनिक निदान व वैद्यकीय उपचार पद्धित संबंधी जानकारी लिखो ।
- 10. तुम्हारे घर में उपलब्ध औषधियों के नाम और उनके घटक लिखो तथा उनकी सूची बनाओ।

उपक्रम :

- अ. भिन्न-भिन्न रोगों की जानकारी देने वाले, जनजागृती निर्मित करने वाले भित्तिपत्रक तैयार करके विद्यालय में प्रदर्शन लगाओ।
- आ. नजदीक के स्वास्थ्य केंद्र या अस्पताल में जाओ और टीकाकरण संबंधी अधिक जानकारी प्राप्त करो।
- ई. डेंग्यू, मलेरिया, स्वाईन फ्लू संबंधी जनजागृति करने वाले पथनाट्य तैयार करके तुम्हारे विद्यालय के नजदीक के स्थान पर प्रस्तुत करो।

3. बल तथा दाब

बल का अर्थ क्या हैं ?

स्थिर वस्तु पर बल क्रियाशील न हो, तो वह स्थिर ही रहती हैं। गतिशील वस्तुपर बल क्रियाशील न हो तो वह उसी वेग से व दिशा में सतत गतिशिल रहती है। यह न्यूटन का गतिसंबंधी पहला नियम है।

आकृति 3.1 व 3.2 के चित्रों का निरीक्षण करो।

3.1 विभिन्न क्रियाएँ

संपर्क व असंपर्क बल (Contact and Non contact Forces): आकृति 3.1 में मोटर ढकेलने वाले मनुष्य द्वारा पीछे से बल लगाने पर मोटर आगे की दिशा में ढकेली जाती है। रूठ कर बैठे हुए कुत्ते को लड़का खींचता है और फुटबॉल खेलने वाला लडका पैर से गेंद को ढकेलता है। इससे क्या स्पष्ट होता है ? दो वस्तुओं में आंतरक्रिया दवारा उन वस्तुओं

पर बल प्रयुक्त होता है।

आकृति 3.2 में चुंबक के धुव्रों की ओर लोहे की आलिपनें चुंबकीय बल के कारण आकर्षित होती है और चिपकती हैं, यह दिखाया है।

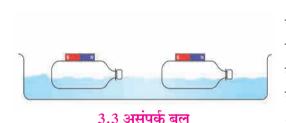
3.2 कुछ घटनाएँ

किया जाता हैं। उठाना, ढकेलना, खींचना ऐसी अनेक क्रियाओं में यह प्रयुक्त होता है। इसके विपरीत चुंबकीय बल, गुरूत्वीय बल, स्थिर विद्युत बल जैसे बल किसी भी प्रकार के संपर्क के बिना प्रयुक्त होते हैं, इसलिए ये असंपर्क बल के उदाहरण हैं ।

किसी गेंद को मेज पर रखकर उसे हल्का सा धक्का देने पर वह थोडा आगे जाकर धीमा होते-होते रूक जाती है। समतल रास्ते पर गतिशील वाहन इंजिन बंद करने के बाद थोडी दरी पर जाकर रूक जाता है। टेबल का और जमीन का पृष्ठभाग और उसपर गतिशील वस्तु इनमें पाए जानेवाले घर्षण बल के कारण ऐसा घटित होता है। घर्षण बल नहीं होता तो न्यूटन के पहले गतिसंबंधी नियमानुसार पिंड गतिशील ही रहता । घर्षण बल दैनिक जीवन में अत्यंत उपयुक्त है। जमीन पर चलते समय हम पैरों से जमीन को पीछे की ओर ढकलते हैं। घर्षण बल न हो तो हम फिसलकर गिर जाएगें और चल नहीं सकेंगे । घर्षण बल यह सभी गतिशील पिंडो पर प्रयुक्त होता है और वह गति की दिशा

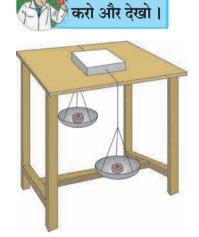
नारियल के पेड़ से नारियल नीचे गिर रहा है। गुरूत्वीय बल के कारण पिंड पृथ्वी की ओर आकर्षित होते हैं। बालों पर रगड़ी हुई कंघी की ओर टेबल पर रखे गए कागज के ट्रकडे आकर्षित होते हैं। कंघी पर स्थिर विद्युत आवेश होने के कारण एवं टुकडों पर प्रेरित विद्युत आवेश होने के कारण कंघी और ट्रकडों में स्थिर विद्युत बल प्रयुक्त होता हैं और कागज के ट्रकड़े कंघी पर चिपकते हैं।

आकृति 3.1 में पिंडो का एक दूसरे के साथ सीधे संपर्क के कारण अथवा एक और पिंड के द्वारा किए गए संपर्क के कारण बल प्रयुक्त हुआ दिखाई देता है। इस प्रकार के बल को 'संपर्क बल' कहते हैं। आकृति 3.2 में दो वस्तुओं में संपर्क न होने पर भी उन दो पिंडो पर बल प्रयुक्त होता हुआ दिखाई देता है इसप्रकार के बल को 'असंपर्क बल' कहते हैं।


स्नायुबल (पेशीय बल) यह संपर्क बल का उदाहरण है यह हमारे स्नायुओं (पेशियों) की मदद से पिंडोपर प्रयुक्त के विपरीत दिशा में प्रयुक्त होता है। रास्तों पर गिरे केले के छिलके पर से फिसलते हुए किसी को तुमने देखा होगा। उसी प्रकार कीचड के कारण भी फिसलते हैं, ये दोनों उदाहरण घर्षण कम होने के कारण घटित होते हैं।

संपर्क व असंपर्क बल प्रयुक्त होने वाले कुछ अन्य उदाहरणों की सूची बनाओ तथा किस प्रकार के बल हैं. यह लिखो ।

प्लास्टिक की चौकोन आकार की दो छोटी बोतलें लो । उनके ढक्कन कस कर बंद करो । दोनों बोतलों पर 2 छोटे छड चुंबक रखो और उन्हें चिपकपट्टी की सहायता से व्यवस्थित चिपकाओ । (आकृति 3.3)


एक बड़े से प्लास्टिक के ट्रे में पानी भर कर उसमें ये बोतलें चुंबक ऊपर की ओर आए इसप्रकार से तैरते हुए छोड़ो। एक बोतल दूसरी के पास लेकर जाओ। चुंबक के विरूद्ध ध्रुवों में आकर्षण होने के कारण एक बोतल के छड़ चुंबक का उत्तरी ध्रुव दूसरे छड़ चुंबक के दक्षिणी ध्रुव के पास में हो तो दोनों बोतलें एक-दूसरे की ओर आकर्षित होती हैं। बोतलों की दिशा बदलकर क्या होता है? उसका

निरीक्षण करो । प्रत्यक्ष संपर्क में न आते हुए भी बोतलों की गित में होनेवाला परिवर्तन हमें दिखाई देता है । इसका अर्थ दोनों चुंबकों पर असंपर्क बल क्रियाशील है ।

स्थिर विद्युत बल के बारे में आपने पिछली कक्षा में पढ़ा हैं। स्थिर विद्युत बल यह असंपर्क बल है। यह सिद्ध करने के लिए तुम कौन-सा प्रयोग करोगे?

संतुलित और असंतुलित बल (Balanced and Unbalanced Forces)

3.4 संतुलित और असंतुलित बल

पुठ्ठे का एक खाली खोका लेकर उसके दोनों ओर डोरी अथवा मजबूत धागा बाँधकर आकृति 3.4 में दिखाए नुसार खोका समतल पृष्ठभाग वाले मेज पर रखो। धागा मेज के दोनों बाजुओं की ओर नीचे लो। उनके सिरों पर पलडे बांधो। दोनों पलडों में समान द्रव्यमानवाली वस्तु (या वजन) रखो। खोका मेज पर स्थिर दिखाई देगा। किसी एक पलडे में दूसरे पलड़े की अपेक्षा अधिक द्रव्यमान वाली वस्तु रखने पर खोका उस पलड़े की दिशा में सरकने लगेगा। पलड़े में समान द्रव्यमान होने पर पलड़े पर समान गुरूत्वीय बल क्रियाशील होता है, अर्थात खोके पर संतुलित बल क्रियाशील होता है। बलों की दिशा विपरीत होने के कारण परिणामी बल शून्य होता है और खोका स्थिर रहता हैं। इसके विपरीत यदि किसी एक पलड़े में अधिक द्रव्यमान (भार) रखने पर खोका अधिक द्रव्यमान वाले पलड़े की दिशा में सरकने लगता है। खोके पर दोनों ओर से असमान बल लगाने से असंतुलित बल क्रियाशील होता है तथा उसके परिणामस्वरूप खोके को गित प्राप्त होती है।

रस्सी खींच का खेल खेलनेवाले अपनी-अपनी दिशा में ड़ोरी को खींचते हैं। दोनों ओर से एक समान ताकत अर्थात समान बल हो तो डोरी हिलती नहीं। एक ओर का बल अधिक होने पर डोरी उस ओर सरकती हैं, अर्थात प्रथमतः दोनों ओर से लगाया गया बल संतुलित था, वह असंतुलित होने पर अधिक बल की दिशा में डोरी सरकती है।

एक और उदाहरण देखो । अनाज से भरा बड़ा डिब्बा जमीन पर सरकाते समय एक व्यक्ति की अपेक्षा दो व्यक्तियों द्वारा एक ही दिशा में बल लगाने पर सरकाना आसान होता है । इसका अनुभव तुमने लिया ही होगा । इस उदाहरण से तुम्हें क्या समझ में आया ?

- अ. किसी वस्तु पर एक ही दिशा में अनेक बल लगाने पर उनके योगफल के बराबर उस वस्तुपर बल प्रयुक्त होता है।
- आ. यदि दो बल एक ही वस्तु पर परस्पर विपरीत दिशा में लगाए जाएं तो, उनके अंतर के बराबर बल उस वस्तुपर प्रयुक्त होता है।
- इ. बल यह परिमाण तथा दिशा इन दोनों द्वारा व्यक्त किया जाता है। इसलिए बल एक सदिश राशि है।

किसी एक वस्तु पर एक से अधिक बल प्रयुक्त हो तो उस वस्तु पर होने वाला परिणाम यह उसपर प्रयुक्त कुल बल के कारण होता हैं। बल के कारण स्थिर पिंड को गित प्राप्त होती है। गितशील पिंड की चाल तथा दिशा बदलती है। उसी प्रकार गितशील वस्तु को स्थिर करने के लिए भी बल की आवश्यकता होती हैं। बल के कारण वस्तु का आकार भी बदल सकता है। आटे को गूँथते समय आटे के गोले को बल लगाने पर उसके आकार में परिवर्तन होता हैं। कुम्हार घड़े को आकार देते समय विशिष्ट दिशा में बल लगाता है। रबड को खींचने पर उसका प्रसरण होता हैं। ऐसे अनेक उदाहरण हैं।

जडत्व (Inertia): बल के कारण पिंड की स्थिति का बदलना हमने देखा है। बल के बिना पदार्थों की पिंड गित जिस अवस्था में है उसी स्थिति में रहने की प्रवृत्ति दिखाते हैं। नीचे कुछ उदाहरण देखेगें।

कृति 1: एक काँच के गिलास पर पोस्टकार्ड रखो । उस पर 5 रूपये का सिक्का रखो । अब पोस्टकार्ड को हाथ की ऊँगली की सहायता से टक्कर मारो । सिक्का सीधा गिलास में गिरता है । क्या यह देखा है ?

कृति 2: एक लोहे के स्टॅंड पर किसी एक धागे 1 की सहायता से एक आधे किलोग्राम द्रव्यमान का बाँट (वजन) लगाओ । उस बाँट पर दूसरा धागा 2 बांधकर लटकता हुआ रखो । अब धागे 2 को झटका देकर नीचे खींचो । धागा 2 टुटता हैं परंतु बाँट नीचे नहीं गिरता । भारी वस्तु हिलती नहीं । अब धागा 2 धीरे-धीरे नीचे खींचो। धागा 1 टूटता है और बाँट नीचे गिरता है । इसका मुख्य कारण अर्थात् धागा 1 पर बाँट के कारण आया हुआ तनाव ।

दाब (Pressure): दो पहिए एवं चार पहिए वाली गाड़ियों के टायर में हवा भरते हुए तुमने देखा होगा। हवा भरने वाले यंत्र के ऊपर 'दाब' दर्शाने वाली चकती (disk) होती है अथवा डिजिटल मीटर पर 'दाब' के आँकडे दिखते हैं। यंत्र के द्वारा एक विशिष्ट (अंक) मान तक टायर में दाब बढाया जाता है। साइकिल के टायर में हाथ पंप की सहायता से हवा भरते समय बल लगाना पडता है, यह तुम्हें मालुम ही है। बल लगाकर हवा का दाब बढाकर वह टायर में भरी जाती है। क्या बल और दाब इनमें कुछ संबंध है?

कृति 3: कुछ नुकीली कीलें लेकर हथौड़े की सहायता से एक लकडी के तख्त पर ठोंको । उसी की एक कील लेकर कील के ऊपर वाले भाग को तख्त पर रखकर नुकीले भाग की ओर से हथौडे से ठोंको । क्या होता है ? कील नुकीले भाग से तख्त में घुसती है, परंतु ऊपर वाले भाग से नहीं घुसती । ड्रॉईंगबोर्ड पर ड्रॉईंग पिन टोंचते समय वे आसानी से ड्रॉईंगबोर्ड में टोंची जाती हैं । हमारे अँगूठे द्वारा बल लगा कर हम ड्रॉईंग पिन को आसानी से टोच सकते हैं । उसके विपरीत आलपिन ड्रॉईंगबोर्ड पर टोचते समय अँगुठे को चोट पहुँचने की संभावना होती है ।

इसे सदैव ध्यान में रखो ।

पिंड की है उस गित की स्थिति में रहने की प्रवृत्ती को उसका जडत्व कहते हैं। इसलिए बाह्य बल प्रयुक्त न होने पर स्थिर अवस्था वाली वस्तु स्थिर ही रहती हैं तथा गितशील अवस्था वाली वस्तु गितशील ही रहती है।

जडत्व के प्रकार: 1. विरामावस्था का जडत्व: पिंड़ जिस स्वाभाविक गुणधर्म के कारण अपने विरामावस्था में परिवर्तन नहीं कर सकता। उसे विरामावस्था का जडत्व कहते हैं।

2. गित का जड़त्व : पिंड़ जिस स्वाभाविक गुणधर्म के कारण अपनी गितशील अवस्था में परिवर्तन नहीं कर सकता, उसे गित का जड़त्व कहते हैं । उदाहरणार्थ : बिजली के घूमते हुए पंखे को बंद करने पर भी वह कुछ समय तक घुमता रहता है । बस के अचानक रूक जाने से बस में बैठे यात्री आगे की दिशा में ओर फेंके जाते हैं । 3. दिशा का जड़त्व : पिंड़ के जिस स्वाभाविक गुणधर्म के कारण वह अपने गित की दिशा में परिवर्तन नहीं कर सकता, उसे दिशा का जड़त्व कहते हैं । उदाहरणार्थ, वाहन सीधे सरल रेखा में गितशील होने पर अचानक मुड़ने पर यात्री विपरीत दिशा में फेंके जाते हैं ।

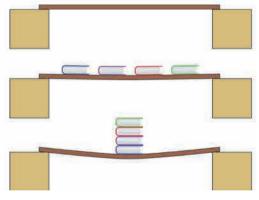
इस सरल प्रयोग से क्या समझ में आया? कील के नुकीले भाग से कील लकड़ी में आसानी से घुसती है। इससे एक बात तुम्हारे ध्यान में आई होगी कि कील के ऊपर वाले भाग पर बल लगाने से कील तख्त पर ठोकना आसान होता है।

सब्जी या फलों को धारदार चाकू से काटना आसान होता हैं। कम धार वाले चाकू ऐसे काम के लिए उपयोगी नहीं होते, यह किस कारण होता हैं?

इकाई क्षेत्रफल पर लंबवत दिशा में प्रयुक्त होने वाले बल को दाब (Pressure) कहते है:

दाब = जिसपर बल प्रयुक्त किया है वह क्षेत्रफल

फिलहाल हम केवल किसी पृष्ठभाग पर लंबवत दिशा में होनेवाले बल का ही विचार करते हैं। दाब की इकाई (Unit of Pressure): SI प्रणाली में बल की इकाई Newton (N) हैं। क्षेत्रफल की इकाई m^2 या वर्गमीटर है।


इसलिए दाब की इकाई $\rm N/m^2$ इसप्रकार होगी। इसे ही पास्कल ($\rm Pa$) कहते हैं। मौसम विज्ञान में दाब की इकाई bar है। $\rm 1~bar=10^5~Pa$, दाब यह अदिश राशि है।

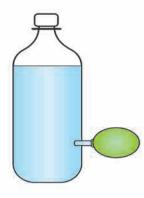
क्षेत्रफल में वृद्धि होनेपर उसी बल का दाब कम होता है और क्षेत्रफल कम होने पर उसी बल के दाब में वृद्धि होती है।

उदाहरणार्थ, ऊँट के पैर के तलवे फैले हुए होते हैं जिसके कारण ऊँट का भार अधिक पृष्ठभाग पर पड़ता है और रेत पर पड़ने वाला दाब कम होता है, इसलिए ऊँट के पैर जमीन में धँसते नहीं तथा उसे चलना आसान होता है। ठोस पदार्थ पर दाब: हवा में स्थित सभी ठोस पदार्थों पर हवा का दाब होता ही है। ठोस पदार्थ पर कोई एक भार रखा, तो उस भार के कारण ठोस पदार्थ पर दाब पड़ता है। वह दाब उस भार पर तथा भार का ठोस पदार्थ के साथ होनेवाले संपर्क क्षेत्रफल पर निर्भर होता है।

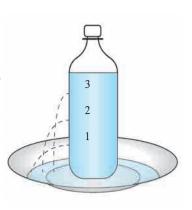
आकृति 3.5 नुसार कृति करो । क्या दिखाई देता है ?

3.5 बल व दाब

सब्जी की टोकरी सिर पर ले जानेवाली सब्जीवाली तुमने देखी होगी? वह अपने सिर पर टोकरी के नीचे कपड़े की चुंबर रखती है, उसका क्या उपयोग होता है ?


हम अधिक समय तक एक ही जगह पर खड़े नहीं रह सकते । फिर एक ही जगह पर आठ-आठ घंटे कैसे सो सकते हैं?

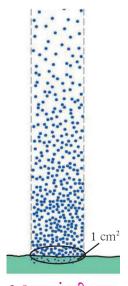
बर्फ पर फिसलने के लिए समतल तख्तों का उपयोग क्यों करते हैं ?


द्रव पदार्थ का दाब (Pressure of liquid)

कृति 1: प्लास्टिक की एक बोतल लो। रबड़ का गुब्बारा जिस पर कस कर बैठेगा ऐसी काँच की नली का साधारण 10 cm लंबाईवाला टुकड़ा लो। नली का एक सिरा थोड़ा सा गर्म कर धीरे से बोतल के आधार से 5 cm ऊँचाई पर बोतल के एक सिरे से दाब देकर अंदर जाएगा इस प्रकार लगाओ (आकृति 3.6). पानी न टपके इसलिए नली के बाजु में मोम गर्म करके लगाओ। अब बोतल में थोड़ा-थोड़ा पानी भरकर गुब्बारा फूलता है, इसे देखो। इससे क्या समझ में आता है? पानी का दाब बोतल के दीवार पर भी पड़ता है।

3.6 द्रव का दाब

कृति 2: एक प्लास्टिक की बोतल को आकृति 3.7 में दिखाए अनुसार 1,2,3 इन स्थानों पर प्रत्येक स्तर पर दाभन अथवा मोटी सुई की सहायता से छिद्र करो । बोतल में पूर्णतः पानी भरो । आकृति में दिखाए अनुसार पानी की धाराएँ बाहर निकलते हुए दिखाई देंगी । सबसे ऊपर वाले छिद्र से पानी की धारा बोतल के पास गिरती है, तो सबसे नीचे वाले छिद्र से पानी की धारा सबसे दूर गिरती है । इसके अतिरिक्त एक ही स्तर के दो छिद्रों में से गिरनेवाली धाराएँ बोतल से समान अंतर पर गिरती हैं । इससे क्या स्पष्ट होता है ? एक ही स्तर पर द्रव का दाब समान होता है, उसी प्रकार द्रव के गहराईन्सार दाब में वृद्धि होती है ।

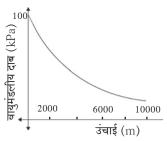


3.7 द्रव का दाब और स्तर

गैस का दाब (Gas Pressure): कोई एक गुब्बारा मुँह से फूलाते समय वह चारों ओर से फूलता है। गुब्बारे पर छोटा-सा छिद्र किया तो उसमें से हवा बाहर निकलती है ओर गुब्बारा पूर्णतः नहीं फूलता। यह निरीक्षण ऊपर्युक्त द्रव के प्रयोग के निष्कर्ष जैसा है। ऐसा दिखाई देता है की वायु भी द्रव के जैसे जिस पात्र में बंदिस्त होती है, उस पात्र के दीवार पर दाब प्रयुक्त करती है। सभी द्रवों और गैसों को तरल पदार्थ (fluid) कहते है। पात्र का प्रवाही पदार्थ पात्र के सभी पृष्ठभागों पर, दीवारों पर और आधार पर अंदर से दाब प्रयुक्त करता है। बंद पात्र में, दिए गए द्रव्यमान के प्रवाही पदार्थ में पाया जाने वाला दाब सभी दिशाओं में समानरूप से प्रयुक्त होता है।

वायुमंडलीय दाब (Atmospheric Pressure): पृथ्वी के पृष्ठभाग पर सभी ओर हवा का आवरण है। इस हवा के आवरण को ही वायुमंडल (वातावरण) कहते हैं। पृथ्वी के पृष्ठभाग से लगभग 16 km ऊँचाई तक वायुमंडल है। उसके भी आगे लगभग 400 km तक यह अत्यंत विरल स्वरूप में पाया जाता है। हवा के कारण निर्माण होनेवाले दाब को वायुमंडलीय दाब कहते हैं। ऐसी कल्पना करो कि इकाई क्षेत्रफल वाले पृथ्वी के पृष्ठभाग पर बहुत अधिक लंबा खोखला बेलन खडा है और उसमें हवा भरी है (आकृति 3.8) इस हवा का भार यह पृथ्वी की दिशा में लगाया गया बल है। अर्थात् हवा का दाब इस भार और पृष्ठभाग के क्षेत्रफल का अनुपात है।

समुद्र की सतह पर पाए जानेवाले हवा के दाब को 1 वायुमंडलीय दाब (1 Atmosphere) कहते हैं। जैसे जैसे हम समुद्र-सतह से ऊपर की ओर जाते हैं, वैसे-वैसे हवा का दाब कम होते जाता है।



3.8 वायुमंडलीय दाब

1 Atmosphere = $101x10^3$ Pa = 1 bar = 10^3 mbar 1 mbar $\approx 10^2$ Pa (hectopascal)

वायुमंडलीय दाब mbar अथवा hectopascal (hPa) इन इकाईयों में बताया जाता है। वायुमंडलीय दाब हवा के किसी एक बिन्दु पर सभी दिशाओं से होता है। यह दाब कैसे तैयार होता है? किसी बंद पात्र में हवा होने पर हवा के अणु यादृच्छिक गित से पात्र की दीवारों पर प्रहार करते हैं। इस आंतरिक्रया के कारण दीवार पर बल प्रयुक्त होता है, इस बल के कारण दाब का निर्माण होता है। हम भी वायुमंडलीय दाब लगातार सिर पर लेकर घूमते हैं, परंतु हमारे शरीर के खोखले भाग में भी हवा भरी होती है और रक्तवाहिनों में रक्त भी होता है। इसी कारण पानी तथा वायुमंडलीय दाब के नीचे हम फँस नहीं सकते। वायुमंडलीय दाब संतुलित होता है। पृथ्वी का वायुमंडलीय दाब समुद्र सतह से की ऊँचाई के अनुसार बदलता है। यह कैसे बदलता है उसे आकृति 3.9 में दर्शाया है।

3.9 वायुमंडलीय दाब

 $1\ m^2$ पृष्ठभाग वाले मेज पर समुद्र सतह से $101x10^3\,Pa$ इतना दाब प्रयुक्त होता हैं। इतने प्रचंड दाब से मेज का पृष्ठभाग टूट कर गिरता क्यों नहीं?

उप्लावक बल (Buoyant force)

3.10 संतुलित और असंतुलित उप्लावक बल

प्लास्टिक की एक खाली बोतल लेकर उसका ढक्कन कसकर बंद करो । अब बोतल पानी में डालकर देखो क्या होता हैं । वह पानी पर तैरती हैं । बोतल को नीचे पानी में ढकलने पर वह नीचे जाती है क्या देखो ? ढ़केलने पर भी बोतल पानी के ऊपर आकर तैरती हैं । प्लास्टिक की खोखली गेंद लेकर भी इस प्रकार का प्रयोग कर सकते है । (आकृति 3.10)

अब प्लास्टिक की पानी से पूर्णतः भरी बोतल का ढक्कन कसकर बंद करो और पानी में डालो । बोतल पानी के अंदर तैरते हुए दिखाई देगी, ऐसा क्यों होता है?

प्लास्टिक की खाली बोतल और गेंद पानी के पृष्ठभाग पर तैरती है । इसके विपरीत पानी से पूरी भरी हुई बोतल पानी के अंदर तैरती है, वह पूर्णतः डूबती नहीं । अंदर के पानी के द्रव्यमान की अपेक्षा खाली बोतल का द्रव्यमान नगण्य होता है, ऐसी बोतल पूर्णतः डूबती नहीं तथा ऊपर भी आती नहीं । इसका अर्थ पानी से भरी बोतल पर नीचे की दिशा मे प्रयुक्त गुरूत्वीय बल (f_g) उसके विपरीत ऊपर की दिशा में प्रयुक्त बल (f_g) द्वारा संतुलित हुआ होगा । यह बल बोतल के आसपास के पानी द्वारा निर्मित हुआ होगा । पानी में अथवा अन्य द्रव में अथवा गैस में होने वाली वस्तु पर ऊपर की दिशा में प्रयुक्त होनेवाले बल को उप्लावक बल (f_g) कहते हैं ।

कुँए से पानी निकालते समय डोरी से बाँधी गई बाल्टी पानी में पूर्णतः डूबी होने पर जितनी हल्की महसूस होती है, उसकी अपेक्षा वह पानी से बाहर निकालते समय भारी क्यों लगती है? उत्प्लावक बल किन बातों पर निर्भर होता है?

एल्युमिनिअम का एक छोटा सा पतला पतरा लो और किसी एक बाल्टी में पानी लेकर उसे धीरे से डुबाओ, क्या दिखाई देता है ? अब उसी पतरे को मोडकर छोटीसी नाव तैयार करो और पानी में डालो, क्या नाव तैरती हैं ?

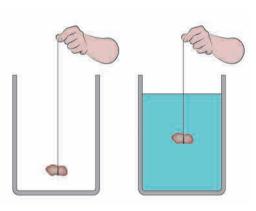
लोहे की कील पानी में डुबती है परंतु स्टील का बडा सा जहाज पानी में तैरता है ऐसा क्यों होता है ? द्रव में डुबाए गए वस्तु पर उत्प्लावक बल प्रयुक्त होने के कारण वस्तु के द्रव्यमान में कम होने का आभास होता है ।

मीठे पानी के तरण तालाब में तैरने की अपेक्षा समुद्र के पानी में तैरना आसान होता है। इसका मुख्य कारण है कि समुद्र के पानी का घनत्व मीठे पानी के घनत्व की अपेक्षा अधिक होता है। क्योंकि उसमें लवण मिश्रित होते हैं। इस पुस्तक में तुमने गिलास में पानी भरकर उसमें नींबू डालने पर वह डूबता हैं, परंतु उस पानी में दो चम्मच नमक घोलकर मिश्रित कर उसमें मात्र नींबू तैरता हैं इसका अध्ययन किया है। पानी का घनत्व नमक से बढ़ता है। यहाँ उत्प्लावक बल गुरूत्वीय बल की अपेक्षा अधिक होता है। इस उदाहरण से क्या स्पष्ट होता है ? उप्लावक बल दो बातों पर निर्भर होता है:

- 1. वस्तु का आयतन द्रव में डूबे हुए वस्तु का आयतन अधिक होने पर उत्प्लावक बल अधिक होता है।
- 2. द्रव का घनत्व जितना अधिक घनत्व उतना उत्प्लावक बल अधिक होता है।

क्या तुम जानते हो?

कोई पिंड़ द्रव में डबाने पर वह पिंड़ द्रव में डबेगा, ऊपर आकर तैरेगा या द्रव के अंदर तैरेगा यह कैसे निश्चित करोगे ?


- 1. उप्लावक बल पिंड के भार की अपेक्षा अधिक हो तो पर पिंड तैरता हैं।
- 2. उप्लावक बल पिंड़ के भार की अपेक्षा कम हो तो पिंड़ डूबता हैं।
- 3. उप्लावक बल पिंड़ के भार के बराबर हो तो वस्तु द्रव में तैरती है। उपर्युक्त प्रकारों में असंतुलित बल कौन-से हैं?

आर्किमिडीज का सिद्धांत :

आकृति 3.11 में दिखाए अनुसार एक बडा सा रबर बँड लेकर उसे एक बिन्द पर काट करो और देखो। दो। उसके एक सिरे पर स्वच्छ धोया हुआ एक छोटासा पत्थर अथवा 50 gm का बाँट बांधो ।

अब रबड़ बँड का दसरा सिरा ऊँगलियों से पकड कर वहाँ पेनसे चिन्हांकित करो । पत्थर हवा में लटकाते हए रखकर ऊपर्युक्त चिहन से लटकते हुए पत्थर तक की रबड़ की लंबाई मापो । अब एक पात्र में पानी भरकर पत्थर उसमें इबेगा ऐसी ऊँचाई तक उसे पकड़ो । अब फिर से रबड की लंबाई मापो । क्या दिखाई दिया? यह लंबाई पहले की अपेक्षा कम हुई दिखाई देगी । पानी में पत्थर इबाने पर तने हुए रबड की लंबाई धीरे-धीरे कम होती हैं और पत्थर पानी में पूर्णतः डूबने पर लंबाई सबसे कम होती है। लंबाई पानी में कम होने का क्या कारण है ?

पानी में पत्थर डूबने पर उस पर ऊपर की दिशा में उत्प्लावक बल प्रयुक्त होता है। पत्थर का भार नीचे की दिशा में प्रयुक्त होता है। जिसके कारण नीचे की दिशा में प्रयुक्त किया गया कुल बल कम होता है।

3.11 प्लावक बल

इस उत्प्लावक बल का परिणाम कितना होता है ?वह किसी भी द्रव के लिए समान होता है, क्या ? सभी वस्तुओं पर उत्प्लावक बल क्या समान परिणाम का होता हैं ? इन प्रश्नों के उत्तर आर्किमिडीज के सिद्धांत में अंतर्भूत है । यह सिद्धांत इस प्रकार है : कोई वस्तु किसी तरल पदार्थ में अंशतः अथवा पूर्णतः डुबाने पर उसपर ऊपर की दिशा में बल प्रयुक्त होता है और यह बल उस वस्तु द्वारा विस्थापित किए तरल पदार्थ के भार के बराबर होता है।

थोड़ा सोचो ।

आर्किमिड़िज के सिद्धांतानुसार पिछले प्रयोगों के निरीक्षणों का स्पष्टीकरण करो।

आर्किमिडिज (287 ख्रिस्तपूर्व – 212 ख्रिस्तपूर्व)

आर्किमिङ्जि ग्रीक वैज्ञानिक और प्रखर बुद्धिमत्ता वाले गणितज्ञ थे । π का ज्ञान उन्होंने गणितीय क्रिया दवारा प्राप्त किया । भौतिक विज्ञान में घिरनी, कप्पीयाँ, पहिए इन संबंधो में उनका ज्ञान युनानी (ग्रीक) सैनिकों को रोमन सैनिकों के साथ युद्ध करते समय उपयोगी हुआ । भूमिति और अभियांत्रिकी में उनका अमूल्य कार्य उन्हें प्रसिद्धी प्राप्त करवाते गया । बाथ टब में स्नान के लिए उतरने पर बाहर गिरने वाले पानी को देखकर उन्होंने ऊपर्युक्त सिद्धांत की खोज की । 'युरेका, युरेका' याने की 'मुझे मिल गया, मुझे मिल गया' ऐसा चिल्लाते हुए वे उसी अवस्था में रास्ते पर दौड़े।

आर्किमिड़िज के सिद्धांत की उपयुक्तता बड़ी है। जहाज, पनडुब्बियाँ इनकी रचनाओं में इस सिद्धांत का उपयोग किया गया हैं। 'दुग्धमापी' और 'आर्द्रतामापी' ये उपकरण इसी सिद्धांत पर आधारित हैं।

पदार्थ का घनत्व और सापेक्ष घनत्व :

घनत्व = द्रव्यमान/आयतन, घनत्व की इकाई S.I. प्रणाली में kg/m^3 हैं । पदार्थ की शुद्धता निश्चित करते समय घनत्व यह गुणधर्म उपयोगी होता हैं । पदार्थ का सापेक्ष घनत्व पानी के घनत्व के साथ तुलना करने पर व्यक्त किया जाता हैं ।

सापेक्ष घनत्व =पदार्थ का घनत्व/पानी का घनत्व, यह समान इकाई का अनुपात होने के कारण यह इकाई रहित होता हैं। सापेक्ष घनत्व को पदार्थ का 'विशिष्ट गुरुत्व' भी कहते हैं।

हल किए गए उदाहरण

उदाहरण 1. लकड़ी के तख्ते पर रखे खाने के डिब्बे के आधार का क्षेत्रफल 0.25m^2 हैं और उसका भार 50 N हैं, तो उस डिब्बे द्वारा तख्ते पर प्रयुक्त किए गए दाब की गणना करो। दिया गया है: क्षेत्रफल = 0.25 m^2 , डिब्बे का भार = 50 N, दाब = ?

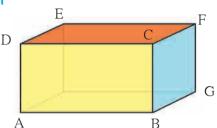
दाब =
$$\frac{$$
बल $}{क्षेत्रफल } = \frac{50 \text{ N}}{0.25 \text{ m}^2} = 200 \text{ N/m}^2$

उदाहरण 2. यदि पानी का घनत्व $10^3\,\mathrm{kg/m^3}$ और लोहे का घनत्व $7.85\,\mathrm{x}\ 10^3\,\mathrm{kg/m^3}$ हो तो लोहे का सापेक्ष घनत्व ज्ञात करो ।

दिया गया है : पानी का घनत्व = 10^3 kg/m^3 , लोहे का घनत्व = $7.85 \times 10^3 \text{ kg/m}^3$

लोहे का सापेक्ष घनत्व = ? लोहे का सापेक्ष घनत्व = (लोहे का घनत्व) (पानी का घनत्व)

$$= \frac{7.85 \times 10^{3} \text{kg/m}^{3}}{10^{3} \text{kg/m}^{3}} = 7.85$$


उदाहरण 3. स्क्रू के नुकीले सिरे का क्षेत्रफल 0.5 mm^2 है और उसका भार 0.5 N हैं, तो स्क्रू द्वारा लकड़ी के तख्त पर लगाया दाब ज्ञात करो। (Pa में).

दिया गया है: क्षेत्रफल = $0.5 \times 10^{-6} \text{ m}^2$

स्क्रू का भार = 0.5 N, दाब =?

दाब =
$$\frac{\text{बल}}{क्षेत्रफल}$$
 = $\frac{0.5\text{N}}{(0.5\text{x}10^{-6}\text{m}^2)}$ = 10^6 N/m^2
= 10^6 Pa

उदाहरण 4. एक धातु के आयताकार टुकड़े का द्रव्यमान 10 kg है और उसकी लंबाई 50 cm, चौड़ाई 10 cm तथा ऊँचाई 20 cm है। (आकृति) टेबल पर धातु का आयताकार टुकड़ा दिए गए पृष्ठभागों पर रखने पर उसके द्वारा प्रयुक्त किया गया दाब ज्ञात करो। ABCD, CDEF व BCFG किस स्थिति में दाब महत्तम होगा बताओ।

दिया गया है: धातु के आयताकार टुकडे का भार = mg = 10 x 9.8N = 98 N

पृष्ठभाग ABCD के लिए, लंबाई = 50 cm, ऊँचाई = 20 cm.

क्षेत्रफल = लंबाई x ऊँचाई = 50 cm x 20 cm

 $= 1000 \text{ cm}^2 = 0.1 \text{m}^2$

दाब =
$$\frac{\text{बल}}{क्षेत्रफल}$$
 = $\frac{98}{(0.1)}$ = 980 Pa पृष्ठभाग CDEF के लिए, लंबाई = 50 cm चौड़ाई = 10 cm

क्षेत्रफल = लंबाई x चौड़ाई = 50 cm x 10 cm = $500 \text{ cm}^2 = 0.05 \text{ m}^2$

दाब =
$$\frac{\overline{\text{बल}}}{\hat{\text{क्षेत्रफल}}} = \frac{98}{(0.05)} = \frac{9800}{5} = 1960$$

पृष्ठभाग BCFG के लिए ऊँचाई = 20 cm चौड़ाई = 10 cm

क्षेत्रफल = ऊँचाई x चौड़ाई = 20 cm x 10 cm = 200 cm²

 $= 0.02 \text{ m}^2$

दाब =
$$\frac{$$
बल $}{क्षेत्रफल} = \frac{98 \text{ N}}{0.02 \text{ m}^2}$ = 4900 Pa : अधिकतम दाब

∴ संपर्क क्षेत्रफल जितना कम, उतना दाब अधिक **उदाहरण** 5. एक संगमरमर के फर्श के टुकड़े का द्रव्यमान हवा में 100 g हैं, उसका घनत्व 2.5g/cc इतना हो तो उसका पानी में द्रव्यमान कितना होगा?

दिया गया है : हवा में ट्रकड़े का द्रव्यमान 100 g

घनत्व 2.5g/cc : आयतन = (द्रव्यमान)/(घनत्व) = 100g/(2.5 g/cc) = 40 cc

इसलिए आर्किमिड़ीज के सिद्धांतनुसार पानी में डुबाने पर टुकड़े के आयतन के बराबर अर्थात 40 cc इतना पानी विस्थापित होगा। इस पानी के द्रव्यमान के बराबर अर्थात 40g इतनी कमी टुकड़े के द्रव्यमान में आएगी।

 \therefore पानी में टुकड़े का द्रव्यमान = 100 g - 40 g = 60 g

स्वाध्याय

1. रिक्त स्थानों में उचित शब्द लिखो।

- अ. SI प्रणाली में बल की इकाई
 है।
 (डाईन, न्यूटन, ज्यूल)
 आ. हमारे शरीर पर हवा का दाब
 के बराबर होता है।
 (वायुमंडलीय, समुद्र सतह के ऊपर, अंतरिक्ष के)
- ई. दाब की SI प्रणाली में इकाई है। (N/m³, N/m², kg/m², Pa/m²)

2. बताओ, मेरी जोड़ी किसके साथ!

अ गट

ब गट

- 1. प्रवाही पदार्थ अ. अधिक दाब
- 2. बिना धार वाली सुई आ. वायुमंडलीय दाब
- 3. नुकीली सुई इ. विशिष्ट गुरुत्व
- 4. सापेक्ष घनत्व ई. कम दाब
- 5. हेक्टो पास्कल उ. सभी दिशाओं में एक जैसा दाब

3. निम्न प्रश्नों के संक्षिप्त में उत्तर लिखो।

- अ. पानी के अंदर प्लास्टिक का टुकडा डालने पर वह पानी में डूबेगा या पानी के पृष्ठभाग पर आएगा? कारण लिखो।
- आ. माल वाहक भारी वाहनों के पट्टियों की संख्या अधिक क्यों होती है ?
- इ. हमारे सिर पर हवा का भार लगभग कितना होता है? वह हमें क्यों महसूस नहीं होता ?

4. ऐसा क्यों घटित होता है ?

- अ. समुद्र के पानी की अपेक्षा मीठे पानी में जहाज अधिक गहराई तक डूबता है।
- आ. धारदार चाकू से फल आसानी से काटे जाते हैं।
- इ. बाँध की दीवार आधारपर अधिक चौड़ी होती है।
- ई. स्थिर बस के अचानक शुरू होने पर बस में बैठे यात्री पीछे की ओर फेंके जाते हैं।

5. निम्न तालिका पूर्ण करो ।

द्रव्यमान (kg)	आयतन (m³)	घनत्व (kg/m³)
350	175	_
_	190	4

धातु का घनत्व (kg/m³)	पानी का घनत्व (kg/m³)	सापेक्ष घनत्व
_	10^{3}	5
8.5×10^3	10^{3}	_

भार (N)	क्षेत्रफल (m²)	दाब (Nm ⁻²)
_	0.04	20000
1500	500	_

- 6. एक धातु का घनत्व $10.8 \times 10^3 \text{ kg/m}^3$ हैं, तो धातु का सापेक्ष घनत्व ज्ञात करो । (उत्तर : 10.8)
- 7. एक वस्तु का आयतन 20 cm^3 तथा द्रव्यमान 50 g है। पानी का घनत्व 1 g cm^{-3} हो तो वह वस्तु पानी पर तैरेगी या डुबेगी? (उत्तर : डुबेगी)
- 8. एक 500 g द्रव्यमान वाले को प्लास्टिक के आवरण से बंद किए खोके का आयतन 350 cm^3 है । पानी का घनत्व 1 g cm^{-3} हो, तो खोका पानी पर तैरेगा या डूबेगा ? खोके द्वारा विस्थापित किए गए पानी का द्रव्यमान ज्ञात करो? (उत्तर : डूबेगा, 350 g)

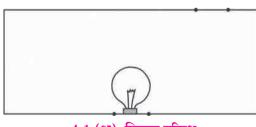
उपक्रम

पाठ में दिए गए सभी कृतियों का मोबाइल फोन की मदद से चित्रीकरण करो व अन्य को भेजो।

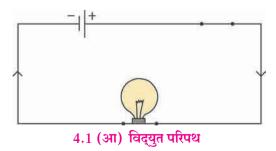
4. धारा विद्युत और चुंबकत्व

थोड़ा याद करो।

परमाणु में कौन-कौन से घटक होते हैं?


परमाणु में इलेक्ट्रॉन (ऋण आवेशित कण) और प्रोट्रॉन (धन-आवेशित कण) पाए जाते हैं जिसके कारण पदार्थ विद्युतीय दृष्टिसे उदासीन (Neutral) होते हैं, फिर भी उनमें परमाणु पाए जाने के कारण उनमें ऋण आवेश और धन आवेश होता ही है। इसलिए ऐसा कह सकते हैं, िक हमारे आसपास पाए जानेवाले पदार्थों में विद्युत आवेश भरपूर मात्रा में समाविष्ट होता है। काँच की छड़ रेशम के कपड़े से रगडने पर क्या होता है? पदार्थ आवेशित कैसे होते हैं? स्थिर आवेश और चल आवेश किसे कहते हैं? चल विद्युत एक पदार्थ से दूसरे पदार्थ पर स्थानांति होती है। यह ऋण आवेश होता है। चल ऋण आवेशित कणों को इलेक्ट्रॉन कहते हैं। क्या यह ऋण आवेश प्रवाहित कर सकते हैं? पानी जिस प्रकार ऊपर से नीचे की ओर प्रवाहित होता है, उसी प्रकार क्या विद्युत को प्रवाही बना सकते हैं? स्थिर वस्तुको गतिशील करने के लिए बल लगाना पड़ता है यह तुमने पढ़ा ही है। किसी सुचालक में से इलेक्ट्रॉनों को यदि गतिशील करके प्रवाहित किया जाए तो हमें ''धारा विद्युत'' प्राप्त होती है।

धारा विद्युत (Current Electricity): जब बादलों से जमीन पर बिजली गिरती है तब शक्तिशाली विद्युत प्रवाह प्रवाहित होता है, तो कोई भी संवेदना हमें मस्तिष्क की ओर जाने वाले सुक्ष्म विद्युत प्रवाह से प्राप्त होती है। घर में तारों से, बिजली के बल्ब से, अन्य उपकरणों से प्रवाहित होनेवाले विद्युत प्रवाह का तुम्हें पिरचय है ही। रेडियो के इलेक्ट्रिक सेलों (electric cells) में से और वाहन की बॅटरी से धन आवेशित तथा ऋण आवेशित ऐसे दोनों आवेशों के प्रवाह के कारण विद्युत धारा का निर्माण होता है।

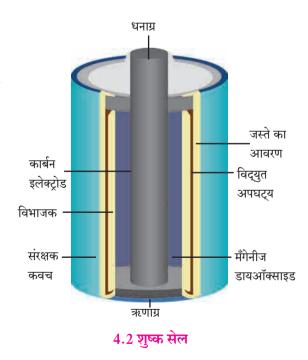

स्थिर विद्युत विभव (Electrostatic Potential): पानी अथवा द्रव पदार्थ ऊँचे स्तर से नीचे की ओर प्रवाहित होता है। ऊष्मा सदैव अधिक तापमानवाली वस्तु से कम तापमानवाली वस्तु की ओर प्रवाहित होती है। उसी प्रकार धन आवेश की प्रवृत्ति उच्च विद्युत स्तरवाले बिन्दु से निम्न विद्युत स्तर वाले बिन्दु की ओर प्रवाहित होने की होती है। विद्युत आवेश के प्रवाह की दिशा निश्चित करनेवाले विद्युत स्तर को विद्युत स्थिर विभव (Electrostatic potential) कहते हैं।

विभवांतर (Potential difference): 'जलप्रपात की ऊँचाई', 'गरम तथा ठंडे' पदार्थ के तापमान में पाए जानेवाला अंतर इसी प्रकार दो बिन्दुओं के विभव में पाए जानेवाले अंतर को विभवांतर कहते हैं। यह हमारे दृष्टि से बहुत ही रोचक है।

4.1 (अ) विद्युत परिपथ

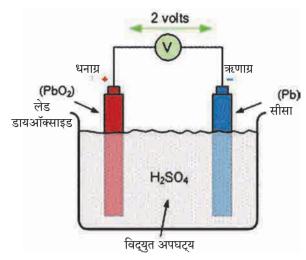
तांबे के तार को जोड़कर आकृति 4.1 (अ) में दिखाए अनुसार 'परिपथ' पूर्ण करो। बल्ब में से विदयुत धारा प्रवाहित नहीं होती ऐसा ही दिखाई देता है। अब इसी परिपथ में आकृति 4.1 (आ) में दिखाए अनुसार बाजार में उपलब्ध एक 1.5 वोल्ट का शुष्क सेल जोड़ो। अब तार में से विद्युत धारा प्रवाहित हो रही है यह बल्ब के प्रकाशित होने के कारण ध्यान में आएगा। विद्युत सेल के दो सिरो में पाए जानेवाले विभवांतर के कारण तार में इलेक्ट्रॉन्स प्रवाहित होते हैं। वे विद्युत सेल के ऋण सिरे से धन सिरे की ओर प्रवाहित होते हैं। सांकेतिक विद्युत धारा यह विपरीत दिशा में प्रवाहित होती है और उसे तीर के चिहन द्वारा आकृति में दिखाया गया है। विद्युत परिपथ क्या है वह इसी पाठ में आगे देखेंगे। आकृति 4.1 (अ) में विद्युत सेल न होने के कारण किसी भी प्रकार का विभवांतर नहीं है। इसलिए विद्युत धारा प्रवाहित नहीं होती। परिपथ में विद्युत सेल के कारण विभवांतर का निर्माण होते ही स्थिर विद्युत धारा प्रवाहित होने लगती है। आकृति 4.1 (आ)। विभवांतर की SI प्रणाली में इकाई वोल्ट (Volt) है। इस विषय में अगली कक्षा में हम अधिक जानकारी प्राप्त करनेवाले हैं।

किसी एक पानी के पाइप से आनेवाला पानी का प्रवाह कैसे मापेंगे? विशिष्ट समय में उसमें से कितने लीटर पानी बाहर निकला इसके आधार पर वह ज्ञात कर सकते हैं। फिर विदयत धारा कैसे मापोगे?


विद्युत धारा यह विद्युत आवेशित कणों के प्रवाह के कारण निर्मित होती है यह हमने देखा है। किसी एक तार में से 1 सेकंड में प्रवाहित होनेवाले विद्युत आवेश को इकाई विद्युत धारा कहते हैं। विद्युत धारा की SI प्रणाली में इकाई कूलॉम प्रति सेकंड अर्थात एम्पियर (Ampere) है।

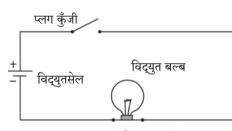
1 Ampere = 1A = 1 Coulomb/1 second = 1 C/s विद्युत धारा एक अदिश राशि है । विद्युतसेल (electric cell) : िकसी एक परिपथ में एक समान विद्युत आवेश का प्रवाह निर्माण करने के लिए एक स्रोत की आवश्यकता होती है । ऐसे एक सर्व सामान्य साधन को विद्युत सेल कहते हैं । विविध प्रकार के विद्युत सेल आज उपलब्ध हैं । वे हाथघड़ी से लेकर पनडुब्बियों तक ऐसे अनेक यंत्रो में उपयोग में लाए जाते हैं । विद्युत सेल के अतिरिक्त सौर सेल (Solar cell) तुम्हें मालुम होगा । विभिन्न विद्युत सेलों का मुख्य कार्य उसके दो सिरों में विभवांतर मौजूद रखना है । विद्युत आवेश पर कार्य कर विद्युत सेल यह विभवांतर को मौजूद रखता है, यह तुम आगे पढोगे । विद्युत सेल के कृछ प्रकार फिलहाल उपयोग में लाए जाते हैं, उस विषय में हम जानकारी प्राप्त करेंगे ।

शुष्क विद्युत सेल (Dry Cell): हमारे रेड़ियो संच में, दीवार पर लगी घड़ी में, बॅटरी में इस शुष्क सेल का उपयोग करते हैं। वे 3-4 आकारों में उपलब्ध होते हैं। शृष्क विद्युत सेल की रचना आकृति 4.2 में दिखाए अनुसार होती हैं।



एक अनुपयोगी हुआ शुष्क विदुयत सेल लेकर उसके बाहर का आवरण निकालो । उसके अंदर एक सफेद आवरण दिखाई देगा । यह जस्ते के धातू (Zn) का आवरण है । यह सेल का ऋण सिरा है। अब यह भी आवरण धीरे से तोड़ दो। जस्ते के आवरण के अंदर एक और आवरण होता है इन दोनों आवरणों में विद्युत अपघट्य (विश्लेषी) (Electrotyte) पदार्थ भरा होता है । विद्युत अपघट्य पदार्थ में धन आवेशित तथा ऋण आवेशित आयन होते हैं। उनके द्वारा विद्युत प्रवाहित होती हैं । यह विद्युत अपघट्य पदार्थ अर्थात ZnCl (जिंक क्लोराइड) और NH_Cl (अमोनियम क्लोराइड) इनके गीले मिश्रण की ल्गदी (प्रलेप) होती है। सेल के मध्य भाग में एक ग्रेफाइट की छड़ होती हैं यह सेल का धन सिरा होता है। छड़ के चारों ओर MnO (मैगनीज डाय ऑक्साइड़) का मिश्रण भरा होता है। इन सभी रासायनिक पदार्थों के रासायनिक अभिक्रिया द्वारा दोनों सिरों पर (graphite rod, zinc) विद्युत आवेश तैयार होता है और परिपथ में से विद्युत धारा प्रवाहित होती है।

इस विद्युत सेल में गीले मिश्रण की लुगदी का उपयोग करने के कारण रासायनिक अभिक्रिया मंदगति से घटित होती है। इसलिए अधिक विद्युत धारा इससे प्राप्त नहीं कर पाते। द्रव पदार्थ का उपयोग करनेवाले विद्युत सेल की तुलना में इनकी संग्रहण कालमर्यादा (Shelf life) अधिक होती है। शुष्क विद्युत सेल उपयोग में आसान होते हैं, कारण वे खड़े– आड़े. तिरछे किसी भी तरह रखे जाते हैं और चालक साधनों में आसानी से उपयोग में लाए जाते हैं।


लंड-अम्ल विद्युत सेल (Lead-Acid Cell): आकृति 4.3 में लेड़-अम्ल विद्युत सेल की रचना दिखाई गई है। उसका सिद्धांत देखेंगे। इस प्रकार के सेल का विद्युत विमोचन (Electric discharge) होने के बाद भी उसे पुनः विद्युत आवेशित कर सकते हैं। लेड़-अम्ल विद्युत सेल में सीसे (Pb) का एक विद्युतप्र (Electrode) तथा लेड़ डायआक्साइड़ (PbO₂) यह दूसरा विद्युतप्र (Electrode) तनु सल्फ्युरिक अम्ल में डूबा होता है। PbO₂ इस विद्युतप्र पर धन आवेश तो Pb इस विद्युतप्र पर ऋण आवेश होता है। दोनों में विभवांतर लगभग 2V होता है। सेल के पदार्थों की रासायनिक अभिक्रियासे दोनों विद्युतग्रों पर विद्युत आवेश तैयार होता है और परिपथ में लगे उपकरण में से (जैसे विद्युत बल्ब में) विद्युत धारा प्रवाहित होती है।

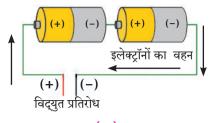
4.3 लेड-अम्ल विद्युतसेल

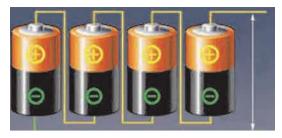
4.4 (अ) सेलधारक

4.4 (ब) सरल विद्युत परिपथ

वोजो

लिथियम (Li) आयन विद्युत सेल आधुनिक साधनों में उपयोग में लाते हैं । उदाहरणार्थ, स्मार्टफोन, लॅपटॉप इत्यादि । ये सेल पुनः आवेशित किए जाते हैं । इसमें Ni-Cd सेल की अपेक्षा अधिक ऊर्जा का संचयन किया जाता हैं ।


इस प्रकार के विद्युत सेलों की अधिक मात्रा में विद्युत धारा प्रवाहित करने की क्षमता होती है। इसके कारण वाहनों में, ट्रक में, मोटर साईकल, अखंड विद्युत शक्ति पूर्तिवाले यंत्रों (UPS) में लेड़ अम्ल विद्युत सेल का उपयोग करते हैं।

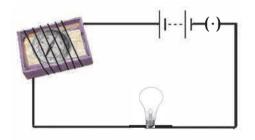

निकेल-कॅड़िमयम सेल (Ni-Cd cell): आजकल भिन्न भिन्न प्रकार के साधन, उपकरण उपलब्ध हैं। जिन्हें यहाँ वहाँ लेकर जाना पड़ता हैं। ऐसे साधनों के लिए निकेल कॅड़िमयम विद्युत सेल का उपयोग करते हैं। यह सेल 1.2 V विभवांतर देता हैं तथा इसे पुनः आवेशित किया सकता हैं।

विद्युत परिपथ (Electric Circuit): सेल धारक (Cell holder) आकृति 4.4 (अ) विद्युत बल्ब और प्लग कुँजी को विद्युतवाहक तारों से जोड़ने पर तथा सेल धारक में शुष्क सेल रखने पर बल्ब प्रकाशित होता है। इसका अर्थ बल्ब में से विद्युत धारा प्रवाहित होती हैं, तथा बल्ब प्रकाशित होता है। सेल निकालते ही बल्ब से प्रवाहित विद्युत धारा खंड़ित होती है और बल्ब का प्रकाशित होना बंद हो जाता है। इस प्रकार के विद्युत घटकों के सुव्यवस्थित संयोजन को विद्युत परिपथ कहते हैं।: + पिएथ आकृति 4.4 (ब) में दिखाया गया हैं। विद्युत सेल + - इस चिहन द्वारा

दर्शाया गया है। हमारे घर में भी इसी प्रकार के विद्युत परिपथ का संयोजन किया होता है, परंतु विद्युत सेल के अतिरिक्त बाहर से तारों के द्वारा विद्युत की आपूर्ति की जाती है। इस विषय में तुम आगे पढ़ोंगे।

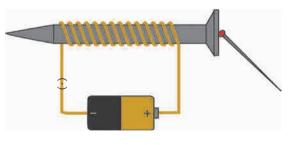
सेलों का संयोजन : विद्युत परिपथ में कभी-कभी एक से अधिक सेलों को एक साथ जुड़े हुए तुमने देखा होगा (आकृति 4.5 अ)। ट्रांझिस्टर, रेड़ियो में 2-3 शुष्क सेल 'श्रेणी क्रम' में संयोजित किए हुए दिखते हैं । ऐसा करने का उद्देश्य, एक सेल के विभवांतर की अपेक्षा अधिक विभवांतर प्राप्त करना होता हैं जिसके कारण अधिक विद्युत धारा प्राप्त होती है । विद्युत सेल आकृति 4.5 (आ) में दिखाए अनुसार जोड़ने पर उसे सेलों की बॅटरी (Battery of cell) कहते हैं । इस श्रेणी क्रम संयोजन में एक सेल का धन सिरा दूसरे के ऋण सिरे से तथा दूसरे का धन सिरा तीसरे के ऋण सिरे से जोड़ते हैं जिससे यदि प्रत्येक सेल का विभवांतर 1V हो तो तीन सेलो का कुल विभवांतर 3V होगा ।

(अ) 4.5 विद्युत सेलों का संयोजन


(आ)

बाजार में मिलनेवाली मोटर की बॅटरी तुमने देखी होगी उसे सेल न कहकर बॅटरी (Battery) कहते हैं। क्यों?

धारा विद्युत का चुंबकीय प्रभाव: (Magnetic effects of electric current)

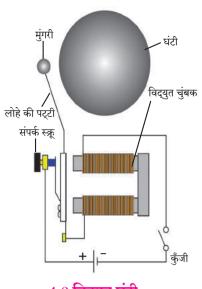

4.6 धारा विद्युत का चुंबकीय परिणाम

कृति 1: किसी एक अनुपयोगी माचिस के बाक्स जैसे डिब्बे के अंदरवाला ट्रे लो, उसमें छोटीसी चुंबक सुई रखो। अब विद्युत सुचालक का लंबा तार लेकर उसे ट्रे के चारो ओर लपेटो। विद्युत सेल, प्लग कुँजी इसे तार तथा बल्ब से जोड़कर परिपथ पूर्ण करो। (आकृति 4.6)

अब चुंबक सुई की स्थिति देखो । एक चुंबक पट्टी लेकर उसे चुंबक सुई के पास लेकर जाओ, क्या दिखाई दिया? चुंबकसुई के तरफ नजर रखकर परिपथ की प्लगकुँजी दबाओ, बल्ब प्रकाशित होगा अर्थात विद्युत धारा का प्रवाह शुरू हुआ हैं यह ध्यान में आएगा । चुंबक सुई अपनी दिशा बदलती हैं क्या? अब प्लग कुँजी को खुला करो, चुंबक सुई पुनः अपनी मूल दिशा में स्थिर होती है क्या? इस प्रयोग से तुम क्या निष्कर्ष निकालोगे?

चुंबक सुई अर्थात एक छोटासा चुंबक ही होता है यह तुम्हें मालुम है। छड़ चुंबक को चुंबक सुई के पास लेकर जाने चुंबकसुई अपनी दिशा को परिवर्तित करती है यह तुमने देखा है। उसी प्रकार परिपथ में विद्युत धारा शुरू करने पर भी चुंबकसुई अपनी दिशा परिवर्तित करती है, यह भी निरीक्षण तुमने किया। अर्थात तार में से विद्युत धारा प्रवाहित करने पर चुंबकीय क्षेत्र का निर्माण होता है। हान्स ख्रिस्तियन ओरस्टेड़ इस वैज्ञानिकने ऐसा निरीक्षण सर्वप्रथम स्पष्ट किया था। संक्षिप्त में ऐसा कह सकते हैं कि ''किसी विद्युत सुचालक तार में से विद्युत धारा प्रवाहित करने से उस तार के आसपास

चुंबकीय क्षेत्र का निर्माण होता हैं।



4.7 विद्युत चुंबक

कृति 2: लगभग 1 मीटर लंबी विद्युत अवरोधक आवरणवाली तांबे की नरम (लचीली) तार लेकर लोहे के किसी कील या स्क्रू पर कसकर लपेटो । तार के दोनों सिरे आकृति 4.7 में दिखाए अनुसार विद्युत परिपथ के साथ जोड़ो, परिपथ में विद्युत सेल और प्लग कुँजी भी जोड़ो । स्क्रू के पास 2-4 लोहे की आलपिनें रखो । अब प्लग कुंजी बंद करके परिपथ में से विद्युत प्रवाह शुरू करो । आलपिने, स्क्रु के सिरे से चिपकी हुई दिखाई देंगी । प्लग कुँजी खुली करते ही आलपिनें, चिपकी हुई स्थिति में ही रहेंगी क्या?

तार में से विद्युत धारा प्रवाहित होने पर स्क्रु के चारो ओर लपेटे गए तार के कुंड़ल (Coil) में चुंबकत्व का निर्माण होता है और इसी के कारण स्क्रु में भी चुंबकत्व का निर्माण होता है। विद्युत प्रवाह खंडित होते ही वह नष्ट हो जाता है। कुंड़ल एवं स्क्रु इस संहिता को विद्युत चुंबक कहते हैं। विद्युत चुंबक के विविध उपयोग तुमने पिछली कक्षा में देखे हैं। विज्ञान अनुसंधान में उपयोगी तीव्र चुंबकीय क्षेत्र निर्माण करने के लिए विद्युत चुंबक का उपयोग करते हैं।

विदयुत घंटी: घरों के प्रवेश दवार पर लगी साधी विदयुत घंटी तुमने देखा हैं। ऐसी बंद पड़ी कोई एक घंटी खोल कर देखो आकृति 4.8 में विदयुत घंटी का बाह्य आवरण निकाला गया है। हमें दिखाई देता है कि उसमें भी विद्युत चुंबक का ही उपयोग किया गया है। इस घंटी का कार्य कैसे चलता है, यह हम देखेंगे। तांबे की तार एक लोहे के ट्रकड़े पर अनेक बार लपेटी गई है। यह कुंड़ल विद्युत चुंबक के रूप में कार्य करता है। एक लोहे की पट्टी मुंगरी के साथ विद्युत चुंबक के लोहे की पट्टी पास जुड़ी होती है। इस पट्टी के संपर्क में स्क्रु होता है। विद्युत परिपथ आकृति 4.8 में दिखाए अनुसार संयोजित किया गया है। स्क्रू पट्टी से जुड़ते समय परिपथ में से विदयत धारा प्रवाहित होती है और इसके कारण कुंड़ल का विद्युत चुंबक बनता है और वह लोहे की पट्टी को आकर्षित करता हैं जिसके कारण घंटी पर मुंगरी का प्रहार होकर ध्विन का निर्माण होता है । परंतु उसी समय संपर्क स्क्र का लोहे की पट्टी से संपर्क ट्रटता है और परिपथ का विद्युत प्रवाह खंडित होता है। इस स्थिति में विद्युत चुंबक का चुंबकत्व नष्ट हो जाता है और लोहे की पट्टी पुनः पीछे की ओर आकर संपर्क स्क्रू को चिपकती है जिसके कारण तुरंत फिर से विद्युत प्रवाह शुरू होता है और ऊपर्युक्त क्रिया पुनः घटित होकर मुंगरी घंटे पर प्रहार करती है। यह क्रिया बार-बार होती हैं और घंटे से ध्विन उत्पन्न होती है।

4.8 विद्युत घंटी

स्वाध्याय

- नीचे दिए गए रिक्त स्थानों की पूर्ति योग्य शब्द लिखकर करो ।
 - (चुंबकत्व, 4.5V, 3.0V, गुरूत्वाकर्षण, विभवांतर, विभव, अधिक, कम, OV)
 - अ. जलप्रपात का पानी ऊँचे स्तर से नीचे गिरता है, इसका कारण......
 - आ. किसी एक परिपथ में इलेक्ट्रांस विभववाले बिन्दु से विभववाले बिन्दु की ओर प्रवाहित होते हैं।
 - इ. विद्युत सेल का धनाग्र और ऋणाग्र विद्युतस्थिर विभव का अंतर अर्थात उस सेल का है।
 - ई. 1.5 V विभवांतरवाले 3 विद्युत सेलों को बॅटरी के स्वरूप में जोड़ा गया है, तो इस बॅटरी का विभवांतर V होगा।
 - उ. किसी विद्युत वाहक तार से प्रवाहित होनेवाली विद्युत धारा तार के चारों ओर का निर्माण करती है।
- 3 शुष्क विद्युत सेलों को विद्युत सुचालक तार से जोड़कर उनकी बॅटरी बनानी है । तार किस प्रकार से जोडोगे आकृति सहित स्पष्ट करो ।
- 3. एक विद्युत परिपथ में एक बॅटरी और एक बल्ब जोड़कर बॅटरी में दो समान विभवांतर वाले विद्युत सेल संयोजित किए गए हैं । यदि बल्ब प्रकाशित न होता हो, तो वह किस कारण नहीं होता है इसकी खोज करने के लिए कौन-कौन से परीक्षण करोगे ।

- प्रत्येक 2 V विभवांतर वाले विद्युत सेल नीचे दिए अनुसार बॅटरी के स्वरूप में जोड़े गए तो उस बॅटरी का कुल विभवांतर ज्ञात करो ।
- 5. शुष्क विद्युत सेल की रचना, कार्य और उसका उपयोग इसका संक्षिप्त में वर्णन आकृति की सहायता से करो।
- विद्युत घंटी की रचना व कार्य का आकृति की सहायता से वर्णन करो।
 - (i) + |-+|-+|-
 - (ii) + -+ -+ ---

उपक्रम :

पाठ में की गई सभी कृतियों को विज्ञान प्रदर्शन में प्रस्तुत करो ।

5. परमाणु का अंतर्भाग

थोड़ा याद करो।

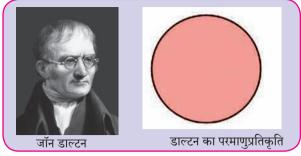
- 1. द्रव्य अर्थात क्या हैं? 2. परमाणु अर्थात क्या हैं?
- 3. द्रव्य का सबसे छोटा घटक कौन-सा हैं?

हमने देखा कि द्रव्य अणुओं से बना होता हैं। अणु परमाणुओं से बने होते हैं। अर्थात परमाणु द्रव्य की सबसे छोटी इकाई होती है। सभी भौतिक और रासायनिक परिवर्तनों में स्वयं की रासायनिक पहचान बनाए रखने वाला तत्त्व का छोटे से छोटा कण परमाणु है।

तालिका 5.1 में कुछ पदार्थों के नाम और सूत्र दिए हैं। उसके आधार पर पदार्थ के छोटे से छोटे कण की जानकारीऔर पदार्थ का प्रकार दर्शानेवाले चिहन भरकर तालिका पूर्ण करो।

पदार्थ	सूत्र		पदार्थ का छोटे से छोटा कण				
का नाम		परमाणु है(एक परमाणु वाला अणु हैं।)	अणु है	अणु के परमाणु एक ही प्रकार के हैं	अणु के परमाणु अनेक प्रकार के हैं।	तत्त्व	यौगिक
पानी	H ₂ O						
ऑक्सीजन	O ₂		1	V		1	
हिलीयम	Не	$\sqrt{}$		V		$\sqrt{}$	
हाइड्रोजन	H_{2}						
अमोनिया	NH ₃						
नाइट्रोजन	N ₂						
मीथेन	CH ₄						
ऑरगन	Ar						
नियॉन	Ne						
क्लोरीन	Cl ₂						

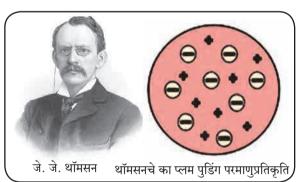
5.1 पदार्थ के प्रकार


हमने पिछली कक्षा में पढ़ा है कि बहुत से पदार्थों के छोटे से छोटे कण अणु होते हैं। कुछ थोड़े पदार्थों के अणु में एक ही परमाणु होता है। अणु परमाणुओं के रासायनिक संयोग से बनते हैं। इससे हमें यह स्पष्ट होता हैं कि रासायनिक संयोग में भाग लेने वाला तत्त्व का छोटे से छोटा कण परमाणु हैं। परमाणु संबंधी संकल्पना 2500 वर्षों से भी पुरानी है। परंतु कालांतर में वह विस्मृत हो गई। आधुनिक काल में वैज्ञानिकों ने प्रयोगों के आधार पर परमाणु का स्वरूप ही नहीं बल्कि अंतर्भाग भी स्पष्ट किया। इसकी शुरूआत डाल्टन के परमाणु सिद्धांत से हुई।

क्या तुम जानते हो

- द्रव्य के सूक्ष्म कणों में विभाजन की एक सीमा होती हैं । ऐसा भारतीय तत्त्वेत्ता कणाद (ई.पू.6 वीं शताब्दी) ने प्रतिपादित किया । द्रव्य जिन अविभाज्य कणों से बने होते हैं उन्हें कणाद मुनी ने परमाणु (अर्थात अतिसूक्ष्म कण) नाम दिया । उन्होंने यह भी प्रतिपादित किया कि परमाणु अविनाशी हैं ।
- ग्रीक तत्तवेत्ता डेमोक्रिटस (ई.पू. 5वीं शताब्दी) ने यह प्रतिपादित किया कि द्रव्य कणों से बने होते हैं और उन कणों को विभाजित नहीं कर सकते । द्रव्य के सूक्ष्मतम कण को डेमोक्रिटस ने ॲटम नाम दिया । (ग्रीक भाषा में ॲटमॉस का अर्थ हैं विभाजित न होने वाला)

डाल्टन का परमाणु सिद्धांत : इ.स. 1803 में ब्रिटिश वैज्ञानिक जॉन डाल्टन ने सुप्रसिद्ध परमाणु सिद्धांत प्रतिपादित किया । इस सिद्धांत के अनुसार द्रव्य परमाणुओं से बने होते हैं तथा परमाणु अविभाज्य और अविनाशी होते हैं । एक ही तत्त्व के सभी परमाणु एक समान होते हैं तथा भिन्न तत्त्वों के परमाणु भिन्न होते हैं और उनके द्रव्यमान भिन्न होते हैं ।


5.2 डाल्टन का परमाणुप्रतिकृति

- 1. एक ठोस गेंद और एक बूँदी का लड्डू लो । उन दोनों गोलों को हाथों से दबाओ । क्या दिखाई दिया ?
- 2. ठोस गेंद को धारवाले चाकू से सावधानीपूर्वक काटो। क्या दिखाई दिया?

बूँदी के लड्ड़ की अंतर्गत संरचना हैं और वह उसकी अपेक्षा छोटे कणों से अर्थात् बूँदी एक-दूसरे से चिपककर बना प्रतीत होता हैं। परंतु ठोस गेंद को मोटे तौरपर अंतर्गत संरचना कुछ भी नहीं हैं ऐसा प्रतीत होता हैं। डाल्टन ने वर्णित किया परमाण् यह किसी कठोर, ठोस गोले के समान, कुछ भी संरचना न होनेवाला प्रतीत होता हैं। डाल्टन के परमाणु सिद्धांत के अनुसार परमाणु में द्रव्यमान का वितरण सभी ओर एक समान होता हैं। इ.स. 1897 में जे.जे. थॉमसन इस वैज्ञानिक ने परमाणु के अंदर स्थित ऋण आवेशित कणों की खोज की और डाल्टन के परमाण् सिद्धांत को खंडित किया । थॉमसन ने प्रयोग करके यह दिखा दिया कि परमाण के अंतर्भाग में स्थित ऋण आवेशित कणों का द्रव्यमान हाइड्रोजन परमाण् की तुलना में 1800 गुना कम होता हैं। इन कणों को आगे चलकर इलेक्ट्रॉन नाम दिया गया । सामान्यतः पदार्थ ये प्राकृतिक रूप से ही विद्युत आवेशित दृष्टि से उदासीन होते होते हैं, अर्थात पदार्थों के अण् और वे जिनके रासायनिक संयोग से बने हैं वे परमाणु विद्युत आवेशित दृष्टि से उदासीन होते हैं।

अंतर्भाग में ऋण आवेशित इलेक्ट्रॉन होते हुए भी परमाणु विद्युत आवेशित दृष्टि से उदासीन कैसे? थॉमसन ने परमाणु संरचना के प्लम-पुडिंग प्रतिकृति (model) दवारा इस समस्या का हल निकाला। थॉमसन का प्लम पुडिंग परमाणु प्रतिकृति परमाणु संरचना का पहला प्रतिकृति अर्थात थॉमसन ने सन 1904 में दर्शाया हुआ प्लम पुडिंग प्रतिकृति । इस प्रतिकृति के अनुसार परमाणु में सर्वत्र धन आवेश फैला होता हैं और उसमें ऋणआवेशित इलेक्ट्रॉन स्थापित होते हैं । फैले हुए धनआवेश का संतुलन इलेक्ट्रॉन पर स्थित ऋण आवेश द्वारा होता हैं । इसलिए परमाणु विद्युत आवेशित दृष्टि से उदासीन होता हैं ।

5.3 थॉमसन का प्लम पुडिंग परमाणुप्रतिकृति

थॉमसन के प्रतिकृति के अनुसार परमाणु के द्रव्यमान का वितरण कैसा होगा ऐसा तुम्हें लगता हैं?

डाल्टन के परमाणु सिद्धांत के अनुसार सर्वत्र समान या असमान?

क्या तुम जानते हो

प्लम पुडिंग या प्लम केक यह मीठा खाद्यपदार्थ क्रिसमस त्यौहार में बनाते हैं। पहले पाश्चात्य देशों में इस पदार्थ में प्लम इस फल के सुखे हुए टुकड़े डालते थे। आजकल प्लम के स्थान पर किशमिश या खजूर का उपयोग करते हैं।



- 1. तुमने गोटी पर स्ट्रायकर से लगाया हुआ निशाना गलत हो जाए तो स्ट्रायकर किस दिशा में जाएगा?
- 2. निशाना सही लगा तो स्ट्रायकर किस दिशा में जाएगा? सीधा, तिरछा या उल्टी दिशा में?

रुदरफोर्ड का नाभिकीय परमाण् प्रतिकृति (1911)

अर्नेस्ट रुदरफोर्ड इन्होंने उनके सुप्रसिद्ध विकीरण प्रयोग से परमाणु के अंतर्भाग को समझने का प्रयास किया और सन 1911 में परमाणु का नाभिकीय प्रतिकृति प्रस्तुत किया।

रुदरफोर्ड ने सोने की अत्यधिक पतली पन्नी (मोटाइ $10^{-4}~\mathrm{mm}$) लेकर उस पर रेड़ियोधर्मी तत्त्व से उत्सर्जित होनेवाला धनआवेशित कणों (अल्फा कणों) की बौछार की (आकृति 5.4) सोने की पन्नी के चारों ओर लगाए परदे पर उन्होंने प्रतिमा प्राप्त की । परमाणु में धन आवेशित द्रव्यमान का वितरण सर्वत्र एकसमान होगा तो धन आवेशित कणों का पन्नी से परावर्तन होगा ऐसी अपेक्षा थी । अनपेक्षित रूप से अधिकांश α कण पन्नी के आर–पार सीधे चले गए, कुछ कण मूलमार्ग से न्यून कोण पर विचलित हुए, उससे भी कम α कणों की अधिक कोण से विचलन हुआ और आश्चर्य अर्थात 20000 में से एक α कण मूल मार्ग के विपरीत दिशा में उछला ।

5.4: रूदरफोर्ड का विकीरण प्रयोग

बड़ी संख्या में आर-पार गए कण यह दर्शाते हैं कि उनके मार्ग में कोई भी रूकावट नहीं थी। इसका अर्थ सोने की ठोस अवस्थावाली पन्नी के परमाणुओं के बीच बहुत सी जगह होनी चाहिए। जिन कणों का न्यूनकोण या अधिक कोण में विचलन हुआ उनके मार्ग में रूकावट आई। इसका अर्थ हैं कि रूकावट उत्पन्न करनेवाला परमाणु का धन आवेशित और ठोस भाग परमाणु के मध्यभाग में था। इस आधार पर रुदरफोर्ड ने परमाणु का नाभिकीय प्रतिकृति इस प्रकार प्रस्तुत किया।

5.5 रूदरफोर्ड का नाभिकीय परमाणुप्रतिकृति

- 1. परमाणु के केन्द्रस्थान पर धन आवेशित नाभिक होता हैं।
- 2. परमाणु का करीब-करीब संपूर्ण द्रव्यमान नाभिक में समाविष्ट होता हैं।
- 3. नाभिक के चारों ओर इलेक्ट्रॉन नामक ऋणआवेशित कण परिभ्रमण करता हैं।
- 4. सभी इलेक्ट्रॉनों का एकत्रित ऋण आवेश यह नाभिक पर स्थिर धन आवेश के बराबर होने के कारण यह नाभिक पर स्थित धन आवेश के बराबर होने के कारण विजातीय आवेशों का संतुलन होकर परमाणु यह विद्युत दृष्टि से उदासीन होता हैं।
- 5. परिभ्रमण करनेवाले इलेक्ट्रॉन और परमाणु नाभिक के बीच रिक्त जगह होती हैं।

- 1. परमाणु की आंतिरक संरचना हैं यह किस खोज के कारण ध्यान में आया हैं ?
- 2. डाल्टन के परमाणुसिद्धांत का ठोस परमाणु और थॉमसन के प्रतिकृति वाला ठोस परमाणु इनमें क्या अंतर हैं?
- थॉमसन के परमाणु प्रतिकृति में धन आवेशों का वितरण और रुदरफोर्ड के परमाणु प्रतिकृति में धन आवेशों का वितरण इसमें अंतर स्पष्ट करो ।
- 4. थॉमसन और रुद्रफोर्ड के परमाणु प्रतिकृतियों में इलेक्ट्रॉनों की स्थिति के बारे में क्या भिन्नता हैं?
- 5. डाल्टन और थॉमसन के परमाणु प्रतिकृतियों में न होनेवाली कौनसी बात रूदरफोर्ड के परमाणु प्रतिकृति में हैं।

वृत्ताकार कक्षा में परिभ्रमण करनेवाले विद्युत आवेशित वस्तु की ऊर्जा कम होती जाती हैं ऐसा भौतिकशास्त्र का प्रस्थापित नियम हैं । इस नियम के अनुसार रुद्रफोर्ड ने प्रस्तुत किए प्रतिकृति का परमाणु अस्थाई होता हैं । परंतु वास्तव में रेडियोधर्मी परमाणुओं के अतिरिक्त अन्य सभी परमाणुओं में स्थाईभाव होता हैं । रुद्रफोर्ड के परमाणुप्रतिकृति की यह त्रुटि नील्स बोर इन्होंने सन 1913 में प्रस्तुत किए परमाणु प्रतिकृति से दूर हो गई।

बोर का स्थाई कक्षा परमाणु प्रतिकृति (1913)

सन 1913 में डॅनिश वैज्ञानिक नील्स बोर ने स्थाई कक्षा परमाणु प्रतिकृति प्रस्तुत कर परमाणु का स्थाईभाव स्पष्ट किया । बोर के परमाणु प्रतिकृति के महत्त्वपूर्ण आधार तत्त्व इस प्रकार हैं ।

(i) परमाणु के नाभिक के चारों ओर परिभ्रमण करनेवाले इलेक्ट्रॉन नाभिक से विशिष्ट दूरी पर होनेवाले समकेन्द्रीय वृत्ताकार कक्षाओं में हाते हैं।

- (ii) विशिष्ट कक्षा में इलेक्टॉन की ऊर्जा स्थिर होती हैं।
- (iii) इलेक्ट्रॉन भीतरी कक्षा से बाहरी कक्षा में छलाँग लागकर आते समय अंतर के बराबर ऊर्जा अवशोषित करता हैं, और बाहरी कक्षा से भीतरी कक्षा में छलांग लगाकर आते समय अंतर के बराबर ऊर्जा उत्सर्जित करता हैं।

क्या तुम जानते हो

घरेलू गैस की सिगड़ी की नीली ज्वाला पर नमक (सोडियम क्लोराइड) के कण डालने पर उसी समय उस स्थान पर पीली चिंगारी दिखाई देती हैं । पानी में सोडियम धातु का टुकड़ा डालने पर वह जल उठता हैं और पीली ज्योति दिखाई देती हैं । रास्ते के सोडियम व्हेपर दीपकों में से भी वही पीले रंग का प्रकाश प्राप्त होता हैं । इन सभी उदाहरणों में सोडियम परमाणु का इलेक्ट्रॉन ऊर्जा अवशोषित कर बाहरी कक्षा में जाता हैं और पुनः भीतरी कक्षा में छलाँग लगाकर आते समय वह ऊर्जा उत्सर्जित करता हैं । सोडियम परमाणु की इन दो कक्षाओं के ऊर्जा स्तर का अंतर निश्चित होता हैं । यह अंतर पीले प्रकाश की ऊर्जा के बराबर होता हैं । इसलिए ऊपर्युक्त तीनों उदाहरणों में वही पीला प्रकाश बाहर निकलता हुआ दिखाई देता हैं ।

5.6: बोर का स्थायी कक्षा परमाणुप्रतिकृति

बोर के परमाणु प्रतिकृति के पश्चात और कुछ परमाणु प्रतिकृति प्रस्तुत किए गए । उसके पश्चात उदित हुई पुंजयांत्रिकी (quantum mechanics) इस नई विज्ञान शाखा में परमाणु संरचना का गहन अध्ययन किया गया । इन सबसे परमाणु संरचना के विषय में सर्वमान्य हुए कुछ मूलभूत तत्त्व नीचे दिए गए हैं ।

परमाणु की संरचना

नाभिक और नाभिक का बाहरी भाग इनसे मिलकर परमाणु बनता हैं। इनमें तीन प्रकार के उपपरमाण्विक कणों का समावेश होता हैं।

केंद्रक

परमाणु का केंद्रक धन आवेशित होता हैं। परमाणु का लगभग संपूर्ण द्रव्यमान नाभिक में समाविष्ट होता हैं। केन्द्रक में दो प्रकार के उपपरमाण्विक कण होते हैं। एकत्रित रूप से उन्हें न्युक्लिऑन कहते हैं। प्रोटॉन और न्यूट्रॉन ये न्यूक्लिऑन के दो प्रकार हैं।

प्रोटॉन (p)

प्रोटॉन यह परमाणु के नाभिक में स्थित धन आवेशित उपपरमाण्विक कण हैं । नाभिक पर धन आवेश यह उस में स्थित प्रोटॉनों के कारण होता हैं । प्रोटॉन को 'P' इस अक्षर से दर्शाते हैं । प्रत्येक प्रोटॉन पर स्थित धन आवेश +1e होता हैं । $(1e=1.6\times10^{-19}$ कूलॉम) अतः नाभिक पर स्थित कुल धन आवेश 'e' इस इकाई में व्यक्त करने पर उसका परिणाम नाभिक में स्थित प्रोटॉनों की संख्या के बराबर होता हैं । परमाणु के नाभिक में स्थित प्रोटॉनों की संख्या उस तत्त्व का परमाणु क्रमांक होती हैं और उसे 'Z' इस अक्षर से दर्शाते हैं । एक प्रोटॉन का वस्तुमान सुमारे 1u (unified mass) इतना होता हैं । (1 डाल्टन अर्थात $1u=1.66\times10^{-27}g$) (हाइड्रोजन के 1 परमाणु का द्रव्यमान भी लगभग 1u होता हैं ।)

न्यूट्रॉन (n)

न्यूट्रॉन यह विद्युत आवेश की दृष्टि से उदासीन उपपरमाण्विक कण हैं। उसे 'n' इस संकेत से दर्शाते हैं। नाभिक में स्थित न्यूट्रॉनसंख्या के लिए 'n' यह अक्षर उपयोग में लाते हैं। 1u इतने परमाणु द्रव्यमान वाले हाइड्रोजन का अपवाद छोड़कर बाकी सभी तत्त्वों के परमाणु नाभिक में न्यूट्रॉन होते हैं। एक न्यूट्रॉन का द्रव्यमान लगभग 1u हैं। अर्थात करीब-करीब प्रोटॉन के द्रव्यमान के बराबर हैं।

नाभिक का बाहरी भाग

परमाणु की संरचना में नाभिक के बाहरी भाग में परिभ्रमण करनेवाले इलेक्ट्रॉन और नाभिक तथा इलेक्ट्रॉन इनके बीच स्थित रिक्त स्थान का समावेश होता हैं।

इलेक्ट्रॉन (e^-)

इलेक्ट्रॉन यह ऋण आवेशित उपपरमाण्विक कण हैं। इसे 'e-' इस अक्षर से दर्शाते हैं। प्रत्येक इलेक्ट्रॉन पर एक इकाई ऋणआवेश (-1e) होता हैं। इलेक्ट्रॉन का द्रव्यमान हाइड्रोजन परमाणु के द्रव्यमान से 1800 गुना कम हैं।

अतः इलेक्ट्रॉन का द्रव्यमान नगण्य माना जाता हैं। परमाणु नाभिक के बाहरी भाग में उपस्थित इलेक्ट्रॉन ये नाभिक के चारों ओर विभिन्न कक्षाओं में परिभ्रमण करते हैं। भ्रमण कक्षा का स्वरूप त्रिमितीय होने के कारण 'कक्षा' इस पद के स्थान पर 'कवच' (Shell) इस पद का उपयोग करते हैं। इलेक्ट्रॉन की ऊर्जा वह जिस कवच में होता हैं उस पर निर्भर होती हैं।

परमाणु नाभिक के बाहर उपस्थित इलेक्ट्रॉनों की संख्या केन्द्रक में स्थित प्रोटॉनों की संख्या (Z) के बराबर होती हैं। अतः विद्युत आवेशों का संतुलन होकर परमाणु विद्युतीय दृष्टि से उदासीन होता हैं।

- 1. परमाण् में कितने प्रकार के उपपरमाण्विक कण होते हैं?
- 2. कौन-से उपपरमाण्विक कण आवेश युक्त हैं?
- 3. नाभिक में कौन-से उपपरमाण्विक कण होते हैं?
- 4. नाभिक के चारों ओर परिभ्रमण करनेवाले इलेक्ट्रॉन कहाँ होते हैं?

इलेक्ट्रॉन का द्रव्यमान नगण्य होने के कारण परमाणु का द्रव्यमान मुख्यतः उसके नाभिक में स्थित प्रोटॉन और न्यूट्रॉन के कारण होता हैं। परमाणु के प्रोटॉन और न्यूट्रॉन इनकी एकत्रित संख्या को उस तत्त्व का परमाणु द्रव्यमानांक कहते हैं। परमाणु द्रव्यमानांक 'A' इस अक्षर से दर्शाते हैं। परमाणु संकेत क्रमांक और परमाणु द्रव्यमानांक ये एकत्रित रूप से चिहन में दर्शाने की पद्धति नीचे दी गई हैं।

 $^{\rm A}_{Z}$ संकेत, उदाहरण $^{12}_{6}$ C इस चिह्न का अर्थ यह हैं कि कार्बन का परमाणु क्रमांक अर्थात प्रोटॉन संख्या 6 और कार्बन का परमाणु वस्तुमानांक 12 हैं। इससे यह भी स्पष्ट होता हैं कि, कार्बन के नाभिक में (12-6) अर्थात 6 न्यूट्रॉन हैं।

थोड़ा सोचो।

- ऑक्सीजन का संकेत 'O' हैं । उसके नाभिक में 8 प्रोटॉन और 8 न्युट्रॉन होते हैं । इस आधार पर ऑक्सीजन का परमाणु क्रमांक (Z) और परमाणु वस्तुमानांक (A) निश्चित करो और उसको चिहन द्वारा दर्शाओ ।
- 2. कार्बन का परमाणु क्रमांक 6 हैं। कार्बन के परमाणु में कितने इलेक्ट्रॉन होंगे?
- 3. सोडियम के परमाणु में 11 इलेक्ट्रॉन हैं। सोडियम का परमाणु क्रमांक कितना होगा?
- 4. मैग्नेशियम का परमाणु क्रमांक तथा परमाणु द्रव्यमानांक क्रमशः 12 और 24 हैं? चिह्न द्वारा तुम उसे कैसे दर्शाओंगे?
- 5. कैल्शियम का परमाणु क्रमांक तथा परमाणु द्रव्यमानांक क्रमशः 20 और 24 हैं। इस आधार पर कैल्शियम के नाभिक में कितने न्यूट्रॉन होंगे ज्ञात करो।

इलेक्ट्रॉनों का वितरण : बोर के परमाणु प्रतिकृति के अनुसार इलेक्ट्रॉन स्थाई कवचों में पिरभ्रमण करते हैं । इन कवचों की विशिष्ट ऊर्जा होती हैं । परमाणु नाभिक के सबसे समीप वाले कवच को पहला कवच, उसके बाद वाले कवच को दूसरा कवच कहते हैं । कवचों के क्रमांक के लिए 'n' इस संकेत का उपयोग करते हैं । n = 1,2,3,4,... इन क्रमांको के अनुसार कवचों को K,L,M,N... इन संकेतों द्वारा संबोधित करते है । प्रत्येक कवच में ' $2n^2$ ' इस सूत्र से प्राप्त संख्या के बराबर इलेक्ट्रॉन रह सकते हैं । 'n' का मान बढ़ने पर उस कवच के इलेक्ट्रॉनों की ऊर्जा बढ़ती हैं ।

तालिका पूर्ण करो।

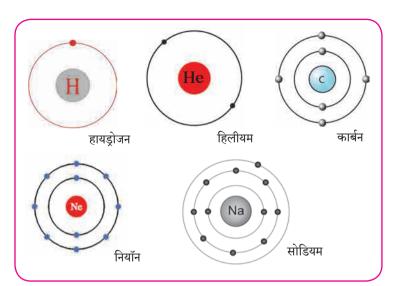
कव	व	कवचों की इले	कवचों की इलेक्ट्रॉन धारणक्षमता			
संकेत	n	सूत्र : 2 n ²	इलेक्ट्रॉनों की संख्या			
K	1	$2 \times (1)^2$				
L						
M						
N						

उपयर्युक्त तालिका के आधार पर कवचों में इलेक्ट्रॉनों की अधिकतम संख्या लिखो । K कवच : ..., L कवच :

..., M कवच : ..., N कवच : ...

- 1. परमाणु की संरचना और सौर मंडल में समानता हैं। सौर मंडल के ग्रह सूर्य के चारों ओर गुरूत्वीय बल के कारण परिभ्रमण करते हैं। परमाणु संरचना में कौन-सा बल कार्यरत होगा?
- 2. नाभिक में अनेक धन आवेशित प्रोटॉन एकत्र होते हैं। नाभिक के न्यूट्रॉन का एक कार्य क्या होगा ऐसा तुम्हें लगता हैं?

तत्त्वों का इलेक्ट्रॉनिक संरूपण : हमने देखा कि K, L, M, N इन कवचों में क्रमशः अधिक से अधिक 2, 8, 18, 32.... इलेक्ट्रॉन समा सकते हैं । यही कवचों की महत्तम धारकता हैं । कवचों की महत्तम धारकता के अनुसार ही परमाणु के इलेक्ट्रॉनों का कवचों में वितरण होता हैं । किसी तत्त्व के परमाणु में उपस्थित इलेक्ट्रॉनो का कवच के अनुसार विन्यास ही उस तत्त्व का इलेक्ट्रॉनिक संरूपण कहलाता हैं । प्रत्येक इलेक्ट्रॉन में वह जिस कवच में होता हैं उसके अनुसार निश्चित ऊर्जा होती हैं। पहले कवच (K कवच) में इलेक्ट्रॉनानो की ऊर्जा सबस कम


होती हैं । उसके आगे के कवचो के इलेक्ट्रॉनो की ऊर्जा कवच क्रमांक के अनुसार बढ़ती जाती हैं । तत्त्व के परमाणु का इलेक्ट्रॉनिक संरूपण इस प्रकार होता हैं कि उसके सभी इलेक्ट्रॉनों की एकत्रित ऊर्जा कम से कम होती हैं । परमाणु के इलेक्ट्रॉन कवचों की महत्तम धारकता के अनुसार और ऊर्जा के आरोही क्रमानुसार कवचों में स्थान प्राप्त करते हैं । अब हम कुछ तत्त्वों के परमाणुओं के इलेक्ट्रॉनिक संरूपण देखेंगे । (तालिका 5.7) उस तालिका की 1 से 3 पंक्तियाँ भरी हुई हैं । उस आधार पर बची हुई तालिका तमने भरनी हैं ।

तत्त्व	संकेत	परमाणु में	क	कवच में इलेक्ट्रॉन वितरण		तरण	संख्या के रूप में इलेक्ट्रॉन संरूपण
		उपस्थित	कवर	व्रसंकेत (महत्तम धा	रकता)	
		इलेक्ट्रॉनों की	K	L	M	N	
		संख्या	(2)	(8)	(18)	(32)	
हाइड्रोजन	Н	1	1				1
हिलीयम	Не	2	2				2
लीथियम	Li	3	2	1			2, 1
कार्बन	С	6					
नाइट्रोजन	N	7					
ऑक्सीजन	О	8					
फ्लुओरिन	F	9					
नियॉन	Ne	10					
सोडियम	Na	11					
क्लोरिन	Cl	17					
ऑरगन	Ar	18					
ब्रोमीन	Br	35					

5.7 कुछ तत्त्वों के संरूपण

संख्या स्वरूप में इलेक्ट्रॉनिक संरूपण अल्पविराम से अलग किए हुए अंको द्वारा दर्शाया जाता हैं। इसके अंक ऊर्जा के आरोही क्रमवाले कवचों में उपस्थित इलेक्ट्रॉन संख्या दर्शाते हैं। उदाहरणार्थ, सोडियम का इलेक्ट्रॉनिक संरूपण 2,8,1 हैं। इसका अर्थ सोडियम परमाणु में 'K' कवच में 2 'L' कवच में 8 'और M' कवच में 1 इस प्रकार से कुल 11 इलेक्ट्रॉन वितरित किए होते हैं। परमाणु का इलेक्ट्रॉनिक संरूपण आकृति 5.8 के अनुसार कवचों के रेखांकन द्वारा भी दर्शाते हैं।

संयोजकता (Valency) और इलेक्ट्रॉनिक संरूपण (Electronic configuration): संयोजकता अर्थात एक परमाणु द्वारा बनाए गए रासायनिक बंधों की संख्या यह हमने पिछले पाठ में देखा । हमने यह भी देखा कि सामान्यतः तत्त्वों की संयोजकता उसके विविध यौगिकों में स्थिर होती हैं ।

थोड़ा याद करो।

नीचे दिए गए अणुसूत्रों का उपयोग कर H, Cl, O, S, N, C, Br, I, Na इनकी संयोजकता निश्चित करो।

अणुसूत्र – H_2 , HCl, H_2 O, H_2 S, NH_3 , CH_4 , HBr, HI, NaH.

5.8: इलेक्ट्रॉनिक संरूपण का रेखांकन

थोडा सोचो।

- 1. विविध परमाणुओं में उपस्थित इलेक्ट्रॉन जिनमें समाविष्ट होते हैं उन कवचों के संकेत क्या हैं?
- 2. सबसे अंदरवाले कवच का संकेत और क्रमांक क्या हैं?
- 3. फ्लुओरीन परमाणु में उपस्थित इलेक्ट्रॉन जिन कवचों में वितरित किए होते हैं उनके संकते लिखो।
- 4. फ्लुओरीन परमाणु में सबसे बाहरी अर्थात बाह्यतम कवच कौन-सा हैं?
- 5. सोडियम परमाणु में बाह्यतम कवच कौन-सा हैं?
- 6. हाइड्रोजन परमाणु में बाह्यतम कवच कौन-सा हैं?

तत्त्वों की संयोजकता, यौगिकों में उपस्थित रासायनिक बंध इनसे संबंधित संकल्पना इलेक्ट्रॉनिक संरूपण के कारण स्पष्ट होती हैं। परमाणु स्वयं के बाह्यतम कवच के इलेक्ट्रॉनों का उपयोग करके रासायनिक बंध बनाता हैं। परमाणुओं की संयोजकता उसके बाह्यतम कवच के इलेक्ट्रॉनिकसंरूपण के आधार पर निर्धारित होती हैं। इसलिए बाह्यतम कवच को संयोजकता कवच कहते हैं। बाह्यतम कवच के इलेक्ट्रॉन संयोजकता इलेक्ट्रॉन कहलाते हैं।

परमाणु की संयोजकता का संबंध परमाणु में उपस्थित संयोजकता इलेक्ट्रॉन की संख्या से होता हैं यह स्पष्ट होता हैं। सर्वप्रथम हिलीयम और नियॉन इन तत्त्वों को देखें। ये दोनों गैसीय अवस्थावाले तत्त्व अन्य किसी भी परमाणु से संयोग नहीं करते। ये तत्त्व रासायनिक दृष्टि से निष्क्रिय हैं। अर्थात उनकी संयोजकता शून्य हैं। हिलीयम के परमाणु में

दो इलेक्ट्रॉन होते हैं । और वे K इस पहले कवच में समाविष्ट होते हैं। (देखो तालिका 5.7) हिलीयम में इलेक्ट्रॉनों का केवल एक K कवच हैं और वही बाह्यतम कवच भी हैं। K कवच की इलेक्ट्रॉन धारकता $(2n^2)$ दो हैं अर्थात हिलीयम का बाह्यतम कवच पूर्ण भरा हैं। इसे ही हिलीयम का इलेक्ट्रॉन दिवक कहते हैं। नियॉन इस निष्क्रिय गैस के इलेक्टॉनिक संरूपण में K व L ये दो कवच होते हैं जिसमें 🗋 यह संयोजकता कवच हैं। 🗋 कवच की इलेक्ट्रॉन धारकता 'आठ' हैं और तालिका 5.7 से यह स्पष्ट होता हैं कि नियॉन का संयोजकता कवच पूर्ण भरा हैं। इसे ही नियॉन में इलेक्टॉन अष्टक हैं ऐसा कहते हैं । K, L और M इन कवचों में इलेक्ट्रॉन रहने वाली निष्क्रीय गैस अर्थात ऑरगन है । M इस कवच की इलेक्ट्रॉन धारकता 2×3^2 = 18 हैं, परंत् ऑरगन में M इस संयोजकता कवच में केवल 8 इलेक्टॉन हैं (देखो तालिका 5.7) इसका अर्थ हैं कि निष्क्रीय गैसों के संयोजकता कवच में आठ इलेक्टॉन होते हैं अर्थात संयोजकता कवच में इलेक्ट्रॉन अष्टक होता हैं । इलेक्ट्रॉन अष्टक (या दिवक) पूर्ण होता हैं तब संयोजकता शून्य होती हैं।

निष्क्रिय गैसों के अतिरिक्त अन्य तत्त्वों के इलेक्ट्रॉनिक संरूपण देखें (तालिका 5.7) तो ऐसा दिखाई देता हैं कि उनमें इलेक्ट्रॉन अष्टक स्थिति नहीं हैं या उनकी इलेक्ट्रॉन अष्टक स्थिति अपूर्ण हैं । हाइड्रोजन के बारे में यह कह सकते हैं कि हाइड्रोजन का दिवक अपूर्ण हैं।

निष्क्रिय गैसों के अलावा अन्य सभी तत्त्वों के परमाणुओं में अन्य परमाणुओं के साथ संयोग करने की प्रवृत्ति होती हैं, अर्थात उनकी संयोजकता शून्य नहीं होती। हाइड्रोजन के संयोग से बननेवाले अणुओं के सूत्रों से (उदा. H_2 , HCl) हाइड्रोजन की संयोजकता 'एक' होती हैं यह तुमने देखा ही हैं। हाइड्रोजन के इलेक्ट्रॉनिक संरूपण से यह दिखाई देता हैं कि हाइड्रोजन में एक इलेक्ट्रॉन 'K' इस कवच में हैं अर्थात हाइड्रोजन में 'पूर्ण दि्वक' स्थिति की अपेक्षा एक इलेक्ट्रॉन कम हैं।

यह 'एक' संख्या हाइड्रोजन की संयोजकता से मिलती हैं। सोडियम के 2,8,1 इस संरूपण से यह पता चलता हैं कि सोडियम के संयोजकता कवच में 'एक' इलेक्ट्रॉन हैं और NaCl, NaH ऐसे अणुसूत्रों से पता चलता हैं कि सोडियम की संयोजकता एक हैं। इसका अर्थ यह हैं कि तत्त्वों की संयोजकताऔर उनके संयोजकता कवचों की इलेक्ट्रॉन संख्या में कुछ संबंध हैं।

थोड़ा सोचो।

नीचे दी गई तालिका (5.9) में कुछ तत्त्वों से बने यौगिकों के अणुसूत्र दिए हैं । उसके आधार पर निर्धारित उन तत्त्वों की संयोजकता, उस उस तत्त्व का इलेक्ट्रॉनिक संरूपण और उनकी संयोजकता इलेक्ट्रॉन संख्या रिक्त स्थानों में लिखो ।

अ. क्र	तत्त्व का संकेत	यौगिक का अणुसूत्र	तत्त्व की संयोजकता	तत्त्व का इलेक्ट्रॉनिक संरूपण	तत्त्व की संयोजकता इलेक्ट्रॉन संख्या X	8 - x (x ≥ 4 के लिए)
1	Н	HC1	1	1	1	_
2	Cl	HC1	1	2, 8, 7	7	8-7 = 1
3	Ne	यौगिक नहीं	0			
4	F	HF				
5	Na	NaH				
6	Mg	MgCl ₂				
7	С	CH ₄				
8	Al	AlCl ₃				

5.9: संयोजकता तथा इलेक्ट्रॉनिक संरूपण में संबंध

थोड़ा सोचो।

तालिका क्र. 5.9 के चौथे स्तंभ में तुमने यौगिक के अणुसूत्र के आधार पर तत्त्व की प्राप्त की संयोजकता लिखी हैं।

- जब तत्त्व की संयोजकता इलेक्ट्रॉन संख्या, x का मान
 4 या 4 से कम हैं तब x का मान तत्त्व की संयोजकता
 से मेंल खाता हैं क्या?
- 2. जब 'x' का मान 4 या 4 से अधिक हैं तब '(8-x)' का मूल्य तत्त्व की संयोजकता से मेंल खाता हैं क्या? या तत्त्व का इलेक्ट्रॉन अष्टक पूर्ण होने के लिए कितने इलेक्ट्रॉन कम हैं?

इससे तुम्हारे यह ध्यान में आएगा कि तत्त्व की संयोजकताऔर तत्त्व के इलेक्ट्रॉनिक संरूपण में सामान्यतः नीचे दिया संबंध होता हैं।

इसे सदैव ध्यान में रखो ।

''जिस तत्त्व में संयोजकता इलेक्ट्रॉन संख्या चार या उससे कम होती हैं उस तत्त्व की संयोजकता उसके संयोजकता इलेक्ट्रॉन संख्या के बराबर होती हैं। इसके विपरीत जिस तत्त्व में चार या उससे अधिक संयोजकता इलेक्ट्रॉन होते हैं तब अष्टक पूर्ण होने के लिए जितने इलेक्ट्रॉन कम होते हैं वह संख्या उस तत्त्व की संयोजकता होती हैं।''

- 1. तत्त्व के परमाणु क्रमांक (Z) का क्या अर्थ हैं?
- 2. नीचे कुछ तत्त्वों के परमाणुक्रमांक (Z) दिए हैं। उन प्रत्येक तत्त्वों के बाह्यतम कवच में कितने इलेक्ट्रॉन हैं लिखो।

तत्त्व	Н	С	Li	О	N
Z	1	6	3	8	7
बाह्यतम कवच की इलेक्ट्रॉन संख्या					

3. नीचे कुछ तत्त्वों की इलेक्ट्रॉन संख्या दी हैं। उस आधार पर उस-उस तत्त्व का इलेक्ट्रॉनिक संरूपण, संयोजकता इलेक्ट्रॉन संख्या और संयोजकता लिखो।

तत्त्व	Na	С	Mg	Cl
इलेक्ट्रॉन संख्या	11	6	12	17
इलेक्ट्रॉनिक संरूपण				
संयोजकता इलेक्ट्रॉन संख्या				
संयोजकता				

- 4. परमाणु क्रमांक और परमाणु द्रव्यमानांक हमेंशा पूर्णांक ही क्यों होते हैं?
- 5. सल्फर में 16 प्रोटॉन और 16 न्यूट्रॉन होते हैं तो उसका परमाणु क्रमांक और परमाणु द्रव्यमानांक िकतना होगा? समस्थानिक (Isotopes): तत्त्व का परमाणु क्रमांक यह तत्त्व का मूलभूत गुणधर्म और उसकी रासायनिक पहचान हैं। प्रकृति में कुछ तत्त्वों में परमाणु क्रमांक समान परंतु परमाणु द्रव्यमानांक भिन्न ऐसे परमाणु होते हैं। एक ही तत्त्व के ऐसे भिन्न परमाणु द्रव्यमानांक वाले परमाणुओं को समस्थानिक हैं। उदा. C-12, C-13, C-14 समस्थानिकों के परमाणु द्रव्यमानांक ^{12}C , ^{13}C और ^{14}C इस पद्धित से भी दर्शाते हैं। समस्थानिकों की प्रोटॉन संख्या समान परंतु न्यूट्रॉन संख्या भिन्न होती हैं।

समस्थानिक	परमाणु द्रव्यमानांक A	प्रोटॉन संख्या Z (परमाणु क्रमांक)	न्यूट्रॉन संख्या n = A - Z
¹² C	12	6	6
¹³ C	13	6	7
¹⁴ C	14	6	8

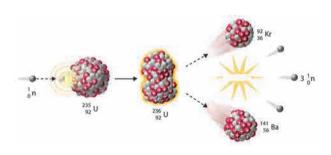
जानकारी प्राप्त करो ।

हाइड्रोजन के कुल तीन समस्थानिक हैं, उन्हें हाइड्रोजन, ड्युटेरिअम और ट्रीटियम नामि दिए गए हैं। उनके परमाणु द्रव्यमानांक ढूँढ़ों। भारी जल (Heavy water) का अर्थ क्या है, इसके बारे में जानकारी प्राप्त करो।

तालिका पूर्ण करो।

समस्थानिके	प्रोटॉन संख्या	न्यूट्रॉन संख्या
¹ H		
1	1	1
·····	1	2
³⁵ Cl 17		
³⁷ Cl		

समस्थानिकों के उपयोग: कुछ तत्त्वों के समस्थानिक रेड़ियोधर्मी होते हैं। उनका उपयोग विविध क्षेत्रों में किया जाता हैं। उदा. औद्योगिक क्षेत्र, कृषि क्षेत्र, चिकित्सकीय क्षेत्र, अनुसंधान क्षेत्र।


- 1. यूरेनिअम 235 का उपयोग नाभिकीय विखंडन और ऊर्जा निर्मिति के लिए करते हैं।
- 2. कैन्सर जैसे प्राणघातक विकार के चिकित्सकीय उपचार में कुछ तत्त्वों के रेड़ियोधर्मी समस्थानिकों का उपयोग करते हैं । उदा. कोबाल्ट 60
- 3. गॉयटर या थायरॉईड इस विकार के चिकित्सकीय उपचार में आयोडीन-131 का उपयोग करते हैं।
- 4. रेड़ियोधर्मी तत्त्वों के समस्थानिकों का उपयोग जमीन के नीचे से जानेवाली नलिकाओं में दरार खोजने के लिए करते हैं। उदा. सोडियम-24
- 5. अन्न पदार्थों का सूक्ष्म जीवाणुओं से परिरक्षण करने के लिए रेड़ियोधर्मी तत्त्वों का उपयोग करते हैं।
- 6. C-14 इस रेड़ियोधर्मी समस्थानिक का उपयोग पुरातन वस्तुओं की आयु निश्चित करने के लिए करते हैं।

परमाण्भट्टी (Nuclear Reactor): परमाण् ऊर्जा के उपयोग से बड़े पैमाने पर विद्युत निर्मिती करनेवाले संयंत्र को परमाण्भट्टी (आकृति 5.10 देखो) कहते हैं। परमाण् भट्टी में परमाण् ईंधन पर नाभिकीय अभिक्रिया करके परमाण् की नाभिकीय ऊर्जा मुक्त करते हैं। संबंधित नाभिकीय अभिक्रिया समझने के लिए यूरेनियम -235 इस परमाण् ईंधन का उदाहरण लेंगे । धीमी गति से न्यूट्रॉन का आघात करके युरेनियम -235 इस समस्थानिक के नाभिक का विखंड़न होकर क्रिप्टान -92 तथा बेरियम -141 इन भिन्न तत्त्वों के नाभिक और 2 से 3 न्यूट्रॉन का निर्माण होता हैं । इन न्यटॉनों की गति कम करने पर वे और U-235 के नाभिकों का विखंडन करते हैं। इस प्रकार से नाभिकीय विखंड़न की शृंखला अभिक्रिया होती हैं। (आकृति 5.11 देखो) इसमें नाभिक से बड़े पैमाने पर नाभिकीय ऊर्जा अर्थातु परमाण् ऊर्जा मुक्त होती हैं । संभावित विस्फोट टालने के लिए शृंखला अभिक्रिया नियंत्रित रखते हैं।

परमाणु भट्टी में शृंखला अभिक्रिया नियंत्रित करने के लिए न्यूट्रॉनों का वेग और संख्या कम करने की आवश्यकता होती हैं। उसके लिए आगे दी गई बातों का उपयोग होता हैं।

5.10 परमाणुभट्टी : भाभा परमाणु अनुसंधान केंद्र, मुंबई

5.11 युरेनिअम - 235 का विखंडन

- 1. संचलक / मंदक (Moderator) : न्यूट्रॉनों की गति को कम करने के लिए ग्रेफाइट या भारी जल का संचलक या मंदक के रूप में उपयोग किया जाता हैं।
- 2. नियंत्रक (Controller): न्यूट्रॉनों को अवशोषित करके उनकी संख्या कम करने के लिए बोरॉन, कॅड़मियम, बेरिलियम आदि की छड़ों का नियंत्रक के रूप में उपयोग करते हैं। विखंडन प्रक्रिया में निर्माण होनेवाली ऊष्मा, पानी का शीतक (Coolant) के रूप में उपयोग कर, अलग की जाती हैं।

उस ऊष्मा से पानी की वाष्प बनाकर उस बाष्प की सहायता से टर्बाइन्स चलाए जाते हैं और विद्युत निर्माण होती हैं।

भारत में आठ स्थानों के परमाणु विद्युत निर्माण केंद्रों में कुल बाईस परमाणु भिट्टया कार्यान्वित हैं। अप्सरा यह मुंबई के भाभा परमाणु अनुसंधान केंद्र में 4 अगस्त 1956 को कार्यान्वित हुई भारत की पहली परमाणु भट्टी हैं। भारत में थोरियम -232 इस तत्त्व के भंडार बड़े पैमाने में होने के कारण भारतीय वैज्ञानिकों ने आनेवाले समय के लिए Th-232 से U-233 इस समस्थानिक के निर्माण पर आधारित परमाणु भट्टियों की योजना विकसित की हैं।

सूचना एवं संचार प्रौद्योगिकी के साथ:

www.youtube.com से परमाणु भट्टी के कार्यों की विस्तृत जानकारी विडियो द्वारा प्राप्त करो और उसे कक्षा में सभी को बताओ।

स्वाध्याय

1. निम्नलिखित प्रश्नों के उत्तर लिखो।

- अ. थॉमसन और रूदरफोर्ड के परमाणु प्रतिकृति में क्या अंतर हैं?
- आ. तत्त्वों की संयोजकता किसे कहते हैं? संयोजकता इलेक्ट्रॉन संख्या और संयोजकता में क्या संबंध हैं लिखो।
- इ. परमाणु द्रव्यमानांक किसे कहते हैं? कार्बन का परमाणु क्रमांक 6 और परमाणु द्रव्यमानांक 12 हैं ये कैसे स्पष्ट करोगे?
- ई. उपपरमाण्विक कण किसे कहते हैं ? विद्युत आवेश, द्रव्यमान और स्थान संदर्भ में तीन उपपरमाण्विक कणों की जानकारी संक्षेप में लिखो।

2. वैज्ञानिक कारण लिखो।

- अ. परमाणु का संपूर्ण द्रव्यमान नाभिक में समाविष्ट होता हैं।
- आ. परमाणु विद्युतीय दृष्टिसे उदासीन होता हैं।
- इ. परमाणु द्रव्यमानांक पूर्णांक में होता हैं।
- ई. परिभ्रमण करनेवाले आवेशित इलेक्ट्रॉन होते हुए भी सामान्यतः परमाणु स्थाई होते हैं ।

3. परिभाषा लिखो ।

- अ. परमाणु ब. समस्थानिक
- क. परमाणु क्रमांक ड. परमाणु द्रव्यमानांक
- इ. परमाणु भट्टी के मंदक

4. स्वच्छ एवं नामांकित आकृतियाँ बनाओ।

- अ. रूदरफोर्ड का विकिरण प्रयोग
- आ. थामसन की परमाण प्रतिकृति
- इ. मैग्नीशियम के (परमाणु क्रमांक 12) इलेक्ट्रॉनिक संरूपण का रेखांकन
- ई. ऑरगन के (परमाणु क्रमांक 18) इलेक्ट्रॉनिक संरूपण का रेखांकन

5. रिक्त स्थानों की पूर्ति करो।

- अ. इलेक्ट्रॉन, प्रोटॉन, न्यूट्रॉन ये परमाणु में पाए जानेवाले हैं।
- आ. इलेक्ट्रॉन पर आवेश होता हैं।
- इ. परमाणु के नाभिक सबसे समीपवाली कवच........... हैं।
- ई. मैग्नीशियम की इलेक्ट्रॉनिक संरूपण 2,8,2 हैं। इससे यह ज्ञात होता हैं की मैग्नीशियम का संयोजकता कवच हैं।
- उ. H_2O इस अणूसुत्र के अनुसार हाइड्रोजन की संयोजकता 1 हैं । इसिलए Fe_2O_3 इस सूत्र के अनुसार Fe की संयोजकता निश्चित होती हैं ।

6. जोड़ियाँ मिलाओ।

'अ' समूह 'ब' समूह

- अ. प्रोटॉन a. ऋणआवेशित
- आ. इलेक्ट्रॉन b. उदासीन
- . न्यूट्रॉन c. धनआवेशित

7. दी गई जानकारी के आधार पर ज्ञात करो

जानकारी	ज्ञात करो
²³ ₁₁ Na	न्यूट्रॉन संख्या
¹⁴ ₆ C	परमाणु द्रव्यमानांक
³⁷ Cl	प्रोट्रान संख्या

उपक्रम :

पुरानी सी.डी., गुब्बारे, गोटियाँ इन चीजों का उपयोग करके परमाणु की प्रतिकृति को स्पष्ट करो।

6. द्रव्य की संरचना

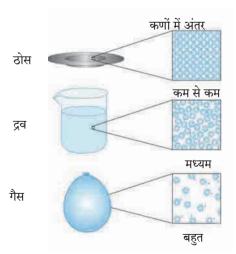
- 1. द्रव्य की विविध अवस्थाएँ कौनसी हैं ?
- 2. बर्फ, पानी और वाष्प में अंतर बताओ।
- 3. दव्य के छोटे-से छोटे कण को क्या कहते हैं?
- 4. दव्य के प्रकार कौन-से हैं?

पिछली कक्षाओं में हमने देखा कि अपने आस-पास दिखाई देने वाली तथा दृष्टि को दिखाई न देने वाली सभी वस्तुएँ किसी ना किसी द्रव्य से बनी होती हैं।

- 1. द्रव्यों का तीन समूहो में वर्गीकरण करो। शीतपेय, हवा, शरबत, मिट्टी, पानी, लकड़ी, सीमेंट।
- 2. ऊपर्युक्त वर्गीकरण के लिए मापदंड के रूप में उपयोग में लाई गई द्रव्य की अवस्थाएँ कौन-सी हैं?

एक चौड़े मुँह वाली पारदर्शक प्लास्टिक की बोतल में राई के दाने लो । बड़े गुब्बारे के मध्य भाग में सुई की सहायता से लंबा धागा ड़ालकर पक्की गाँठ मारो । यह रबड़ का परदा बोतल के मुँह पर रबडबँड की सहायता से खींचकर लगाओ । धागा बोतल के बाहर रहे यह देखो । धागे की सहायता से परदा

क्रमशः धीरे, थोड़ा जोर से, बहुत जोर से ऊपर-नीचे करो और आगे दी गई तालिका में निरीक्षण लिखो।


परदा ऊपर-नीचे करने	राई के दानों की हलचल
की विधि	
धीरे	अपने ही स्थान पर
थोड़ा जोर से	•••••
बहुत जोर से	

ऊपर्युक्त प्रयोग में परदा नीचे-ऊपर करके हम हवा द्वारा राई के दानों को कम-अधिक ऊर्जा देते हैं। जिससे राई के दानों में जैसी हलचल होती दिखाई वैसी ही हलचल ठोस. दव और गैस इन अवस्थाओं में द्रव्य के कणों में होती हैं।

द्रव्य के कणों में (परमाण या अण में) अंतर आण्विक आकर्षण बल कार्यरत होता हैं। इस बल की क्षमता के अनुसार कणों की हलचल का अनुपात निर्भर होता हैं । ठोस में अंतरआण्विक बल बहुत अधिक प्रभावी होता हैं। जिसके कारण ठोस के कण एक दूसरे के अत्याधिक समीप होते हैं और वे अपनी अपनी जगह पर कंपित होते रहते हैं। अतः ठोस को निश्चित आकार और आयतन प्राप्त होता हैं तथा उच्च घनत्व और असंपीड्यता (non-compressibility) ये गुणधर्म प्राप्त होते हैं । द्रव अवस्था में अंतरआण्विक बल की क्षमता मध्यम होती हैं। वह कणों को निश्चित स्थान पर रोककर रखने के लिए उतनी प्रभावी न हो तो भी उन्हें एकत्रित गठन करके रखने के लिए पर्याप्त प्रभावी होती हैं। इसलिए द्रवों का आयतन निश्चित होता हैं, परंतु उन्हें प्रवाहिता प्राप्त होती हैं और द्रवों का 6.2 द्रव्य की भौतिक अवस्थाएँ: अतिसूक्ष्म स्तर पर चित्र आकार निश्चित न होकर धारकपात्र के अनुसार बदलता हैं।

6.1: राई के दानों की हलचल

परंतु गैसों में अंतरआण्विक बल बहुत कम होता हैं। इसलिए गैसों के घटक कण मुक्त रूप से हलचल कर सकते हैं और उपलब्ध पूरी जगह पर फैल जाते हैं। इसलिए गैसों को निश्चित आकार या निश्चित आकार या निश्चित आयतन ये दोनों नहीं होते। आकृति 6.2 में द्रव्य की भौतिक अवस्थाओं का यह अतिसूक्ष्म स्तर का चित्र प्रतीक के रूप में दर्शाया गया हैं और तालिका 6.3 में द्रव्य की अवस्थाओं की विशेषताएँ दर्शाई गई हैं।

द्रव्य की भौतिक अवस्था	प्रवाहिता/दृढ़ता/ ढलनशीलता/ प्रत्यास्थता	आयतन	आकार	संपीड्यता	अंतर परमाण्विक बल	कणों के बीच की दूरी
ठोस	दृढ/ ढलनशील/	निश्चित	निश्चित	नगण्य	शक्तिशाली	कम से कम
	प्रत्यास्थ					
द्रव	प्रवाही	निश्चित	अनिश्चित	बहुत कम	मध्यम	मध्यम
गैस	प्रवाही	अनिश्चित	अनिश्चित	उच्च	बहुत कम	अधिक

6.3: द्रव्य की अवस्थाओं की विषेशताएँ

नीचे दिए गए द्रव्यों की संरचना सूत्रों की सहायता से लिखो और उसके आधार पर वर्गीकरण करो।

द्रव्य का नाम	रासायनिक सूत्र/संरचना	द्रव्य का प्रकार
पानी		
कार्बन		
ऑक्सीजन		
हवा		
एल्युमिनियम		
पीतल		
कार्बन डायऑक्साइड		

द्रव्य का वर्गीकरण करने की यह दूसरी पद्धित हैं। इस पद्धित में ''द्रव्य की रासायनिक संरचना'' यह मापदंड उपयोग में लाया गया हैं। द्रव्य के सूक्ष्मतम कण एक समान हैं या अलग–अलग और वे किससे बने हैं, इस आधार पर द्रव्य के 'तत्त्व' (element), यौगिक (Compound) और मिश्रण (Mixture) ऐसे तीन प्रकार बनते हैं यह हमने पिछली कक्षा में देखा हैं। किसी तत्त्व या किसी यौगिक के सभी अतिसूक्ष्म कण (परमाणु/अणु) ये एक जैसे होते हैं लेकिन मिश्रण के सूक्ष्मतम कण ये दो या दो से अधिक प्रकार के होते हैं।

तत्त्व के सूक्ष्मतम कण में एक ही प्रकार के परमाणु होते हैं, जैसे ऑक्सीजन के प्रत्येक अणु में ऑक्सीजन के दो परमाणु जुड़ी हुई स्थिति में होते हैं। यौगिक के सूक्ष्मतम कण (अणु) ये दो या दो से अधिक प्रकार के परमाणु एक दूसरे से जुड़कर बने होते हैं जैसे पानी के प्रत्येक अणु में हाइड्रोजन के दो परमाणु, ऑक्सीजन के एक परमाणु से जुड़ी हुई स्थिति में होते हैं । मिश्रण के सूक्ष्मतम कण अर्थात दो या दो से अधिक तत्त्व यौगिकों के परमाणु/अणु होते हैं । उदाहरणार्थ, हवा इस मिश्रण में N_2 , O_2 , Ar, H_2O , CO_2 , ये प्रमुख घटक अणु हैं । उसी प्रकार से पीतल इस मिश्र धातु/सम्मिश्र में ताँबा (Cu) और जस्त (Zn) तथा ब्राँज में ताँबा (Cu) और टिन (Sn) इन तत्त्वों के परमाणु होते हैं ।

आकृति 6.4 में तत्त्व, यौगिक और मिश्रण द्रव्य के इन प्रकारों के अतिसूक्ष्म स्तर के चित्र प्रतीक के रूप में दर्शाते हुए उनकी विशेषताएँ भी बताई गई हैं।

तत्त्व	यौगिक	मिश्रण
नायट्रोजन ($N_{_2}$) अणु	नायट्रोजन डायऑक्साईड (NO ₂) अणु	N ₂ और NO ₂ का मिश्रण
€ 6000000000000000000000000000000000000		
ऑक्सीजन $(O_{_2})$ अणु	नायट्रिक ऑक्साइड (NO) अणु	N ₂ और O ₂ का मिश्रण
000000000000000000000000000000000000000		
तत्त्व का घटक पदार्थ एक ही होता हैं और	यौगिक का घटक पदार्थ एक ही और वह	मिश्रण के घटक पदार्थ दो या दो से
वह अर्थात स्वयं वह तत्त्व	अर्थात स्वयं वह यौगिक	अधिक तत्त्व या यौगिक
तत्त्व के सभी परमाणु/अणु एक समान	यौगिक के सभी अणु एक समान	मिश्रण के अणु/परमाणु दो या दो से
		अधिक प्रकार के
तत्त्व के अणु में स्थित सभी परमाणु एक	यौगिक के अणु के घटक परमाणु दो या	मिश्रण के घटक अणु एक-दूसरे से
समान और एक दूसरे से रासायनिक बंधो	दो से अधिक प्रकार के और एक दूसरे से	भिन्न, रासायनिक बंध से न जुड़े हुए
से जुड़े हुए	रासायनिक बंध से जुडे हुए	
अलग-अलग तत्त्वों के अणु/परमाणु	यौगिक के घटक तत्त्वों का अनुपात	मिश्रण के घटक पदार्थों का अनुपात
अलग-अलग	निश्चित	बदल सकता हैं ।
-	यौगिक के गुणधर्म घटक तत्त्वों के	मिश्रण में उसके घटक पदार्थों के
	गुणधर्मों से भिन्न	गुणधर्म बने रहते हैं ।

6.4: तत्त्व, यौगिक, मिश्रण-अतिसूक्ष्म स्तर के चित्र व विशेषताएँ

क्या तुम जानते हो

पानी: एक यौगिक – शुद्ध पानी यह हाइड्रोजन और ऑक्सीजन इन तत्त्वों के रासायनिक संयोग से बना हुआ एक यौगिक हैं। पानी का स्त्रोत कोई भी हो, उसमें ऑक्सीजन और हाइड्रोजन इन घटक तत्त्वों का भारात्मक अनुपात 8: 1 होता हैं। हाइड्रोजन यह ज्वलनशील गैस हैं और ऑक्सीजन ज्वलन में सहायक हैं। लेकिन, हाडड्रोजन और ऑक्सीजन इन गैसीय तत्त्वों के रासायनिक संयोग बना पानी यह यौगिक द्रवरूप में होता हैं। वह ज्वलनशील भी नहीं हैं और ज्वलन में सहायक भी नहीं हैं। इसके विपरीत पानी से आग बुझाने में सहायता मिलती हैं।

दूध: एक मिश्रण – दूध यह पानी दुग्धशर्करा, स्निग्धपदार्थ, प्रथिन और अन्य कुछ प्राकृतिक पदार्थों का मिश्रण हैं। दूध के स्त्रोत के अनुसार दूध में स्थित विविध घटक पदार्थों के अनुपात अलग-अलग होते हैं। गाय के दूध में स्निग्ध पदार्थों का अनुपात 3-5% होता हैं, तो भैंस के दूध में यही अनुपात 6-9% हैं। दूध में प्राकृतिक रूप से ही पानी का अनुपात अधिक होता हैं। इसलिए दूध द्रव अवस्था में होता हैं। दूध की मिठास यह मुख्य रूप से उसमें स्थित दुग्धशर्करा इस घटक के कारण होती हैं। अर्थात घटक पदार्थों के गुणधर्म दूध में बने रहते हैं।

तत्त्वों के प्रकार (Types of elements)

लोहे की कील/पतरा, तांबे की तार, एल्युमिनियम की तार, कोयले का टुकड़ा ये वस्तुएँ लो । प्रत्येक वस्तु सँडपेपर से घिसकर प्राप्त हुआ-पृष्ठभाग देखो । प्रत्येक वस्तु पर हथौड़े से जोर से आघात करो । (स्वयं को चोट न पहुँचे इसका ध्यान रखो) तुम्हारे प्रेक्षण अगली तालिका में लिखो ।

वस्तु	पृष्ठभाग पर चमक हैं/नहीं	आघात करने पर आकार फैलता हैं / छोटे टुकड़े होते हैं
लोहे की कील		
ताँबे का तार		
एल्युमिनियम का तार		
कोयले का टुकड़ा		

ऊपर दी गई कृति की वस्तुएँ क्रमशः लोहा (Fe), ताँबा (Cu), एल्युमिनियम (Al) और कार्बन (C) इन तत्त्वों से बनी हैं। ऊपर्युक्त दो परीक्षण प्रत्येक वस्तु पर करने पर प्राप्त निरीक्षणों के आधार पर संलग्न तालिका भरो।

पृष्ठभाग पर चमक वाले तत्त्व	
आघात करने पर फैलने वाले तत्त्व	
चमकहीन पृष्ठभाग वाले तत्त्व	
आघात करने पर टुकड़े होनेवाले तत्त्व	

तुमने देखा की तत्त्वों में चमक/चमकहीनता, आघातवर्ध्यता/ भंगुरता ऐसे अलग-अलग भौतिक गुणधर्म हैं और उनके आधार पर तत्त्वों का वर्गीकरण करते हैं। प्रारंभ में तत्त्वों का वर्गीकरण 'धातु' व 'अधातु' इन दो प्रकारों में किया जाता था। कुछ अन्य तत्त्वों की खोज होने के बाद 'धातुसदृश्य'/उपधातु तत्त्वों का यह एक और प्रकार ध्यान में आया। तत्वों के इस प्रकार के बारे में अधिक जानकारी हम 'धातु-अधातु' इस पाठ में प्राप्त करने वाले हैं।

यौगिकों के प्रकार

करो और देखो।

उपकरण : वाष्पनपात्र, तिपाई स्टॅण्ड़, बर्नर इत्यादि ।

रासायनिक पदार्थ: कपूर, चूने का पत्थर, धोने का सोड़ा, कॉपर सल्फेट, शक्कर, ग्लूकोज, यूरिया।

कृति : आकृति में दर्शाए अनुसार वाष्पन तिपाई स्टॅण्ड़ पर रखो । वाष्पनपात्र में थोड़ा कपूर लो, बर्नर की सहायता से वाष्पनपात्र का कपूर 5 मिनिट तीव्रता से गर्म करो । वाष्पनपात्र में क्या बचता हैं देखो । कपूर के स्थान पर चूने का पत्थर, धोने का सोड़ा, कॉपर सल्फेट, शक्कर, ग्लूकोज, यूरिया ये पदार्थ लेकर ऊपर्युक्त कृति पुनः करो । तुम्हारे प्रेक्षण आगे दी गई तालिका में लिखो । (कोई चूर्ण जल सकता हैं । अतः यह कृति शिक्षकों की निगरानी में सावधानीपूर्वक करो ।)

6.5 प्रयोगाकृति

वाष्पनपात्र का चूर्ण	बाष्पनपात्र में अवशेष बचता हैं / नहीं बचता	अवशेष का रंग
कपूर		
चूने का पत्थर		

ऊपर्युक्त कृति में तुमने देखा कि तीव्र ऊष्मा देने पर कुछ यौगिकों से अवशेष प्राप्त होता हैं और कुछ यौगिकों से अवशेष प्राप्त नहीं होता या काला अवशेष प्राप्त होता हैं। यह काला अवशेष मुख्यतः कार्बन से बना होता हैं। उसीप्रकार से इन यौगिकों को हवा में तीव्रता से गर्म करने पर उनका ऑक्सीजन के साथ संयोग होकर कुछ गैसीय पदार्थ बनते हैं और ज्वलन पूर्ण न होने पर नीचे अवशेष के रूप में काले रंग का कार्बन रहता हैं। इन यौगिकों को सोन्द्रिय यौगिक या कार्बनिक यौगिक कहते हैं। उदाहरणार्थ, कार्बोज, प्रथिन, हाइड्रोकार्बन (उदा. पेट्रोल, रसोई-गैस) ये द्रव्य सेन्द्रिय यौगिकों से बने होते हैं। ऊपर्युक्त कृति में कपूर, शक्कर, ग्लूकोज और यूरिया ये सेन्द्रिय यौगिक हैं। इसके विपरीत तीव्र ऊष्मा देने पर जिन यौगिकों का अपघटन होकर पीछे अवशेष बचता हैं, वह

असेन्द्रिय या अकार्बनिक यौगिक होते हैं । नमक, सोड़ा, जंग, कॉपर सल्फेट, चूने का पत्थर ये अकार्बनिक यौगिक हैं । इसके अलावा यौगिकों का और एक प्रकार हैं और वह हैं जिटल यौगिक । जिटल यौगिकों के अणुओं में अनेक परमाणुओं से बनी जिटल संरचना होती हैं और इस संरचना के मध्य भाग में धातु के परमाणुओं का भी समावेश होता हैं । मैग्निशियम का समावेश वाला क्लोरोफिल, लोहे का समावेश वाला हिमोग्लोबिन और कोबाल्ट का समावेश वाला सायनोकोबालमीन (जीवनसत्त्व B-12) ये जिटल यौगिकों के कुछ उदाहरण हैं ।

यौगिकों के अणुओं में अलग-अलग **परमाण् रासायनिक बंधो से जुड़े** होते हैं, उस विषय में हम आगे देखने वाले हैं।

मिश्रण के प्रकार

तीन बीकर लो । पहले बीकर में थोड़ी रेत और पानी लो । दूसरे बीकर में कॉपर-सल्फेट के केलास और पानी लो । तीसरे बीकर में कॉपर सल्फेट और रेत लो । सभी बीकरों में लिए गए द्रव्य हिलाओ और होनेवाले परिवर्तनों का निरीक्षण करो । निरीक्षणों के आधार पर नीचे दी गई तालिका पूर्ण करो ।

बीकर क्र.	लिए गए द्रव्य	हिलाने के पश्चात क्या दिखाई दिया?	मिश्रण में प्रावस्थाओं की संख्या	मिश्रण का प्रकार
1				
2				
3				

एक जैसी संरचना वाले द्रव्य के भाग को प्रावस्था (phase) हैं। हिलाने के पश्चात ऊपर्युक्त कृति में प्रत्येक बीकर में कितनी प्रावस्थाएँ दिखाई देती हैं। जब मिश्रण के सभी घटक मिलकर एक ही प्रावस्था होती हैं तब उसे समांगी मिश्रण कहते हैं। जब मिश्रण के घटक दो या अधिक प्रावस्थाओं में विभाजित होते हैं तब उसे विषमांगी मिश्रण कहते हैं।

बताओ तो

ऊपर्युक्त कृति में हिलाने के पश्चात केवल एक ही बीकर में समांगी मिश्रण बनता हैं। वह

कौन-सा हैं ?

इसे सदैव ध्यान में रखो ।

किसी ठोस के एकत्रित (या एक पात्र में रखे) सभी कण मिलकर एक ही प्रावस्था होती हैं। (उदा. पत्थरों का ढेर)। द्रवरूप पदार्थ तथा उसमें घुलनशील सभी पदार्थ मिलकर एक ही प्रावस्था होती हैं। (उदा. समुद्र का पानी)। एक द्रव की या एकत्रित (या एक पात्र की) सभी बूँदे मिलकर एक ही प्रावस्था होती हैं। (उदा. बारिश की बूँदे)। एक ही पात्र में या एकत्र परंतु एक दूसरे में न मिलने वाले द्रवों की प्रावस्था स्वतंत्र होती हैं। (उदा. तेल और पानी) एकत्रित सभी गैसीय पदार्थों की मिलकर एक ही प्रावस्था होती हैं।

तीन बीकर लो । पहले बीकर में 10 ग्राम नमक लो । दूसरे बीकर में 10 ग्राम लकडी का बुरादा लो । तीसरे बीकर में 10 मिली दूध लो । तीनों बीकरों में 100 मिली पानी डालकर हिलाओ 1 पानी की स्वतंत्र प्रावस्था किस मिश्रण में दिखाई देती हैं । उर्ध्वाधर रखे कागज के सामने तीनों बीकर रखकर विपरीत दिशा से लेजर किरणें डालो । (लेजर किरणों का उपयोग शिक्षक के मार्गदर्शन में करना चाहिए।) उसी समय बीकर के सामने रखे कागज पर क्या दिखाई देता हैं । वह देखो । उसी प्रकार बीकर को बाजू से भी देखो । छानने के लिए शंकुपात्र, कीप और छन्ना, कागज का उपयोग कर तीन विन्यास बनाओ । तीनों बीकरों के मिश्रण हिलाकर उन्हें छानो । सभी निरीक्षणों की नीचे दिए अनुसार तालिका बनाओ।

बीक	र मिश्रण के घटक	पानी की स्वतंत्र प्राव	था पारदर्शक/अर्धपारदर्शक/	छानने पर घटकों का पृथक्करण
		दिखाई देती हैं / दिखाई	नहीं अपारदर्शक	होता हैं /नहीं होता
		देती		

द्रव्य (Solution): दो या दो से अधिक पदार्थों के समांगी मिश्रण को द्रव्य कहते हैं। ऊपर दी गई कृति में पहले बीकर में पानी और नमक इन दो पदार्थों का समांगी मिश्रण बनता हैं । उसे नमक का पानी में दृव्य कहते हैं। द्रव्य में जो घटक पदार्थ सबसे अधिक अनुपात में होता हैं उसे विलायक कहते हैं और विलायक की तुलना में कम अनुपात में होनेवाले अन्य घटक पदार्थों को विलेय कहते हैं विलेय विलायक में मिलाकर द्रव्य बनने की क्रिया अर्थात घुलना । द्रव्य के घटकों की अवस्थाओं के आधार पर द्रव्य के अनेक प्रकार होते हैं। समुद्र का पानी, पानी में घुला कॉपर सल्फेट, पानी में घुला नमक, शक्कर की चाशनी ये द्रव्य 'द्रव में ठोस' इस प्रकार के हैं। इसके अलावा 'द्रव में दुव' (उदा. विनेगर, विरल सल्फ्युरिक अम्ल) 'गैस में गैस' (उदा. हवा) 'ठोस में ठोस' (उदा. पीतल, इस्पात, स्टेनलेस स्टील, ऐसी मिश्रधात्) 'द्रव में वायु' (उदा. क्लोरीनयुक्त जल, हाइड्रोक्लोरिक अम्ल) द्रव्य के ऐसे भी प्रकार हैं। समांगी मिश्रण अर्थात द्रव्य का संघटन संपूर्ण मिश्रण में एक समान होता हैं। विलायक पारदर्शक द्रव हो, तो द्रव्य भी पारदर्शक होता हैं और वह छन्ना कागज से आर-पार जाता हैं।

निलंबन (Suspension): ऊपर दी गई कृति में दूसरे बीकर में पानी और लकड़ी का बुरादा इन दो पदार्थों का विषमांगी बनता हैं। यह द्रव और ठोस का मिश्रण हैं। द्रव और ठोस इनके विषमांगी मिश्रण को निलंबन कहते हैं। निलंबन में ठोस कणों का व्यास 10⁻⁴ मी से अधिक होता हैं। इसलिए उसमें से प्रकाश का गमन नहीं होता। सामान्य छन्नाकागज पर ये ठोस कण अवशेष के रूप में बच जाते हैं

और छानने की क्रिया से निलंबन के द्रव व ठोस घटक अलग हो जाते हैं।

कलिल (Colloid) : ऊपर दी गई कृति में तीसरे बीकर में पानी और द्ध इनका मिश्रण अर्धपारदर्शक हैं । इस मिश्रण के पृष्ठभाग पर प्रकाश का आपतन करने पर उसका कुछ अनुपात में गमन होता हैं और कुछ अनुपात में बिखर जाता हैं। इसका कारण यह हैं कि इस विषमांगी मिश्रण में पानी की प्रावस्था में दुध की प्रावस्था के सूक्ष्म कण सर्वत्र बिखरी हुई स्थिति में होते हैं और इन कणों का व्यास 10^{-5} मी के आसपास होता हैं। ऐसे विषमांगी मिश्रण को कलिल कहते हैं । कलिल के कणों के व्यास की अपेक्षा छन्ना कागज के छिद्र बड़े होते हैं अतः छानने की क्रिया में कलिल इस विषमांगी द्रव्य का पृथक्करण नहीं होता । द्ध स्वयं एक कलिल हैं। इसमें पानी इस माध्यम में प्रथिन, स्निग्ध पदार्थ आदि के ठोस कण और द्रव बूँदे जिनका व्यास 10-5 मी के आसपास होता हैं, बिखरे होते हैं। इसके अलावा गैस में ठोस (उदा. धुँआ) गैस में द्रव (उदा. कोहरा, बादल) जैसे और भी कलिल के अनेक प्रकार हैं। समझेंगे यौगिकों को (Let us understand compounds): द्रव्य के प्रकारों का अध्ययन करते समय हमने देखा कि तत्त्व अर्थात सबसे सरल संरचना वाला द्रव्य का प्रकार हैं। यौगिक और मिश्रण की संरचना जाँचने पर यह ध्यान में आता हैं कि वे दो या दो से अधिक घटकों से बने होते हैं। ये घटक एक दूसरे से जुड़ी हुई स्थिति में हैं या स्वतंत्र इस आधार पर से वे द्रव्य यौगिक हैं या मिश्रण यह निश्चित होता हैं।

꺳 करो और देखो ।

कृति: दो वाष्पन पात्र लो। पहले वाष्पन पात्र में 7 gm लोहे का बुरादा लो। दूसरे में 4 gm गंधक का चूर्ण लो। दोनों वाष्पन पात्रों के द्रव्यों के नजदीक नाल चुंबक ले जाकर निरीक्षण करो। पहले वाष्पन पात्र का संपूर्ण लोहे का बुरादा दुसरे पात्र में डालकर काँच की छड से हिलाओ और नालचुंबक द्रव्य के नजदीक ले जाकर निरीक्षण करो। साथ ही द्रव्य के रंग का भी निरीक्षण करो। अब दूसरे पात्र का यह द्रव्य थोड़ा गर्म करके ठंड़ा होने दो। इस द्रव्य के रंग में कुछ परिवर्तन हुआ क्या इसका निरीक्षण करो और उस पर नाल चुंबक क्या परिणाम होता हैं उसका निरीक्षण करो। सभी निरीक्षणों को आगे दी गई तालिका में लिखो।

कृति	द्रव्य का रंग	नाल चुंबक का परिणाम
वाष्पन पात्र में लोहे का बुरादा और गंधक मिलाया		
वाष्पन पात्र में लोहे का बुरादा और गंधक एकत्र गर्म किया		

पिछली कृति में लोहे का बुरादा और गंधक चूर्ण मिलाने पर मिलने वाले द्रव्य का नालचुंबक से परीक्षण करने पर ऐसा दिखाई देता हैं कि बननेवाला द्रव्य लोहे और गंधक का मिश्रण हैं और उसमें दोनों घटकों के गुणधर्म हैं। कुछ कण पीले दिखाई दिए । वे गंधक थे। कुछ कण काले दिखाई दिए । वे लोहे के थे। चुंबक की ओर लोहे के कणों का आकर्षित होना यह गुणधर्म भी कायम था। अर्थात इस द्रव्य में लोहा और गंधक ये दोनों घटक स्वतंत्र स्थिति में थे। इसके विपरीत लोहे का बुरादा और गंधक एकत्रित रूप से गर्म करके ठंड़ा करने पर उसपर चुंबक का परिणाम नहीं हुआ और गंधक का विशिष्ट पीला रंग भी गायब हो गया। इससे यह स्पष्ट होता हैं कि ऊपर्युक्त कृति में बनने वाला द्रव्य मूल घटकों से भिन्न हैं। इस कृति में गर्म करने की

क्रिया के कारण लोहा और गंधक इन तत्त्वों में रासायनिक संयोग हुआ। लोहे और गंधक के परमाणु रासायनिक बंध से जुड़ने के कारण नए यौगिक के अणु बने।

अणुसूत्र और संयोजकता (Molecular formula and valency): यौगिक में घटक तत्त्व का अनुपात निश्चित होता हैं। यौगिक के अणुओं में घटक तत्त्वों के परमाणु विशिष्ट संख्या में एक-दूसरे से जुड़े होते हैं। यौगिक के एक अणु में किस-किस तत्त्व के प्रत्येक के कितने परमाणु हैं यह अणुसूत्र की सहायता से दर्शाया जाता हैं। अणुसूत्र में सभी घटक तत्त्वों का संकेत और प्रत्येक संकेत के निचले हिस्से में उस-उस परमाणु की संख्या, यह जानकारी समाविष्ट होती हैं।

नीचे दी गई तालिका में कुछ यौगिकों के अणुसूत्र दिए हैं। उनके उपयोग से तालिका के रिक्त स्थान भरो।

	स्थान मरा ।			
अ. क्र	यौगिक का नाम	अणुसूत्र	घटक के तत्त्व	घटक तत्त्वों के परमाणुओं की
				संख्या
1.	पानी	H ₂ O	Н	2
		2	О	1
2.	हाइड्रोजन क्लोराइड	HC1	• • •	•••
			•••	
3.	मिथेन	CH ₄	***	•••
		4	•••	•••
4.	मैग्नीशियम क्लोराइड	MgCl ₂		
	,			

अणुसूत्र और अणु के विविध तत्त्वों के परमाणुओं की संख्या इसका संबंध हमने देखा। परमाणु एक-दूसरे से रासायिनक बंध से जुड़े होते हैं। दूसरे परमाणु से रासायिनक बंध से जुड़ने की क्षमता प्रत्येक परमाणु का रासायिनक गुणधर्म हैं। यह क्षमता एक संख्या से दर्शाई जाती हैं और वह संख्या उस परमाणु की संयोजकता होती हैं। कोई परमाणु उसकी संयोजकता के बराबर रासायिनक बंध अन्य परमाणुओं के साथ बनाता हैं। सामान्यतः तत्त्वों की संयोजकता उसके विविध यौगिकों स्थिर होती हैं।

क्या तुम जानते हो

वैज्ञानिकों ने 18 वीं और 19 वीं शताब्दी में यौगिकों की संरचना के बारे में अनेक प्रयोग किए और उस आधार पर तत्त्वों की संयोजकता की खोज की। हाइड्रोजन इस सबसे हलके तत्त्व की संयोजकता 1 हैं ऐसा मानकर वैज्ञानिकों ने अन्य तत्त्वों की संयोजकता निश्चित की।

आगे दी गई तालिका में हाइड्रोजन इस तत्त्व के अन्य तत्त्वों के साथ बने विविध यौगिकों के अणुसूत्र दिए हैं । उसके आधार पर संबंधित तत्त्वों की संयोजकता ज्ञात करो ।

अ. क्र.	यौगिक के	घट	क तत्त्व	'H' की संयोजकता	'X' ने 'H' के साथ बनाए कुल बंधो की संख्या	'X' की संयोजकता
	अणुसूत्र	Н	X			
1	HC1	Н	Cl	1	1	1
2	H ₂ O	Н	0	1	2	2
3	H ₂ S			1		
4	NH ₃			1		
5	HBr			1		
6	НІ			1		
7	NaH			1		
8	CH₄			1		

यौगिक का अण्सूत्र ज्ञात हो तो उसके आधार पर घटक तत्त्वों की संयोजकता पहचान सकते हैं। इसके लिए हाइड्रोजन की संजोजकता '1' हैं यह आधार हैं। इसके विपरीत तत्त्वों की संयोजकता ज्ञात हो तो उसके आधार पर तिर्यक गुणन पद्धति से यौगिक का अणुसूत्र लिख सकते हैं । वह निम्न प्रकार से

तिर्यक गुणन पद्धति से सरल यौगिकों के अणुसूत्र लिखना

चरण 1 : घटक तत्त्वों को लिखना।

चरण 2 : उस उस तत्त्व के नीचे उसकी संयोजकता लिखना।

चरण ३: तीर से दर्शाए अनुसार तिर्यक गुणन करना।

चरण 4: तिर्यक गुणन से प्राप्त हुआ सूत्र लिखना।

 ${
m C_2O_4}$ चरण ${
m 5}$: यौगिक का अंतिम अणुसूत्र लिखना । अंतिम अणुसूत्र में घटक परमाणुओं की संख्या छोटी-से छोटी और पूर्णांक में हो इसके लिए आवश्यक होने पर चरण 4 के सूत्र को योग्य अंक से भाग करना।

तिर्यक गुणन से प्राप्त सूत्र $\mathbf{C_2O_4}$ और 2 से भाग देने पर प्राप्त अंतिम अणुसूत्र CO,

संलग्न तालिका में तत्त्वों की जोड़ियाँ और उनकी संयोजकता दी गई हैं। उनका तर्कसंगत उपयोग करके उन तत्त्वों की जोड़ियों से बनने वाले यौगिकों के अणुसूत्र अंतिम चौखटों में लिखो।

तत्त्व	संयोजकता	संबंधित यौगिक का अणुसूत्र
С	4	
Н	1	
N	3	
Н	1	
Fe	2	
S	2	
С	4	
0	2	

थोड़ा सोचो

- 1. नीचे दिए गए तत्त्वों की जोड़ियों से बनने वाले यौगिकों के अणुसूत्र तिर्यक गुणन पद्धति से खोज निकालो।
- (i) H (संयोजकता 1) और ((संयोजकता 2), (ii) N (संयोजकता 3) व H (संयोजकता 1), (iii) Fe (संयोजकता 2) व S (संयोजकता2)
- 2. H, O और N इन परमाणुओं की संयोजकता क्रमशः 1, 2 और 3 हैं तथा हाइड्रोजन, ऑक्सीजन, नायट्रोजन इन गैसीय तत्त्वों के अणुसूत्र क्रमशः $\mathrm{H_2,\,O_2}$ और $\mathrm{N_2}$ हैं। इन अणुओं में प्रत्येक में कितने रासायनिक बंध हैं ?

उचित पर्याय चुनकर नीचे दिए गए वाक्य पुनः लिखो ।

- अ. ठोस के कणों में अंतरआण्विक बल होता हैं ।
 - (i) कम से कम
- (ii) मध्यम
- (iii) अधिक से अधिक (iv) अनिश्चित
- आ. ठोस पर बाहय दाब देने पर उसका आयतन स्थिर रहता हैं। इस गुणधर्म को कहते हैं।
 - (i) ढलनशीलता
- (ii) असंपीड्यता
- (iii) प्रवाहिता
- (iv) प्रत्यास्थता
- द्रव्यों का वर्गीकरण मिश्रण, यौगिक और तत्त्व इन प्रकारों में करते समय इस मापदंड का उपयोग किया जाता हैं।
 - (i) द्रव्य की अवस्था
- (ii) द्रव्य की प्रावस्था
- (iii) द्रव्य की रासायनिक संरचना
- (iv) इनमें से सभी
- दो या दो से अधिक घटक पदार्थ वाले द्रव्य को कहते हैं ।
 - (i) मिश्रण
- (ii) यौगिक
- (iii) तत्त्व
- (iv) उपधातु
- दध यह द्रव्य के प्रकार का उदाहरण हैं।
 - (i) द्रव्य
- (ii) समांगी मिश्रण
- (iii) विषमांगी मिश्रण
- (iv) निलंबन
- पानी, पारा और ब्रोमीन इनमें समानता हैं क्योंकि तीनों ही हैं।
 - (i) द्रवपदार्थ
- (ii) यौगिक
- (iii) अधात्
- (iv) तत्त्व
- कार्बनची की संयोजकता 4 हैं और ऑक्सीजन की संयोजकता 2 हैं इससे यह स्पष्ट होता हैं कि कार्बनड़ाय ऑक्साइड़ इस यौगिक में कार्बन परमाणु और एक ऑक्सीजन परमाणु इनके बीच रासायनिक बंध होते हैं।
 - (i) 1

- (ii) 2 (iii) 3 (iv) 4

असंगत शब्द पहचान कर स्पष्टीकरण दो।

- अ. सोना, चांदी, ताँबा, पीतल
- आ. हाइड्रोजन, हाइड्रोजन पेरॉक्साइड, कार्बन डाय ऑक्साईड, पानी की वाष्प

- दध, नींबू का रस, कार्बन, इस्पात इ.
- पानी, पारा, ब्रोमीन, पेटोल
- शक्कर, नमक, खाने का सोडा, कॉपर सल्फेट
- ऊ. हाइडोजन, सोडियम, पोटैशियम, कार्बन

नीचे दिए गए प्रश्नों के उत्तर लिखो।

- में अ. वनस्पतियाँ सूर्यप्रकाश क्लोरोफिल (हरितलवक) की सहायता से कार्बनडाय ऑक्साइड् और पानी इनके दवारा ग्लूकोज बनाती हैं और ऑक्सीजन बाहर छोडती हैं। इस प्रक्रिया में बनने वाले चार यौगिक कौन-से हैं ? वे पहचानकर उनके प्रकार लिखो ।
- आ. पीतल इस मिश्रधातु के एक नमूने में आगे दिए गए घटक हैं : ताँबा (70%) और जस्ता (30%). इसमें विलायक, विलेय और द्रव्य कौन हैं लिखो
- घुलनशील लवणों के कारण समुद्र के पानी का इ. स्वाद खारा होता हैं । कुछ जलसंग्रहों की लवणता(पानी में लवणों का अनुपात) इसप्रकार : लोणार सरोवर : 7.9%, प्रशांत महासागर : 3.5%, भूमध्य सागर : 3.8%, मृत सागर : 33.7%. इस जानकारी के आधार पर मिश्रण की दो विशेषताएँ स्पष्ट करो।

प्रत्येक के दो उदाहरण लिखो।

- अ. द्रव अवस्थावाले तत्त्व
- आ. गैसीय अवस्थावाले तत्त्व
- इ. ठोस अवस्थावाले तत्त्व
- ई. समांगी मिश्रण
- उ. कलिल
- सेन्द्रिय यौगिक
- ए. जटिल यौगिक
- ऐ. असेंद्रिय यौगिक
- ओ. उपधात्
- औ. 1 संयोजकतावाले तत्त्व
- अं. 2 संयोजकतावाले तत्त्व
- आगे दिए गए अणुसूत्रों के आधार पर उस-उस यौगिक 5. के घटक तत्त्वों के नाम और संकेत लिखो तथा उनकी संयोजकता पहचानो ।

KCl, HBr, MgBr, K,O, NaH, CaCl, CCl, HI, H,S, Na,S, FeS, BaCl,

6. कुछ द्रव्यों की रासायनिक संरचना निम्नलिखित तालिका में दी गई हैं उसे आधार पर द्रव्यो का मुख्य प्रकार निश्चित करो।

द्रव्य का नाम	रासायनिक संरचना	द्रव्य का मुख्य
		प्रकार
समुद्र का पानी	H ₂ O + NaCl + MgCl ₂ +	
उर्ध्वपातित पानी	H ₂ O	
गुब्बारे में भरी हाइड्रोजन गैस	H_{2}	
LPG सिलेंडर में भरी हुई गैस	$C_{4}H_{10} + C_{3}H_{8}$	
खाने का सोड़ा	NaHCO ₃	
शुद्ध सोना	Au	
ऑक्सीजन की नलियों में भरी गैस	O_2	
काँसा	Cu + Sn	
हीरा	С	
कॉपर सल्फेट (नीलाथोथा)	CuSO ₄	
चूने का पत्थर	CaCO ₃	
तनु हायड्रोक्लोरिक अम्ल	HCl + H ₂ O	

7. वैज्ञानिक कारण लिखो।

- अ. हाइड्रोजन ज्वलनशील हैं, ऑक्सीजन ज्वलन में सहायता करती हैं परंतु पानी आग बुझाने में सहायतक करता हैं।
- आ. कलिल के घटक पदार्थ छानने की क्रियाद्वारा अलग नहीं कर सकते।
- इ. नींबू के सरबत में मीठा, खट्टा, नमकीन ऐसे सभी स्वाद होते हैं और वह गिलास में डाल सकते हैं।
- ई. ठोस अवस्थावाले द्रव्य में निश्चित आकार और आयतन ये गुणधर्म होते हैं।
- नीचे दीए गए तत्त्वों की जोड़ियों से प्राप्त होनेवाले यौगिको के अणुसूत्र तिर्यक गुणन पद्धित से प्राप्त करो।
 - अ. C (संयोजकता 4) व Cl (संयोजकता 1)
 - आ. N (संयोजकता 3) व H (संयोजकता 1)
 - इ. C (संयोजकता 4) व (संयोजकता 2)
 - ई. Ca (संयोजकता 2) व (संयोजकता2)

उपक्रम:

अलग-अलग तैयार खाद्य पदार्थों के वेष्ठन जमा करो । उस पर दी गई जानकारी का उपयोग कर खाद्य पदार्थ व उसके घटक इनकी तालिका बनाओ । जो घटक प्राप्त हो सकते हैं प्राप्त करो । मित्र और शिक्षक इनसे चर्चा करके शिक्षकों की निगरानी में प्राप्त घटकों के ज्वलन का परिक्षण करो और ये घटक सेंद्रिय हैं या असेंद्रिय निश्चित करो ।

7. धातु – अधातु

- 1. सामान्य रूप से तत्त्वों का वर्गीकरण कौन-से तीन प्रकारों में करते हैं?
- 2. दैनिक जीवन में हम कौन-कौन-से धातुओं और अधातुओं का उपयोग करते हैं?

विश्व की सभी वस्तुएँ या पदार्थ तत्त्वों, यौगिकों या उनके मिश्रणों से बने होते हैं । वैज्ञानिकों ने तत्त्वों का सामान्य रूप से धातु, अधातु और उपधातु इस प्रकार से वर्गीकरण किया हैं ।

धातु (Metals) : सोना, चाँदी, लोहा, ताँबा, एल्युमिनियम, मैग्नीशियम, कैल्शियम, सोडियम, प्लेटिनम ये कुछ धातुएँ हैं । धातुओं में चमक होती हैं । वे कठोर होती हैं । उनसे तार या पतली चादरें (पतरे) बना सकते हैं । धातुएँ ऊष्मा और विद्युत की सुचालक होती हैं । धातुएँ उनके संयोजकता इलेक्ट्रॉन त्यागकर धनावेशित आयन, धनायन अर्थात केटायन निर्मित करती हैं ।

धातुओं के भौतिक गुणधर्म (Physical Properties of Metals)

1. अवस्था (Physical State): सामान्य तापमान पर धातुएँ ठोस अवस्था में रहती हैं किंतु पारे तथा गैलियम जैसी कुछ धातुएँ अपवाद हैं, वे कमरे के तापमान पर द्रव अवस्था में होती हैं।

थोड़ा याद करो

तुम्हारे रिश्तेदार के साथ किसी दवाखाने में जाने पर डाक्टर के पास तुमने रक्तदाबमापक देखा होगा। उसकी काँच की नली में एक धूसर रंग (राख जैसा रंग) का द्रव देखा होगा। वह कौनसी धातु होगी?

- 2. चमक (Lustre)(चकाकी): तुम्हारे घर के ताँबे के बर्तन लो और उसे नींबू से घिसो और पानी से धोओ, धोने के पहले तथा और धोने के बाद चमक का अवलोकन करो। धातु के घिसे हुए या धातु के ताजे काटे हुए पृष्ठभाग से प्रकाश का परावर्तन होता हैं और वह धातु चमकदार दिखाई देती हैं।
- 3. कठोरता (Hardness): सामान्यतः धातुएँ कठोर होती हैं । वे नरम नहीं होती । अपवाद सोडियम और पोटैशियम नरम होते हैं उन्हें चाकू से आसानी से काटा जा सकता हैं ।

- 4 तन्यता (Ductility): क्या तुम स्वर्णकार की दुकान में गए हो? स्वर्णकार को सोने या चाँदी के तार बनाते हुए देखा हैं क्या? छिद्र में से धातु खींचने पर उसकी तार बनती हैं। इस गुणधर्म को धातु की तन्यता कहते है।
- 5. आघातवर्ध्यता (Malleability): एक कील लो और उसे चबूतरे पर रखकर हथौड़ी से ठोकते रहो, कुछ समय के पश्चात तुम्हें पतली चादर तैयार होते हुए दिखेगी। इस गुणधर्म को धातु की आघातवर्ध्यता कहते हैं।
- 6. ऊष्मा का संचलन (Conduction of Heat): ताँबे की एक पट्टी लो उसके सिरे पर मोम लगाओ और दूसरे सिरे को गर्म करो उसका अवलोकन करके शिक्षकों के साथ चर्चा करो। धातु ऊष्मा की सुचालक होती हैं। चाँदी, ताँबा, एल्युमिनियम ऊष्मा के उत्तम चालक हैं।
- 7. विद्युत का संचलन (Conduction of electricity): विद्युत के तार बनाने के लिए कौन-कौन-से धातुओं का उपयोग किया जाता हैं? धातुएँ विद्युत की सुचालक होती हैं। सीसा एक अपवाद हैं यह ऐसी एकमात्र धातु हैं जो ऊष्मा और विद्युत की सुचालक नहीं होती हैं।
- 8 घनत्व (Density): धातुओं का घनत्व अधिक होता हैं। अपवाद सोडियम, पोटैशियम और लीथियम का घनत्व पानी के घनत्व की अपेक्षा कम होता हैं। लीथियम का घनत्व 0.53 g/cc हैं।
- 9. द्रवणांक और क्वथनांक (melting and Boiling points): सामान्यतः धातुओं के द्रवणांक और क्वथनांक उच्च होते हैं। अपवाद Hg, Ga, Na, K।
- 10. ध्वन्यात्मकता (Sonority): तुम्हारे विद्यालय की घंटी किस धातु की हैं और वह कैसे कार्य करती हैं? धातुएँ ध्वन्यात्मक होती हैं।

अधातु (Non-metals) : कार्बन, सल्फर, फॉस्फोरस कुछ अधातु हैं । सामान्यतः ठोस अधातु भंगूर होते हैं और उन्हें चमक नहीं होती हैं ।

अधातुओं के भौतिक गुणधर्म (Physical Properties of non-metals) :

- **1. भौतिक अवस्था (Physical state) :** सामान्य तापमान पर अधातु ठोस, द्रव तथा गैस अवस्था में पाए जाते हैं । ठोस अवस्था : C,S,P द्रव अवस्था : Br_2 गैस अवस्था : H_2 , N_2 , O_2
- 2. चमक (Lustre): अधातु में चमक नहीं होती हैं। अपवाद हीरा, आयोडिन के केलास। कुछ अधातु रंगहीन तो कुछ अधातुओं के विविध रंग होते हैं। कार्बन अर्थात कोयला किस रंग का होता हैं?
- 3. भंगूरता (Brittleness): कोयला (कार्बन) लो और उसे हथौड़ी से ठोको । क्या होता हैं, देखो । ठोस अवस्थावाले अधातु भंगूर होते हैं । कुछ अधातु नरम होते हैं । अपवाद हीरा (कर्बन का अपरूप) सबसे कठोर प्राकृतिक पदार्थ हैं ।
- 4. तन्यता और आघातवर्ध्यता (Ductility and Mal-leability): अधातु तन्य व आघातवर्धनीय नहीं होते हैं।
- 5. ऊष्मा तथा विद्युत का संचलन (Conduction of Heat and Electricity): अधातु ऊष्मा तथा विद्युत की कुचालक होती हैं। अपवाद ग्रेफाइट (कार्बन का अपरूप) विद्युत का उत्तम सुचालक हैं।
- 6. घनत्व (Density): अधातु का घनत्व कम होता हैं।
- 7. द्रवणांक तथा क्वथनांक (Melting and Boiling point): अधातुओं के द्रवणांक तथा क्वथनांक कम होते हैं। अपवाद कार्बन, बोरॉन ये ठोस अधातु हैं जो उच्च तापमान पर पिघलते हैं।

इसे सदैव ध्यान में रखो ।

- 1. सोना, चाँदी, एल्युमिनिअम ये उत्तम आघातवर्धनीय धातुएँ हैं।
- 2. सोने के 1/10,000 मिलीमीटर मोटाई के पतले पतरे तथा 1/5000 मिमी व्यास के तार बनाए जा सकते हैं।

उपधातु (Metalloids): आर्सेनिक (As), सिलिकॉन (Si), जर्मेंनिअम (Ge), एन्टीमनी (Sb) जैसे कुछ तत्त्वों के गुणधर्म धातु और अधातु के बीच के होते हैं, ऐसे तत्त्वों को उपधातु कहते हैं।

धातुओं के रासायनिक गुणधर्म (Chemical properties of Metals)

अ. इलेक्ट्रॉनिक संरूपण:

इलेक्ट्रॉनिक संरूपण सभी तत्त्वों के रासायनिक क्रियाओं का आधार होता है। अधिकांश धातुओं के परमाणुओं की बाह्यतम कवच में इलेक्ट्रॉनों की संख्या कम अर्थात तीन तक होती है।

तत्त्व	परमाणु क्रमांक	इलेक्ट्रॉनिक संरूपण
₁₁ Na	11	2, 8, 1
₁₂ Mg	12	2, 8, 2
13 Al	13	2, 8, 3

आ. आयनों की निर्मिती: धातुओं में उनके संयोजकता इलेक्ट्रॉन त्यागकर धनावेशित आयन, धनायन अर्थात् केटायन निर्मित करने की प्रवृत्ति होती हैं।

इ. ऑक्सीजन के साथ अभिक्रिया: धातुओं का ऑक्सीजन के साथ संयोग होने से उनके ऑक्साइड़ निर्मित होते हैं।

एल्युमिनियम आयन

धातू + ऑक्सीजन — → धातु का ऑक्साइड़

धातुओं के ऑक्साइड़ क्षारीय होते हैं। धातुओं के ऑक्साइड़ों की अम्ल के साथ अभिक्रिया होने पर लवण और पानी निर्मित होते हैं।

धातुओं के ऑक्साइड़ + अम्ल 🕇 लवण + पानी

एल्युमिनियम

ई. अम्ल के साथ अभिक्रिया: अधिकतर धातुओं की तनु अम्ल के साथ अभिक्रिया होकर धातुओं के लवण निर्मित होते हैं और हाइड्रोजन गैस उत्सर्जित होती हैं।

धातु + तनु अम्ल 🗕 लवण + हाइड्रोजन गैस

परखनली लो और उसमें तनु हाइड्रोक्लोरिक अम्ल लो । बाद में जस्ते का चूर्ण डालो । परखनली के मुँह के पास जलती हुई दियासलाई की तीली ले जाओ । जलती हुई तीली का अवलोकन करो । उससे आवाज आते हुए तुम्हें महसूस होगी ।

3. पानी के साथ अभिक्रिया: कुछ धातुओं की पानी के साथ अभिक्रिया होकर हाइड्रोजन गैस की निर्मिति होती हैं। कुछ धातुओं की पानी के साथ, तो कुछ की पानी के भाप के साथ अभिक्रिया होती हैं, उनकी अभिक्रिया का दर भिन्न-भिन्न होती हैं।

अधातुओं के रासायनिक गुणधर्म (Chemical properties of non-metals)

अ. इलेक्ट्रॉनिक संरूपण : अधिकतर अधातुओं के संयोजकता कक्षा में इलेक्ट्रॉनों की संख्या अधिक अर्थात 4 से 7 तक होती हैं।

तत्त्व	परमाणु क्रमांक	इलेक्ट्रॉनिक संरूपण
₇ N	7	2, 5
₈ O	8	2, 6
Cl	17	2, 8, 7

आ. आयनों की निर्मिति: अधातुओं में उनकी संयोजकता कक्षा में इलेक्ट्रॉन ग्रहण करके ऋणावेशित आयन, ऋण-आयन अर्थात एनायन निर्मित करने की प्रवृत्ति होती हैं।

$$Cl + e^- \longrightarrow Cl^ (2, 8, 7)$$
 $(2, 8, 8)$

 क्लोरीन
 क्लोराइड आयन

 $O + 2e^- \longrightarrow O^{--}$
 $(2, 8)$
 $(2, 6)$
 $(2, 8)$

 ऑक्सीजन
 ऑक्साइड आयन

 $N + 3e^- \longrightarrow N^{---}$
 $(2, 8)$

 नायट्रोजन
 नायट्रोइड आयन

इ. ऑक्सीजन के साथ अभिक्रिया : अधातु ऑक्सीजन के साथ अभिक्रिया करके ऑक्साइड़ निर्मित करते हैं ।

अधातु + ऑक्सीजन — अधातु के ऑक्साईड़ अधातु के आक्साइड़ अम्लीय होते हैं। वे क्षारकों के साथ संयोग करके घुलनशील लवण और पानी निर्मित करते हैं।

$$C + O_2 \longrightarrow CO_2$$

 $CO_2 + 2NaOH \longrightarrow Na_2CO_3 + H_2O$

अधातुओं के आक्साइड़ पानी के साथ अभिक्रिया करके अम्ल निर्मित करते हैं।

$$CO_2$$
 + H_2O \longrightarrow H_2CO_3 कार्बोनिक अम्ल SO_2 + H_2O \longrightarrow H_2SO_3 सल्फ्युरस अम्ल SO_3 + H_2O \longrightarrow H_2SO_4 सल्फ्युरिक अम्ल

ई. अधातुओं की तनु अम्ल के साथ अभिक्रिया नहीं होती हैं।

धातुओं और अधातुओं के उपयोग

सूची बनाओ और चर्चा करो

हमारे दैनिक जीवन में धातुओं और अधातुओं का कहाँ – कहाँ उपयोग किया जाता हैं, उनकी सूची तैयार करो।

धातु का नाम	उपयोग	अधातु का नाम	उपयोग

धातुओं के रासायनिक गुणधर्मों का अध्ययन करते समय सोने की अथवा चाँदी की सरलतापूर्वक अभिक्रिया नहीं होती, ऐसा क्यों होता हैं?

राजधातु (Nobel Metal): सोना, चाँदी, प्लेटिनम, पेलेडियम और रोडियम जैसी कुछ धातुएँ राजधातुएँ हैं। वे प्रकृति में तत्त्व के स्वरूप में पाई जाती हैं। उनपर हवा, पानी, ऊष्मा का सरलतापूर्वक परिणाम नहीं होता हैं। उनकी क्षरण तथा आक्सीकरण अभिक्रिया कमरे के तापमान पर नहीं होती।

राजधातुओं के उपयोग :

- 1. सोने, चाँदी और प्लेटिनम का उपयोग मुख्यतः आभूषण बनाने के लिए किया जाता हैं।
- 2. चाँदी का उपयोग औषधियों में किया जाता हैं। (Antibacterial property)
- 3. सोने, चाँदी के पदक भी तैयार किए जाते हैं।
- 4. कुछ इलेक्ट्रॉनिक उपकरणों में चाँदी, सोने का उपयोग किया जाता हैं।
- 5. प्लेटिनम, पेलेड़ियम इन धातुओं का उपयोग संप्रेरक (Catalyst) के रूप में भी किया जाता हैं।

सोने की शुद्धता (Purity of Gold): स्वर्णकार की दुकान पर सोने का भाव पूछने पर वे अलग-अलग भाव बताते हैं, ऐसा क्यों?

सोना एक राजधातु हैं तथा प्रकृति में तत्त्व के स्वरूप में पाया जाता हैं । 100 प्रतिशत शुद्ध सोने का अर्थ 24 कैरेट सोना । शुद्ध सोना नरम होता हैं, इस कारण शुद्ध सोने से तैयार किए गए आभूषण दाब के कारण मुड़ जाते हैं या टूट जाते हैं । इस कारण उसमें स्वर्णकार ताँबा या चाँदी निश्चित अनुपात में मिलाते हैं । आभूषण बनाने के लिए 22 कैरेट या उससे कम कैरेट के सोने का उपयोग किया जाता हैं ।

सोने की शुद्धता : कैरेट तथा प्रतिशत

कैरेट	प्रतिशत	
24	100	
22	91.66	
18	75.00	
14	58.33	
12	50.00	
10	41.66	

क्षरण (Corrosion): धातुओं पर नमी के कारण हवा की गैसों की अभिक्रिया होने से धातुओं के यौगिक निर्मित होते हैं। इस प्रक्रिया के कारण धातुओं पर प्रभाव होने के कारण उनका क्षय होता हैं, इसे ही क्षरण कहते हैं।

क्या तुम जानते हो?

अमेंरिका के न्यूयॉर्क शहर के पास समुद्र में स्वतंत्रतादेवी की मूर्ति हैं। वास्तविक मूर्ति का पृष्ठभाग ताँबे से बनाया गया हैं, परंतु अब वह हरे रंग दिखाई देती हैं। उसका कारण यह हैं कि हवा की कार्बन डायऑक्साइड़ और आर्द्रता की ताँबे के साथ अभिक्रिया होने से हरे रंग का कॉपर कार्बोनेट निर्मित हुआ हैं। यह क्षरण का एक उदाहरण हैं।

सूची बनाओ तथा चर्चा करो।

तुम्हारे दैनिक जीवन में क्षरण के उदाहरणों की सूची तैयार करो।

लोहे पर ऑक्सीजन गैस की अभिक्रिया होने पर लाल भूरे रंग की परत निर्मित होती हैं। ताँबे पर कार्बन डायआक्साइड़ गैस की अभिक्रिया होने से हरे रंग की परत निर्मित होती हैं। चाँदी पर हाइड्रोजन सल्फाइड गैस की अभिक्रिया होने काले रंग की परत तैयार होती हैं। धातुओं का क्षरण न हो इसलिए उस पर तेल, ग्रीस, वार्निश व रंगों की परत चढ़ाई जाती हैं तथा अन्य जंग न लगनेवाली धातुओं का मुलम्मा दिया जाता हैं। लोहे पर जस्ते का मुलम्मा देकर लोहे का क्षरण रोका जा सकता हैं। इस क्रिया के कारण धातु के पृष्ठभाग का हवा से संपर्क टूट जाता है फलस्वरूप रासायनिक अभिक्रिया घटित न होने के कारण क्षरण नहीं होता हैं।

मिश्रधातु (Alloy) : दो या अधिक धातुओं के अथवा धातु और अधातुओं के समांगी मिश्रण को मिश्रधातु कहते हैं । आवश्यकतानुसार घटक तत्त्वों को विविध अनुपात में मिश्रित करके विविध मिश्रधातुएँ तैयार की जा सकती हैं । उदा. घर में उपयोग में आनेवाले स्टेनलेस स्टील के बरतन, लोहे और कार्बन, क्रोमियम, निकेल से बनी मिश्र धातु है । पीतल नामक मिश्र धातु को ताँबे और जस्ते द्वारा बनाया जाता है । कांसा नामक मिश्रधातु को ताँबे और टिन से बनाते हैं ।

क्या तुम जानते हो?

दिल्ली में कुतुबमीनार परिसर में लगभग 1500 वर्ष पूर्व तैयार किया गया लोहस्तंभ हैं। इतने वर्ष हो जाने के बाद भी वह स्तंभ आज भी चमकदार हैं, क्योंकि उसे हमारे पूर्वजों ने मिश्रधातु से निर्मित किया

हैं। उसमें लोहे में अत्यल्प मात्रा में कार्बन सिलिकॉन फास्फोरस मिश्रित किए गए हैं।

क्या तुम जानते हो?

सस्ती कीमत के स्टेनलेस स्टील को बनाते समय कभी-कभी महँगे निकेल के स्थान पर ताँबे का उपयोग किया जाता हैं। तुमने कुछ स्टेनलेस स्टील के बरतनों पर खड़ी चीरें देखी होंगी, उसका कारण यह होता हैं।

चर्चा करो

तुम्हारे घर कबाड़ (रद्दी वस्तुएँ) ले जाने वाले आते होंगे । वे कबाड़ लेकर क्या करते हैं?और उसकी क्या आवश्यकता हैं?

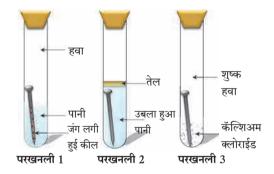
स्वाध्याय

1. तालिका पूर्ण करो ।

धातु के गुणधर्म	दैनिक जीवन में उपयोग
(i) तन्यता	
(ii) आघातवर्ध्यता	
(iii) ऊष्मा का संचलन	
(iv) विद्युत का संचलन	
(v) ध्वन्यात्मकता	

2. समूह में न आने वाला शब्द लिखो।

- अ. सोना, चाँदी, लोहा, हीरा,
- आ. तन्यता, भंगूरता, ध्वन्यात्मकता, आघातवर्ध्यता
- इ. C, Br, S, P
- ई. पीतल, कांसा, लोहा, इस्पात


3. वैज्ञानिक कारण लिखो।

- अ. रसोईघर के स्टेनलेस स्टील के बरतनों के नीचे के भाग पर ताँबे का मुलम्मा चढ़ाया जाता हैं।
- आ. ताँबे और पीतल के बरतनों को नींबू से क्यों घिसा जाता हैं?
- इ. सोडियम धातु को मिट्टी के तेल में रखा जाता हैं।

4. नीचे दिए गए प्रश्नों के उत्तर लिखो।

- अ. धातुओं का क्षरण न होने देने के लिए तुम क्या करोगे?
- आ. पीतल तथा कांसा ये मिश्रधातुएँ किन-किन धातुओं से बनी होती हैं?
- इ. क्षरण के दुष्परिणाम कौन-से हैं?
- ई. राजधातु के उपयोग कौन-से हैं?

नीचे जंग लगने की क्रिया दी गई हैं। इस क्रिया में तीनों परखनलियों का अवलोकन करके निम्नलिखित प्रश्नों के उत्तर दो।

- अ. परखनली 2 के कील पर जंग क्यों नहीं लगा?
- आ. परखनली 1 के कील पर बहुत जंग क्यों लगा हैं?
- इ. परखनली 3 के कील पर जंग चढेगा क्या?

उपक्रम :

मिठाई पर लगाया जानेवाला वर्क कैसे तैयार करते हैं? वर्क किन-किन धातुओं से बनाया गया होता हैं उसकी जानकारी प्राप्त करो।

8. प्रद्षण

निरीक्षण करो

8.1 पर्यावरण की विविध समस्याएँ

- 1. पर्यावरण में ये समस्याएँ क्यों निर्माण हुई होगी?
- 2. इन समस्याओं को हल करने के लिए क्या करना होगा?

मानव का प्रकृति में मुक्त हस्तक्षेप के कारण पृथ्वी पर अनेक समस्याएँ निर्मित हुई हैं। औद्योगिकीकरण के कारण बढ़ती जनसंख्या खनन कार्य, परिवहन, कीटकनाशक का और रासायनिक उर्वरकों का बढ़ता उपयोग इनके कारण पृथ्वीपर प्रदूषण बढ़ गया हैं। इस प्रदूषण का परिणाम मानव पर भी हो रहा हैं।

प्रदूषण (Pollution): परिसंस्था को हानिकारक ऐसे प्राकृतिक पर्यावरण का दूषितीकरण अर्थात प्रदूषण हैं।

- 1. आपके आसपास कहाँ कहाँ प्रदृषण दिखाई देता हैं?
- 2. प्रदूषण किस कारण होता हैं?

प्रदूषक (Pollutants)

परिसंस्था के प्राकृतिक कार्य में रूकावट उत्पन्न करने वाले अजैविक तथा जैविक घटकों पर और (वनस्पति, प्राणी और मनुष्य) पर हानिकारक परिणाम करनेवाले घटकों को प्रदूषक कहते हैं। प्रदूषक पर्यावरण ने अधिक मात्रा में छोड़े जाने पर हानिककारक पर्यावरण विषैला और स्वास्थ्य के लिए होता हैं।

प्रदूषक प्राकृतिक उसी प्रकार मानवनिर्मित होते हैं। प्राकृतिक प्रदूषक प्रकृति नियमानुसार कालांतर में नष्ट होते हैं, इसके विपरीत मानवनिर्मित प्रदूषक नष्ट नहीं होते।

8.2 मेरे बच्चों ! मुझे बचाओ !

विचार करो।

यदि प्राकृतिक पदार्थ यह प्रदूषक होंगे तो उनका उपयोग करने पर उनका दुष्परिणाम हमें क्यों नहीं महसूस होता ? ऐसे पदार्थ प्रदूषक कब बनते हैं ?

कृति: तुम्हारे परिसर का तुम स्वयं निरीक्षण कर तुम्हारे परिसर में प्रदूषित स्थान कौन-से हैं वे निश्चित करो। उसी प्रकार जहाँ प्रदूषण पाया जाता है। प्रदूषण दिखाई देनेवाले प्रत्येक स्थान से संबंधित प्रदूषणकारी घटक (प्रदूषक) कौन-सा है उसे पहचानने का प्रयत्न करो।

- 1. कौन-कौन से प्रकार के प्रदूषक पाए जाते हैं ?
- 2. प्रदूषक विघटनशील होते हैं या अविघटनशील ?

अ. वायु प्रद्षण

- 1. पृथ्वी के ऊपर पाए जानेवाले वातावरण में स्थित विविध प्रकार के गैसों की मात्रा कितनी
- हैं ? उसका आलेख बनाओ।
- 2. हवा यह भिन्न-भिन्न गैसों का/घटकों का समांगी मिश्रण हैं, ऐसा क्यों कहा जाता हैं?
- 3. ईंधन के ज्वलन से हवा में कौन-कौन सी हानिकारक गैसें बाहर छोडी जाती हैं ?

विषैली गैसे, धुआँ, धुल के कण, सूक्ष्मजीव इन जैसे हानिकारक पदार्थों के कारण हवा दूषित होती हैं उसे वायू प्रदूषण कहते हैं।

बताओ तो

निम्न आकृतियों में वायु प्रद्षण किन घटकों के कारण होता हैं बताओ।

8.3 विविध घटकों के कारण वायू प्रदुषण

वायू प्रदूषण के कारण

प्राकृतिक कारण

- 1. ज्वालामुखी का विस्फोट: ज्वालामुखी के विस्फोट से ठोसरूपी, गैस रूपी तथा द्रवरूपी पदार्थ बाहर निकलते हैं। उदा. हाइड्रोजन सल्फाईड, सल्फरडाय ऑक्साइड, कार्बनड़ाय ऑक्साइड, अमोनियम क्लोराइड, हाइड्रोजन, वाष्प, धूलकण आदि।
- 2. भूकंप: भूकंप के कारण पृथ्वी के भूगर्भ से विषैली गैसें और पानी की वाष्प बड़ी मात्रा में हवा में मिश्रित होती हैं।
- रेगिस्तान और धूलिमिश्रित आँधी: जमीन की धूल, सूखी पत्तीयाँ, मिट्टी, परागकण और सूक्ष्मजीव हवा में मिश्रित होने के कारण
- दानावल : दानावल के कारण कार्बन डाय ऑक्साइड़, सल्फरडाय ऑक्साइड़, हाइड्रोजन सल्फाइड और धूऑ वातावरण में मिलने के कारण ।
- 5. सूक्ष्मजीव हवा में मिश्रित होने के कारण : उदा. गाजरघास, घास, कुछ जीवाणु, कवकों के बीजाणु हवा में मिश्रित होने के कारण ।

मानवनिर्मित कारण

- 1. ईंधनों का उपयोग: i) पत्थर का कोयला, लकडी, एलपीजी, मिट्टी का तेल, डीजल, पेट्रोल इनके उपयोग से कार्बन डाय ऑक्साइड़, कार्बन मोनोआक्साइड, नायट्रोजन ऑक्साइड़, सल्फर डाय ऑक्साइड़, सीसे के यौगिक हवा में मिश्रित होने से ii) ठोस कचरा, कृषि अवशिष्ट, बगीचे का कचरा खुले में जलाने से हवा का प्रदूषण होता हैं।
- 2. औद्योगिकीकरण: 1. अलग-अलग कारखानों से प्रचंड मात्रा में धूआँ बाहर निकलता हैं 2. गंधक की राख, नायट्रोजन ऑक्साइड़, सरकी का चूर्ण वातावरण में मिश्रित होने के कारण।
- 3. परमाणु ऊर्जा निर्माण और परमाणु विस्फोट: परमाणु ऊर्जा निर्माण में यूरेनियम, थोरियम, ग्रेफाइट, प्लुटोनियम इन तत्त्वों के उपयोग के कारण किरणोत्सर्जन होकर हवा का प्रदूषण अत्यधिक मात्रा में होता हैं।

- 1. ऊपर्युक्त प्रमुख कारणो के अतिरिक्त हवा प्रदुषण होने के कौन-कौन से हैं ?
- 2. चार स्ट्रोक (Four Stroke) इंजन के वाहनों की अपेक्षा दो स्ट्रोक इंजन के वाहनों से हवा अधिक प्रदूषित होती हैं। क्या?

इंटरनेट मेरा मित्र

- संसार के बड़े से बड़े ज्वालामुखी विस्फोटकों की जानकारी प्राप्त करो।
- 2. महाराष्ट्र के बड़े शहरों में और गाँवो में वायु प्रदूषण का मानवी स्वास्थ्य पर कौन-सा परिणाम होता हैं इसकी जानकारी प्राप्त करो।

ऐसा हुआ था।

- 1. लंदन (इंग्लैंड) 5 से 9 डिसेंबर 1952 इस कालावधी में घना कुहरा पडा था । उसमें पत्थर के कोयले के ज्वलन से बाहर निकलने वाला धूआँ मिश्रित हुआ था । इस कुहरे की छाया (कहर) 5 दिन तक बनी रही । (इंग्लैंड) लंदन शहर में 3 से 7 डिसेंबर 1962 इस कालावधी तक इसी प्रकार की छाया बनी रही ।
- 2. इ. स. 1948 में पीट्सबर्ग शहर पर धूआँ और धुएँ की कालिमा के कारण दिन में भी रात हुई, उस समय इस शहर को " काले शहर के नाम से जाना गया।"

क्र.	हवा के प्रदूषक	स्त्रोत	परिणाम
1	सल्फर डाय ऑक्साईड (SO ₂)	कारखाने (जिस स्थान पर कोयला और खनिज तेल ईंधन का उपयोग होता हैं।)	आँखो में जलन, श्वसनमार्ग में दाह, अतिरिक्त कफ की निर्मिति, खाँसी, थकान महसूस होना।
2	कार्बन मोनाक्साइड (CO)	वाहन और कारखानों का धूआँ	रक्त में ऑक्सीजन की धारण करने की क्षमता में कमी
3	नाइट्रोजन के ऑक्साइड़स्	वाहनों का धूआँ	फेंफड़े और श्वसन मार्ग में जलन
4	हवा में मिश्रित सूक्ष्म कणरूप पदार्थ	उद्योग और वाहनों का धूआँ	श्वसनरोग
5	धूल के कण	उद्योग और वाहनों का धूआँ	सिलिकॉसिस रोग
6	किटाणुनाशक	किटाणुनाशकों की निर्मिती और उपयोग	मानसिक, दीर्घश्वसन के कारण आकस्मिक मृत्यू
7	मिथेन	कारखानों से होने वाले गैसो का रिसाव	विषबाधा, त्वचा रोग, त्वचा का कैंसर, दमा, श्वसन संस्थान का विकार

क्या तुम जानते हो?

2 दिसंबर 1984 की रात में भोपाल में अब तक की सबसे भयानक औद्योगिक दुर्घटना घटित हुई थी। वहाँ घटित दूर्घटना में गैस के रिसाव के कारण करीब-करीब आठ हजार लोगों ने अपने प्राण गवाएँ थे।

भोपाल गैस दूर्घटना की अधिक जानकारी प्राप्त करो और उस आधार पर निम्न मुद्दों पर चर्चा करो। दुर्घटना का स्वरूप, उसका कारण, बाद के परिणाम, प्रतिबंधात्मक उपाय।

हवा प्रदूषण का वनस्पति और प्राणी पर होनेवाला परिणाम

वनस्पति

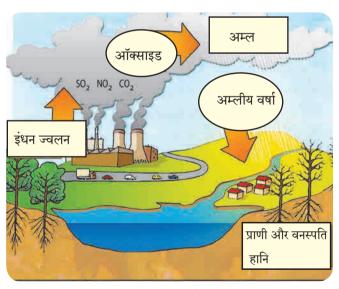
- 1. पर्णरंध्र बंद होते हैं।
- 2. प्रकाश संश्लेषण की क्रिया धीमी होती हैं।
- 3. वनस्पति वृद्धि में रुकावट, पत्तियों का गिरना, पत्तियों का पीला पडना।

ਧਾਗੰ

- 1. श्वसन पर विपरीत परिणाम होता हैं
- 2. आँखो में जलन।

- 1. ओजोन की पर्त का क्या महत्त्व हैं ?
- 2. ओजोन की पर्त में कमी आने का क्या कारण हैं ?

हवा प्रदुषण का वातावरण पर होने वाला परिणाम


ओजोन पर्त का क्षय/नाश : समताप मंडल/(stratosphere) इस मंडल के नीचे वाले भाग में पृथ्वी के पृष्ठभाग से 48km ऊँचाई पर ओजोन की सतह पाई जाती हैं । सूर्य से उत्सर्जित होनेवाली अल्ट्राव्हायलेट किरणों (UV-B) (पराबैंगनी किरणे) से ओजोन गैस की सतह पृथ्वी पर स्थित सजीव सृष्टी का संरक्षण करती हैं । लेकिन अब इस ओझोन की पर्त को निम्न कारणों से खतरा उत्पन्न हुआ है ।

हरितगृह प्रभाव (पौधा घर प्रभाव) और वैश्विक तापमान में वृद्धि : CO_2 वातावरण में बिलकुल कम मात्रा में होने के बावजूद भी वह सूर्य से उत्सर्जित ऊर्जा को अवशोषित करने का महत्त्वपूर्ण कार्य करती हैं । पिछले सौ साल में औद्योगिकीकरण के कारण वातावरण की CO_2 की मात्रा में वृद्धि हुई । इस CO_2 का पृथ्वी के तापमान पर होने वाला परिणाम अर्थात 'हरितगृह प्रभाव' हैं । CO_2 के जैसे नायट्रस ऑक्साइड़, मिथेन गैस और CFC यह पृथ्वी के वातावरण की ऊष्मा रोखकर रखती हैं । एकत्रित रूप से उन्हें "हरितगृह गैसें" कहते हैं ।

8.5 हरितगृह प्रभाव

बढ़ते हुए हरितगृह प्रभाव के कारण वैश्विक तापमान में वृद्धि हो रही हैं। इसके कारण वातावरण में परिवर्तन होकर, जिसके कारण फसलों का उत्पादन, वन्यसजीवों के वितरण में बिगाड़ और हिमनग और हिमनदियाँ पिघलकर समुद्री जलस्तर में वृद्धि दिखाई दे रही हैं।

8.6 अम्लीय वर्षा

अम्लीय वर्षा (Acid Rain): कोयला, लकडी, खनिजतेल इन जैसे ईंधनो के ज्वलन से सल्फर व नाइट्रोजन इनके आक्साइडस वातावरण में मुक्त होते हैं। ये वर्षा के पानी में मिश्रित होते हैं और उससे सल्फ्युरिक अम्ल, नाइट्रिक अम्ल और नाइट्रिक अम्ल का निर्माण होता हैं। ये अम्ल धूएँ, वर्षा की बुँदों अथवा हिमकणों में मिश्रित होकर जो वर्षा अथवा बर्फवृष्टि होती हैं, उसे ही अम्लीय वर्षा कहते हैं।

अम्लीय वर्षा का परिणाम

1. अम्लीय वर्षा के कारण मृदा की और संग्रहित पानी की अम्लीयता में वृद्धि होती हैं। जिसके कारण जलचर प्राणी, वनस्पित और पर्यायीरूप से जंगलों के सजीवों को हानि होती हैं और संपूर्ण पिरसंस्था पर इसका विपरीत पिरणाम होता हैं।

- 2. इमारतें, पुतलों, ऐतिहासिक धरोहर, पूल, धातुओं की मूर्तियाँ और तार के बाढ़ आदि का क्षरण होता हैं।
- 3. अम्लीय पर्जन्य (वर्षा) अप्रत्यक्ष रूप से कॅड़िमयम और मर्क्युरी (पारा) जैसे भारी धातुओं को बहाकर लेके जाती हैं, जो वनस्पति द्वारा शोषित होकर भोजन शुँखला में प्रवेश करते हैं।
- 4. जलाशयों का तथा जलवाहिनों का पानी अम्ल युक्त होने के कारण तो जलवाहिनों के धातुओं का और प्लास्टिक का पेयजल में निक्षालन होकर स्वास्थ्य की गंभीर समस्याएँ उत्पन्न होती हैं।

हवा प्रदृषण पर प्रतिबंधात्मक उपाय

- 1. कारखानों से बाहर निकलने वाले धुएँ में अनेक प्रकार के दूषित कण पाए जाते हैं । इसके लिए प्रदूषण को नियंत्रित करने वाले यंत्र का उपयोग अनिवार्य करना । उदा. निरोधक यंत्रणा (Arresters), छन्नक यंत्र (Filters) इनका उपयोग करना ।
- 2. शहरों में दूर्गंधी फैलाने वाले अवशिष्ट पदार्थ का उचित निपटारा करना।
- 3. परमाणु परीक्षण, रासायनिक हथियार (Chemical missile) इनके उपयोग पर नियंत्रण करना।
- 4. CFC निर्मिती पर प्रतिबंध लगाना ।

क्या तुम जानते हो?

हवा की गुणवत्ता (गुणता) का निर्देशांक (Air Quality Index): हमारे शहर की हवा कितनी प्रदूषित हुई हैं, यह बात नागरिकों को मालूम होना आवश्यक हैं। हवा की गुणवत्ता का निर्देशांक निश्चित करने के लिए हवा में पाए जाने वाले SO_2 , CO, NO_2 , भूपृष्ठ के पास की हवा में पाए जाने वाली ओजोन कणीय पदार्थ आदि गैसे की मात्रा को प्रतिदिन मापा जाता हैं।

बड़े शहरों में अधिक यातायात वाले मुख्य चौक (भाग) में इसप्रकार के हवा की गुणवत्ता के निर्देशांक दर्शानेवाले फलक लगाए गए हैं।

क्या तुम जानते हो?

सल्फरयुक्त हवा प्रदूषकों का रंगकाम, तैलचित्र, नायलॉन कपड़ा, सूती कपड़ा, रेयॉन कपड़ा, चमड़ें की वस्तूएँ तथा कागज़ इन पर परिणाम होकर उनके रंगों में परिवर्तन होता है।

आ. जल प्रदूषण (Water Pollution)

बताओ तो

- उपयोग में लाये जानेवाला योग्य पानी हमें कौन-कौन से जल स्त्रोतों से प्राप्त होता हैं?
- 2. पानी का उपयोग हम कहाँ-कहाँ करते हैं?
- पृथ्वी पर पृथ्वी के कुल क्षेत्रफल का कितने प्रतिशत पानी हैं ?
- 4. किन-किन कारणों से जल का प्रदूषण होता हैं?
- 5. "जल ही जीवन हैं" ऐसा क्यों कहा गया हैं ? प्राकृतिक और बाह्य घटकों के मिश्रण से पानी जब अस्वच्छ विषैला होता हैं, जब उसमें की ऑक्सीजन की मात्रा कम होती हैं और जिसके कारण सजीवों को हानि पहुँचती हैं, संसर्गजन्य रोगो का अन्य संक्रामक रोगों का फैलाव होता है, तब जलप्रदृषण हुआ है ऐसा

मीठे अथवा समुद्री जल के प्रदूषण में भौतिक, रासायनिक और जैविक परिवर्तनों का समावेश होता हैं।

8.7 जल प्रद्षण

जलप्रद्षक (Water pollutant)

- अ. जैविक जलप्रदूषक : शैवाल, जिवाणु, विषाणु और परपोषी सजीव इनके कारण पानी पीने योग्य नहीं होता इन जैविक अशुद्धियों के कारण रोग फैलते हैं।
- ब. असेंद्रीय जलप्रदूषक: सूक्ष्म रेत, धूलकण, मिट्टी के कण ऐसे तैरने वाले पदार्थ क्षारों के अवक्षेप अर्सेनिक, कॅडिमयम, सीसा, पारा, इनके यौगिकों और रेड़ियोधर्मी पदार्थों के अवशेष।
- क. सेंद्रीय जलप्रदूषक : तणनाशक, कीटकनाशक, खाद (उर्वरक), मैला युक्त जल उसी प्रकार कारखानों के उत्सर्जक आदि।

कहते है।

क्या तुम जानते हो?

तामिलनाडु राज्य में चमड़ा उद्योग के अनेक केंद्र है, उसमें से बाहर निकलने वाला दूषित पानी पलार इस नदी में छोड़ा जाता है, जिसके कारण इस नदी को 'पझ्झर' (गटर नदी) कहते हैं।

जल प्रदूषण के कारण

अ. प्राकृतिक कारण और परिणाम

1. जलपणीं (Hydrofoil) में वृद्धि

- ऑक्सीजन (प्राणवाय्) की मात्रा कम होती हैं।
- पानी का प्राकृतिक गुणधर्म बदलता हैं।

2. पदार्थों का सड़ना (संद्षित होना)

 प्राणियों और वनस्पतियों के अवशेषों के सड़ने एवं संदृषण के कारण

3. तलछट/अवसाद (Sediment) के कारण

 नदी के पानी के प्रवाह के कारण और नदी का पात्र बदलने के कारण।

4. मिट्टी का क्षरण (अपरदन)

 मिट्टी का क्षरण होने के कारण, अनेक जैविक और अजैविक घटक मिश्रित होते हैं।

5. <mark>कवक</mark>

 पानी में सड़ने वाले सेंद्रिय पदार्थों पर फफुँदी और जीवाणू की वृद्धि होती है।

6. शैवाल

• शैवाल की अतिरिक्त वृद्धि होने कारण पानी अस्वच्छ होता हैं।

7. कृमि

 मिट्टी में पाए जानेवाले कृमि वर्षा के जल में प्रवाहित होते हैं।

जल प्रदूषण के परिणाम

1. मानव पर होने वाला परिणाम

- प्रदूषित पानी के कारण अतिसार (पेचिश), पीलिया, विषमज्वर, त्वचारोग, नारू, पाचन संस्थान के विकार होते हैं।
- यकृत, मुत्राशय मस्तिष्क का विकार, अस्थिव्यंग,
 उच्च रक्तदाब ये विकार होते हैं।

2. परिसंस्था पर होने वाला परिणाम

- वनस्पति के वृद्धि में रूकावट आती हैं
- वनस्पति प्रजातियों का नाश होता हैं।
- पानी में लवण (क्षार) की मात्रा बढ़ जाती हैं।
- पानी में घुलनेवाले ऑक्सीजन की मात्रा कम हो जाती हैं।
- जल परिसंस्था का संतुलन बिघड जाता हैं।
- जलचरों की मृत्यु होती हैं।
- समुद्री पिक्षयों पर भी इसका पिरणाम होता हैं।

ब. मानव निर्मित कारण और परिणाम

1. निवासी क्षेत्रों का संदूषित पानी

 गाँवो का शहरों का संदूषित पानी-मैला नदी के बहते पानी में जलाशय में छोड़ा जाता हैं।

2. औद्योगिक संदृषित पानी

 कपड़ा, शक्कर, कागज, लोहा, चर्मोउद्योग और दुग्धप्रक्रिया जैसे उद्योगो से रंग, विरंजक रसायन, चमडों के टुकडे, तंतु, पारा, सीसा इत्यादि पानी में छोड दिए जाते हैं।

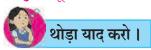
3. खनिज तेल रिसाव -

 यातायात के समय तेल का गिरना, रिसाव होना,
 टँकर की सफाई करते समय पानी पर तेल की पर्त तैयार होती है।

4. खाद और किटाणुनाशकों का उपयोग

- रासायनिक, फॉस्फेटयुक्त और नायट्रोजयुक्त खाद
- एड्रीन, क्लोरिन, कार्बोनेटयुक्त कीटनाशक आदि पानी के साथ बहकर प्रवाह को मिलते हैं।

8. अन्य कारण


 नदी के पानी में मल-मूत्र विसर्जित करना, कपड़े धोना, अंबाड़ी-रामबांस(Agave) पानी में सड़ाना आदि के कारण पानी प्रदूषित होता हैं। अस्थिविसर्जन और निर्माल्य पानी में डालना, औष्णिक विद्युत केंद्र से संदूषित पानी उत्सर्जित करना।

3. अन्य परिणाम

- पानी के प्राकृतिक और भौतिक गुणधर्मों में परिवर्तन।
- पानी का रंग और स्वाद बदलता हैं।
- पानी के उपयुक्त जीवजंतु नष्ट होते हैं।
- मिट्टी की उर्वरकता पर परिणाम होता हैं।
- फसलो में विषैले तत्त्व समाविष्ट होते हैं।

इ. मृदा प्रदृषण (Soil Pollution)

- 1. मिट्टी का क्षरण (अपरदन) क्या हैं ?
- 2. मृदा की ऊपजाऊता कम होने के क्या कारण हैं ?

पृथ्वी पर जमीन के कुल विस्तृत भाग में से कुछ भाग बर्फाच्छादित हैं, कुछ भाग मरूस्थली हैं, तो कुछ भाग पर्वत और पहाड़ो द्वारा घिरा हैं। मनुष्य के उपयोग के लिए उपयोगी जमीन बहुत ही कम हैं।

मिट्टी के भौतिक, जैविक और रासायनिक गुणधर्मों में प्राकृतिक रूप से और मानवीय हस्तक्षेप के कारण जो परिवर्तन होता हैं, जिसके कारण उसकी उत्पादक क्षमता में कमी आती हैं, तब मिट्टी का प्रदूषण हुआ हैं ऐसा कहते हैं। (मृदा प्रदूषण

तुलना करो

दिए गए दो चित्रों की तुलना कीजिए।

घरेलु अनुपयोगी पदार्थ, जैविक अनुपयोगी पदार्थ, खेती के अपशिष्ट इनके प्रत्येक के 5 उदाहरण दो और उनका मिट्टी में संचयन के कारण मृदा का कैसे प्रदूषण होता हैं यह तुम अपने शब्द में लिखो।

"गिला कचरा सुका कचरा," उसी प्रकार "प्रत्येक घर में शौचालय" इसपर अपने सहपाठीयों के साथ चर्चा कर तुम्हारे शब्दो में जानकारी लिखो।

मृदा प्रदूषण के परिणाम

- कारखानों का क्षारयुक्त, अम्लयुक्त पानी, मिट्टी में मिलने से मिट्टी अनुपजाऊ होती हैं।
- 2. रेड़ियोधर्मी पदार्थ और अन्य प्रदूषक मिट्टी में से फसलो, पानी और मानव भोजन शुँखला में से प्रवास करते हैं।
- 3. मृदा प्रदूषण के कारण जलप्रदूषण का खतरा बढ़ा हैं कारण विषैले पदार्थ मृदा में से नजदीक के जलस्त्रोत अथवा रिसकर (Percolate) भूगर्भ जल में प्रवेश करते हैं उसी प्रकार जीवाणु के कारण विविध रोगों का प्रसार होता हैं।

मृदा प्रदूषण का वायु प्रदूषण और जलप्रदूषण के साथ संबंध

गीले कचरे का खाँद में रूपांतरण न करके वो उसी स्थान में रहने पर मिट्टी का प्रदूषण होता हैं और बाद वह सड़ता हैं, विलगन होता जिससे उसमें हानिकारक जीवाणुओं की वृद्धि होती हैं, उसमें कृमि तैयार होते हैं और वे बहते पानी में मिलकर पानी का प्रदूषण होता हैं।

कृषि के लिए कीटकनाशकों का रासायनिक उर्वरकों का तृणनाशकों का उपयोग किया जाता हैं। जिसके कारण मृदा प्रदूषण होता हैं। कीटकनाशक और तृणनाशकों का अधिक मात्रा में उपयोग करने पर उस फव्वारे के कारण वे रसायन हवा में मिलते हैं और वायु प्रदूषण होता हैं। उसी प्रकार से रासायनिक खादों का अधिक मात्रा में उपयोग करने पर वे रसायन पानी में मिलते हैं जिससे जल का प्रदूषण होता है।

मानवी मल-मूत्र, जानवर, पक्षी इनकी विष्ठा (मैला) मिट्टी में मिलने के कारण मृदा प्रदूषण होता हैं। यह गंदगी उस स्थान पर जैसे के वैसे रहने पर उसमें विभिन्न प्रकार की गैसें बाहर निकलती हैं और दुर्गंध फैलती हैं। ये गैसे हवा में मिलती हैं और वायु प्रदूषण होता हैं। यही गंदगी यदि पानी में मिलती हैं तो जल प्रदूषण होता हैं।

प्रदुषण: प्रतिबंध व नियंत्रण

प्रदूषण नियंत्रण और नियमन और उसे रोखने लिए भारत सरकार ने कुछ कानून बनाए हैं । प्रदूषण नियंत्रण से संबंधित कानून (नियम) निम्न प्रकार से हैं ।

- 1. जल प्रदूषण प्रतिबंध व नियंत्रण अधिनियम 1974 2. हवा प्रदूषण प्रतिबंध व नियंत्रण अधिनियम 1981
- 3. पर्यावरण संरक्षण अधिनियम 1986

जैव वैद्यकीय कूडा, धोकादायक (विकीरणे) उत्सर्ग, ठोस कचरा (कूडा), ध्विन प्रदूषण नियंत्रण इन सभी के विषय में विविध नियम और कानून अस्तित्व में हैं। कारखानों, औद्योगिक वसाहतों महानगरपालिकाओं, जिला परिषदो पंचायत सिमितियों, ग्राम पंचायतों इत्यादि संस्थओं द्वारा ऊपर्युक्त प्रदूषण नियंत्रण के संबंध में नियमों का पालन होता हैं या नहीं इसपर निगरानी रखने का काम महाराष्ट्र प्रदूषण नियामक मंड़ल और केंन्द्रीय प्रदूषण नियामक मंडल अथवा शासकीय संस्थाओं द्वारा किया जाता हैं।

स्वाध्याय

- 1. नीचे कुछ वाक्य दिए गए हैं वे किस प्रकार के प्रदूषण में आते हैं, बताओं)
 - अ. दिल्ली में दिन में ही कुहरे होने का आभास होता हैं।
 - आ. गोल गप्पे (पानी पुरी) खाने पर अधिक तर उल्टी और जुलाब की परेशानी होती हैं।
 - अधिकतर बगीचे में घूमने के लिए जाने पर छींक की परेशानी होती हैं।
 - ई. कुछ भागों की मिट्टी में फसलों की वृद्धि नहीं होती।
 - उ. अधिक यातायात वाले चौक में काम करने वाले अधिक तर लोगो को श्वसन संबंधी रोग, थकान महसूस होना जैसी परेशानियाँ होती हैं।
- 2. परिच्छेद पढ़कर उसमें कौन-कौन से प्रदूषण के विविध प्रकार आए हैं और कौन-कौन से वाक्य में आए हैं, उनकी सूची बनाओ।

निलेश शहरी भाग में रहनेवाला और कक्षा 8 वीं में पढ़ने वाला लड़का है। प्रतिदिन वह विद्यालय में बस से जाता हैं। विद्यालय जाने के लिए उसे एक घंटा लगता हैं। विद्यालय जाते समय उसे रास्ते में अनेक चार पहिए वाले वाहन, दो पहिए वाले वाहन, रिक्षा, बस इन वाहनों का आवा-गमन लगता हैं। कुछ दिनों के बाद उसे दमें की परेशानी होने लगी। डॉक्टर ने उसे शहर से दूर रहने के लिए कहा। तब उसकी माँ ने उसे उसके मामा के गाँव में भेजा। निलेश जब गाँव में घूमा तब उसे अनेक स्थानों पर कचरे के ढ़ेर दिखाई दिए। अनेक स्थानों पर प्राणी, मानवीय मल-मूत्र की दुर्गंध आ रही थी। कुछ स्थानों पर छोटी नालियों से दुर्गंध युक्त काला पानी बहते हुए दिखा। कुछ दिनो के बाद उसे पेट के विकार की परेशानी होने लगी।

3. 'अ' व 'ब' स्तंभो की उचित जोडी लगाकर प्रदूषित घटकों का मानवी स्वास्थ्य पर कौन-सा परिणाम होता हैं, स्पष्ट करो।

'अ'स्तंभ

'ब' स्तंभ

- 1. कोबाल्टमिश्रित पानी
- अ. मतिमंदत्व
- 2. मिथेन गैस
- ब. अर्धांग वायू
- 3. सीसा मिश्रित पाणी
- क. फेफडोपर सूजन आना
- 4. सल्फर डाय ऑक्साइड़
- ड. त्वचा का कैंसर
- 5. नायट्रोजन डायऑक्साइड्
- इ. आँखो में जलन
- 4. सत्य की असत्य बताओ।
 - अ. नदी के बहते पानी में कपड़े धोने पर पानी प्रदूषित नहीं होता।
 - आ. बिजली (विद्युत) पर चलने वाले यंत्रो का जितना अधिक उपयोग किया जाए उतना अधिक प्रदूषण होता हैं।

- 5. निम्न प्रश्नों के उत्तर लिखो।
 - अ. प्रदूषण और प्रदूषक किसे कहते हैं ?
 - आ. अम्लपर्जन्य किसे कहते हैं ?
 - इ. हरितगृह परिणाम किसे कहते हैं ?
 - ई. दृश्य प्रद्षक और अदृश्य प्रद्षक कौन से हैं बताओ ।
- 6. निम्न प्रश्नों के उत्तर लिखो।
 - अ. तुम्हारे आसपास के परिसर में दिखाई देने वाले वायू प्रदूषण, जल प्रदूषण तथा मृदा प्रदूषण प्रत्येक के दो -दो उदाहरण लिखो।
 - आ. वाहनों द्वारा प्रदूषण किसप्रकार होता हैं। कम से कम प्रदूषण जिसके कारण होता हैं। ऐसे कुछ वाहनों के नाम बताओ (लिखो)।
 - इ. जल प्रदूषण के प्राकृतिक कारण कौन-से हैं? वे लिखो ।
 - ई. वायु प्रदूषण के कोई भी चार प्रतिबंधात्मक उपाय बताओ।
 - हिरतगृह प्रभाव और वैश्विक तापमान में वृद्धि इनके संबंध को स्पष्ट करो परिणाम बताओ।
 - ज. वायु प्रदूषण, मृदा प्रदूषण और जल प्रदूषण इन पर दो-दो घोष वाक्य बनाकर लिखो ।
- 7. निम्न प्रदूषको का मानव निर्मित तथा प्राकृतिक निर्मित इन समुहों में वर्गीकरण करो ।

संदूषित पानी, धूल, परागकण, रासायनिक उर्वरक, वाहनों का धुआँ, शैवाल, कीटकनाशक, पशु-पक्षियों की विष्ठा।

उपक्रम :

- तुम्हारे परिसर में पाए जानेवाले पानी के शुद्धता की जाँच करनेवाले प्रयोगविद्यालय को भेंट दो और पीने के पानी के प्रदूषण की पहचान करने वाली कसौटियों की जानकारी लो।
- 2. तुम्हारे परिसर में सबसे ज्यादा यातायात वाले चौक को भेट दो और वहाँ भिन्न-भिन्न समय पर महसूस होने वाले वायु प्रदूषण का अनुभव लो और किस समय सबसे कम वायू प्रदूषण होता हैं, उसकी जानकारी लिखो।

9. आपदा प्रबंधन

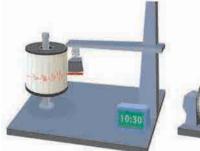
थोड़ा याद करो।

- 1. आपदा से क्या समझते हो?
- 2. आपदा के प्रकार कौन से हैं ?

पिछली कक्षा में हमने विविध प्राकृतिक आपदाओं की संक्षिप्त जानकारी प्राप्त की है। इस कक्षा में हम भूकंप और दूसरी कुछ प्राकृतिक आपदाओं संबंधी अध्ययन करनेवाले हैं।

बताओ तो

भूकंप से क्या समझते हो? भूकंप के कौन-से परिणाम होते हैं?


भूकंप (Earthquake)

भू-कवच में अचानक कंपन होना अथवा भूकवच के अचानक थोड़े क्षण के लिए हिलने को भूकंप कहते हैं। भूकंप के कारण भूपृष्ठ का कुछ भाग आगे पीछे या ऊपर नीचे होता हैं इसलिए भूपृष्ठ सरलता से हिलता है।

भूगर्भ में निर्माण होनेवाले धक्के व लहरें, जमीन के अंदर और ऊपर के पृष्ठभाग पर सर्व दिशा में फैलते हैं। भूकंप नाभि के ठीक ऊपर, भूपृष्ठ पर स्थित बिन्दु को भूकंप का केन्द्रबिन्दु कहते हैं। तीव्र स्वरूप की लहरें/ धक्के सर्वप्रथम केन्द्र के पास पहुँचते हैं इसलिए वहाँ हानि का अनुपात सबसे ज्यादा होता हैं।

भूकंप के धक्के सौम्य अथवा तीव्र दोनों स्वरूप के हो सकते हैं। पृथ्वी पर होनेवाले विध्वंसक भूकंप की अपेक्षा सौम्य भूकंप की संख्या अधिक होती हैं।

पृथ्वी पर प्रतिदिन कहीं ना कही भूकंप होता है। National Earthquakes information centre के निरीक्षण के अनुसार अपने पृथ्वी पर प्रत्येक वर्ष लगभग 12,400-14000 भूकंप होते हैं। संदर्भ: www.iris. edu.) इस आधार पर पता चलता हैं की, पृथ्वी हमेशा कम या अधिक अनुपात से कंपित होती हैं।


ऊर्ध्वाधर भूकंपमापक यंत्र

क्षैतिज भूकंपमापक यंत्र

9.1: इमारतों पर पड़ी दरारें

9.2: भूकंपनाभी और भूकंपकेंद्र

भूकंप की जानकारी संकलित करनेवाले यंत्र को 'सिस्मोग्राफ' अथवा 'सिस्मामीटर' कहते हैं। भूकंप की तीव्रता मापने के लिए 'रिक्टर पैमाना' इस इकाई का उपयोग करते हैं। यह एक गणितीय इकाई हैं।

भूकंप के परिणामों का वर्णन दिया हैं इस तालिका का सावधानीपूर्वक अध्ययन करो।

9.3 : भुकंपमापक यंत्र

इंटरनेट मेरा मित्रः इंटरनेट की सहायता से 'रिक्टर पैमाना' तथा भूकंप के परिणाम की जानकारी प्राप्त करो ।

भूकंप के परिणाम भूकंप के कारण 1. ज्वालामुखी का विस्फोट 1. मनुष्य के साथ-साथ वन्यजीव व पालतू प्राणियों की भी जीवित 2. बड़े बड़े बाँधों का जमीन पर पड़नेवाला हानि होती हैं। 2. बहुत बड़े पैमाने पर आर्थिक नुकसान होता हैं। (बिज़ली के खंबे, तनाव 3. खदानों को खोदना। पाइप लाइन, घर, इमारत, रस्ते, लोहमार्ग उद्ध्वस्त होते हैं।) 4. जमीन के अंदर किए जानेवाले परमाण् 3. जैविक विविधता की हानि होकर परिसंस्था को खतरा होता हैं। परीक्षण 4. नदियाँ, नाले इनका प्रवाह बदलता हैं। 5. भूपृष्ठ के अंतर्गत भाग से पानी रिसता हैं 5. शहरी भागों में आग लगने की संभावना होती हैं। तथा जमीन के अंदर प्रचंड ऊष्मा से पानी 6. समुद्र तल में भूकंप होने पर सुनामी लहरों का निर्माण होकर समुद्र की भाप बनती हैं व यह भाप कमजोर किनारपटटी पर बड़े पैमाने पर हानि होने की संभावना होती हैं। पृष्ठभाग से बाहर निकलने का प्रयत्न 7. भिमगत जलस्तर ऊपर-नीचे होता हैं।

भूकंप के बारे में सतर्कता:

1. भूकंप के समय यदि तुम घर में हो, तो

करती हैं तब भूकंप होते हैं।

भूकंप का पता चलते ही इधर-उधर न दौड़कर बिना घबराहट उसी जगह पर शांत खड़े रहना चाहिए। जमीन पर बैठ जाओ, टेबल, पलंग किसी भी एक फर्निचर के नीचे स्वयं को छुपा लो और जमीन की हलचल रूकने तक वहीं रूको। तुम्हारे आसपास कोई भी टेबल अथवा डेस्क न हो तो घर के किसी कोणे में नीचे बैठकर दोनों हाथ घुटनों पर रखो, उसमें तुम्हारा चेहरा ढाँक लो।

2. चलते हुए वाहन अथवा घर के बाहर हो तो

सुरक्षित जगह देखकर तुरंत वाहन रोको और तुम भी वाहन के अंदर रूको, बाहर न निकलो, इमारत, वृक्ष, बिजली के तार के पास न रूको। भूकंप के समय यह मत करो

- 1. बहुमंजिल इमारत की लिफ्ट का उपयोग न करें। सीढ़ी का उपयोग करें।
- 2. एक ही जगह पर असुविधाजनक स्थिति में ज्यादा समय तक न बैठे, शरीर की थोड़ी हलचल करें।
- 3. भूकंप के बाद बिजली के शार्टसिकट के कारण आग लग सकती है इससे बचने के लिए घर का मेन स्वीच सावधानीपूर्वक बंद करें। ऐसे समय मोमबत्ती, लालटेन, माचिस का उपयोग न करें, बैटरी/टार्च का उपयोग करें।

9.4: ली जानेवाली सावधानी

भूकंपरोधक इमारतें: जमीन की विशिष्ट सीमा तक हलचल होने से कोई खतरा नहीं होता ऐसी इमारतों के निर्माण कार्य को भूकंपरोधक निर्माण कार्य कहते हैं। इमारतों के निर्माण कार्य के लिए भारतीय, मानक संस्था ने कुछ कोड बनाए हैं। आय.एस.456 के अनुसार से इमारत का निर्माण कार्य किया जाता हैं। उसी प्रकार भूकंपरोधक निर्माण कार्य के लिए आय.एस.1392 (भूकंपरोधक आरेखन की संरचना के मापदंड) और आय.एस.1392 (भूकंप प्रभाव के संदर्भ में सशक्त क्राँक्रीट संरचना का तानीय विस्तार) का उपयोग किया जाता हैं। भूकंपरोधक निर्माण कार्य में आधुनिक तंत्रज्ञान का उपयोग किया जाता हैं।

भूकंप की पूर्वसूचना प्राप्त हो इसके लिए लेसर रेंजिग, व्हेरी लाँग, बेसलाईन, गायगर कौंटर, क्रीप मीटर, स्ट्रेन मीटर, टाइड गाँज, टिल्ट मीटर, व्हॉल्युमेंट्रिक स्ट्रेन गाँज इनके जैसे आधुनिक साधनों का उपयोग किया जाता हैं।

आग (Fire)

आग यह प्राकृतिक आपदा हैं या मानवनिर्मित ?

आग के प्रकार (Types of Fire)

- 1. 'अ' वर्गीय (ठोसरूप पदार्थ) : सामान्यतः ज्वालाग्राही पदार्थ से लगनेवाली आग (जैसे लकड़ी, कपास, कोयला, कागज़ इत्यादि), यह ठंड़ा करके आग बुझाई जाती हैं।
- 2. 'ब' वर्गीय आग (द्रवरूप पदार्थ): ज्वालाग्रही द्रव पदार्थ से लगनेवाली आग। उदाहरण पेट्रोल, तेल, वार्निश, विलायक, रसोई का तेल, रंग इत्यादि। ये पदार्थ पानी की अपेक्षा हलके होते हैं अतः झागवाले अग्निशामक द्वारा आग बुझाई जाती हैं।
- 3. 'क' वर्गीय आग (गैस रूप पदार्थ) : एसिटिलीन, घरेलू गैस, (एल.पी.जी. गैस) इत्यादि ज्वलनशील गैसों दवारा लगनेवाली आग ।
- 4. 'ड' वर्गीय आग (रासायनिक पदार्थ) : ज्वलनशील धातु से लगनेवाली आग इसमें सोडियम, पोटैशियम और कैल्शियम धातु हैं ये सामान्य तापमान पर पानी के साथ क्रिया करती हैं उसी प्रकार से मैग्नीशियम एल्युमिनियम और जिंक जो उच्च तापमान पर पानी के साथ क्रिया करती हैं । दोनों समूह की धातुएँ जब पानी के साथ संयोग करती हैं तब विस्फोट होता हैं ।
- 5. 'इ' वर्गीय आग (इलेक्ट्रीकल) : इलेक्ट्रीकल सामान, फिटिंग के साधनों के कारण लगनेवाली आग, कार्बनड़ाय आक्साइड़ जैसे आग प्रतिबंधक से बुझाई जाती हैं।

आग बूझाने की विधि: आग फैलने पर उसके नियंत्रण की तीन प्रमुख विधियाँ हैं।

- 1. ठंड़ा करना: आग बुझाने के लिए पानी एक प्रभावी साधन हैं और वह सर्वत्र उपलब्ध होता हैं। आग पर अथवा आग के आजूबाजू में पानी डालने पर ठंड़क का निर्माण होता हैं और आग पर नियंत्रण करना सरल हो जाता है।
- 2. आग कम करना: आग कम करने के लिए तथा विशेषतः तेल के कारण और बिजली के कारण लगी आग को बुझाने के लिए रेत अथवा मिट्टी का उपयोग करना अच्छा होता हैं। झाग जैसा पदार्थ आग पर फेंकने से उसका उपयोग आग ढँकने के जैसा होता हैं। यह आग बुझाने की विधि तेल के कारण लगी आग के लिए बहुत उपयुक्त होती हैं।
- 3. ज्वलनशील पदार्थ अलग करना: इस पद्धित में ज्वलनशील पदार्थ को ही अलग करना होता हैं। लकड़ी का सामान अथवा अन्य ज्वलनशील वस्तुओं को आग के पास से दूर करना चाहिए। तुरंत लगी आग को बुझाने के लिए स्ट्रिरप पंप एक सबसे उत्तम साधन हैं, इस पंप से आग पर सभी ओर से पानी मार कर आग बुझा सकते हैं।

सावधानी और सुरक्षात्मक उपाय

- 1. गैस का रेग्युलेटर जब उपयोग में न हो उस समय, रात को सोते समय और गाँव जाते समय ध्यान से बंद करना चाहिए।
- 2. 'आग-आग' ऐसे जोर से चिल्लाकर दूसरों को सावधान करो और मदद के लिए बुलाओ।
- 3. अग्निशामक दल को तुरंत फोन कर बुलाओ।
- 4. अग्निशामक टंकियों का उपयोग किस प्रकार करते हैं इसकी जानकारी प्राप्त करो।

प्रथमोपचार : घायल व्यक्ति को आरामदायी स्थिति में बैठाएं अथवा सुलाकर रखें व तुरंत डॉक्टर की सहायता ले ।

पर्वतशिला का गिरना (भूस्खलन) (Land-slide)

- 1. पूना जिले की मालीन दुर्घटना के बारे में जानकारी बताओ । उसका क्या परिणाम हुआ ।
- 2. पर्वत शिला के गिरने का क्या अर्थ हैं ?

कठोर चट्टानों में प्राकृतिक रूप से पाई जानेवाली दरारें अथवा जगह, यह बड़े चट्टानों के टूटने का कारण होता हैं। विशेषतः अतिवृष्टि के समय पत्थरों की दरारों, जगहों में पानी जाने से पत्थर का क्षरण होता हैं जिससे वजन बढ़ता है और इस प्रकार के पत्थर ढलान वाले प्रदेश में लुढ़कते हुए जाकर नीचे स्थिर हो जाते हैं इसे ही पर्वत शिला का गिरना कहते हैं।

पर्वत शिला गिरने के कारण

- 1. भूकंप, सुनामी, अतिवृष्टि, तूफान, बाढ़ जैसी बड़ी प्राकृतिक आपदाओं के परिणामस्वरूप भी पर्वत शिलाएँ गिरती हैं।
- 2. बेशुमार वृक्ष काटने के कारण ही जमीन का क्षरण होता हैं।
- 3. पर्वतों तथा घाटियों में रास्तें बनाते समय पर्वत खोदने के कारण पर्वत कमजोर हो जाते हैं व उनके किनारों के पत्थर गिरते हैं।

पर्वतशिला गिरने के परिणाम:

- 1. निदयों में अचानक बाढ आती है व नदी के मार्ग बदल जाते हैं।
- 2. जलप्रपात का स्थानांतरण होता हैं, कृत्रिम जलाशय का निर्माण होता हैं।
- 3. पर्वत शिला के गिरने से नीचे लगे वृक्ष भी टूट जाते हैं, ढलान पर हुए निर्माण कार्य भी ढह जाते हैं। ये सब पत्थर, मिट्टी के ढेर, वृक्ष के नीचे सपाट क्षेत्र में गिरते हैं जिसके कारण बहुत बड़े पैमाने पर जीवित व आर्थिक हानि होती हैं।
- 4. यातायात के मार्ग पर, लोहमार्ग पर पर्वत शिला गिरने से यातायात में बाधा आती हैं।
- 5. भूस्खलन होनेपर उसपर लगी वनस्पतियों का जीवन नष्ट होता हैं।

आपदा निवारण तथा नियोजन प्रतिकृति : विद्यालयीन आपदा निवारण के संदर्भ में, नियोजन प्रतिकृति द्वारा आपदा के समय मदद कार्य पहुँचने में सुलभता होती हैं, इसलिए उसमें नीचे दी गई जानकारी होना आवश्यक हैं। नीचे एक नमूना तालिका दी गई हैं उस आधार पर एक तालिका तैयार करो।

प्रमुख मुद्दे	संकलित करने की आवश्यक बातें
विद्यालय की	अ. विद्यालय का पूरा नाम व पता आ. मुख्याध्यापक का पूरा नाम, निवास का पता, संपर्क नंबर
प्राथमिक जानकारी	इ. विद्यालय संस्थापक और व्यवस्थापक का नाम और संपर्क नंबर ई. कुल कर्मचारी
विद्यालय आपदा	अ. अग्निशामक आ. जागृति इ. सूचना ई. यातायात व्यवस्थापन
प्रबंधन समिति	उ. सुरक्षा ऊ. प्रसारमाध्यम समिति इस उपसमिति में प्रत्येक 2-3 सदस्य
इमारत की विस्तृत	अ. कुल कमरों की संख्या आ. कक्षाओं की संख्या
जानकारी	इ. कक्षा ई. छत के निर्माण का स्वरूप (लकड़ी/पत्रा/सिमेंट) उ. इमारत की उम्र, वर्ष
विद्यालय के मैदान	अ. विद्यालय परिसर में खुले मैदान का प्रकार, खो-खो, कबड्डी, प्रार्थना और अन्य मैदान की
के विषय में जानकारी जानकारी आ. मैदान की मुख्य रास्ते से दूरी	
विद्यालय की	अ. विद्यालय शुरू होने का समय, दीर्घ छुट्टी और लघु छुट्टी, विद्यालय के छूटने का समय
दिनचर्या	आ. विद्यालय में दिनभर में लिए जानेवाले विविध उपक्रम
विद्यालय की	अ. संभावित दुर्घटनओं के नाम और स्वरूप (सामान्य, मध्यम, तीव्र)
संभावित दुर्घटनाएँ	आ. पहले हुआ नुकसान इ. फिलहाल की गई उपाययोजना
विद्यालय का	विद्यालय की सर्व इमारतें, उनकी रचना, मैदान प्रवेश द्वार, विद्यालय की संभाव्य दुर्घटनाओं की जगह,
आपदा प्रबंधन नक्शा	आपदा के समय सुरक्षित जगह, नज़दीक का रस्ता, ये सब बातें उसमें बताना आवश्यक हैं। इस नक्शे के बारे
में विद्यालय के सभी विद्यार्थियों को जानकारी देकर उसे विद्यालय के प्रवेशद्वार के पास लगाया	
विद्यालय की तैयारी विद्यालय की संभावित दुर्घटनाएँ और आपदा के अनुसार विशिष्ट कालाविध में (हर महिने) तैय	
(Mock drill)	जाना चाहिए। इस समय उपस्थित विद्यार्थी संख्या, दिनांक, समय और कमियाँ इसकी भी जानकारी नोट
	करना चाहिए ।

भूस्खलन के कारण यातायात में रूकावटें आने की घटनाएँ महाराष्ट्र में कहाँ-कहाँ घटित होती हैं? ऐसे स्थानों की सूची बनाओ । इन्हीं स्थानों पर ही भूस्खलन क्यों होता होगा? कक्षा में चर्चा को और उपाय बताओ ।

कार्य संस्थाओं के

- 1. राष्ट्रीय भूकंप विज्ञान केंद्र (National Centre of Seismology NCS) केंद्र शासन के भू-विज्ञान मंत्रालय के अंतर्गत भूकंप और विविध आपदा में संदर्भ में अनुसंधान का कार्य करती हैं।
- 2. भूस्खलन के संभावित परिणामों का सुनियोजित अंदाज लेने के लिए भारत सरकार ने इंडियन माउंटिनिरिंग इन्स्ट्ट्यूट व इंटरनेशनल सेंटर फॉर इंटिग्रेटेड माउंटन डेव्हलपमेंट इन संस्थाओं द्वारा अनुसंधान कर कार्यक्रम शुरू किया हैं। भूस्खलन इन्स्ट्ट्यूट ऑफ जिऑलॉजी व वर्ल्ड जिऑलॉजिकल कोरम इस संस्था की मदद ली जाती हैं।

स्वाध्याय

नीचे दिए प्रश्नों के उत्तर तुम्हारे शब्दों में लिखो ।

- अ. बहुत समय तक होनेवाली तेज वर्षा और पर्वत शिला का गिरना इनके बीच संबंध और कारण स्पष्ट करो।
- आ. भूकंप आपदा के समय क्या करना चाहिए और क्या नहीं करना चाहिए इन सूचनाओं की तालिका बनाओ ।
- इ. भूकंपरोधक इमारतों की विशेषताएँ कौन-सी हैं?
- ई. पर्वत शिला गिरने से कौन-कौन से परिणाम होते हैं स्पष्ट करो।
- बाँध और भूकंप इनका कुछ संबंध हैं क्या इसे स्पष्ट करो।

2. वैज्ञानिक कारण लिखो।

- अ. भूकंप के समय पलंग, टेबल जैसी वस्तुओं के नीचे आश्रय लेना अधिक सुरक्षित होता हैं।
- आ. बारिश के दिनों में पर्वत की तली में आश्रय नहीं लेना चाहिए।
- इ. भूकंप के समय लिफ्ट का उपयोग नहीं करना चाहिए।
- ई. भूकंपरोधक इमारत की नींव बाकी की जमीन के भाग से अलग की जाती हैं।
- भूकंप आने के बाद मददकार्य करते समय आसपास के लोगों की भीड़ होने से कौन-कौनसी कठिनाइयाँ आएँगी।
- 4. आपदाकाल में मदद करनेवाली संघटनों और संस्थानों की सूची बनाओ । उनके मदद के स्वरूप के विषय में अधिक जानकारी प्राप्त करो ?
- आपदा निवारण प्रतिकृति की सहायता से तुम्हारे विद्यालय का सर्वेक्षण कर मुद्दों के अनुसार जानकारी लिखो।
- 6. तुम्हारे परिसर में पर्वत शिला गिरने की संभावित जगहें हैं क्या? जानकार लोगों से इसकी जानकारी प्राप्त करो।

7. नीचे दी गई आकृति की सहायता से आपदा काल में तुम्हारी भूमिका क्या होगी लिखो ?

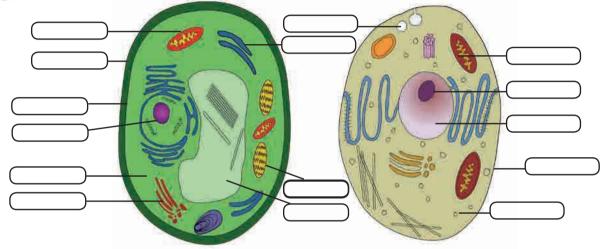
उपक्रम

- पर्वत शिला का गिरना/भूस्खलन की घटना व उसके कारण हुई हानि इस संदर्भ में समाचार, समाचार पत्रों की किटिंग, छायाचित्रों का संग्रह करो।
- 2. भूकंप की पूर्वसूचना प्राप्त हो इसके लिए उपयोग में आनेवाले आधुनिक साधन व तंत्रज्ञान इस विषय की इंटरनेट की सहायता से जानकारी प्राप्त करो।
- 3. NDRF, RPF, CRPF, NCC, , के बारे में इंटरनेटद्वारा जानकारी प्राप्त करो ।
- 4. CCTV की आवश्यकता इस विषय पर चर्चा करो।

10. कोशिका तथा कोशिका के अंगक

थोड़ा याद करो।

- 1. सजीवों में कितने प्रकार की कोशिकाएँ पाई जाती हैं?
- 2. कोशिका का निरीक्षण करने के लिए आपने किस उपकरण का उपयोग किया था? क्यों और कैसे?


इससे पूर्व की कक्षाओं में आपने देखा कि कोशिका यह सजीवों की संरचनात्मक एवं क्रियात्मक इकाई है। विभिन्न अंगों में कार्य के अनुसार विभिन्न आकार एवं प्रकारों की कोशिकाएँ पाई जाती हैं।

कोशिका रचना (Cell Structure)

निरीक्षण करो

नीचे दी गई आकृतियों का निरीक्षण करके नाम लिखो तथा तालिका पूर्ण करो।

10.1 वनस्पति कोशिका और प्राणी कोशिका

घटक	प्राणी कोशिका	वनस्पति कोशिका
कोशिकापटल	<u>ौ</u> र	है ।
कोशिका भित्ति		
	है ।	नहीं है ।
लवक		
	है ।	है ।
रिक्तिका		
गाल्गी पिंड		
तंतुकणिका		

कोशिका में कार्य किस प्रकार होता है। इसे समझने के लिए हमें कोशिका के प्रत्येक घटक का अध्ययन करना होगा।

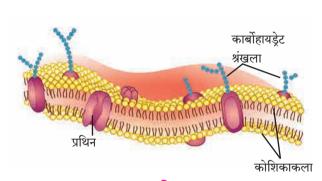
कोशिका के भाग (Parts of Cell)

- 1. कोशिका भित्ति (Cell wall): शैवाल, कवक तथा वनस्पित कोशिका के चारों ओर पाई जाती है; प्राणी कोशिका में कोशिका भित्ति नहीं होती। कोशिका भित्ति अर्थात कोशिका पटल के चारों ओर पाया जाने वाला मजबूत तथा लचीला आवरण। कोशिकाभित्ति मूलतः सेल्यूलोज और पेक्टीन इन कार्बोज पदार्थों से बनी होती है। कुछ कालावधी के बाद आवश्यकतानुसार लिग्निन, सुबेरिन, क्यूटीन जैसे बहुलक कोशिका भित्ति में तैयार होते हैं। कोशिका को आधार प्रदान करना, कोशिका में प्रवेश करने वाले अतिरिक्त जल को रोककर कोशिका का संरक्षण करना कोशिका भित्ति के कार्य हैं।
- 2. प्ररस कला/कोशिका कला (Plasma membrane/Cell membrane): यह कोशिका के चारो ओर पाया जानेवाला पतला, कोमल एवं लचीला आवरण है जो कोशिका के घटकों को बाहरी परिवेश से अलग रखता हैं।

वसायुक्त दिवस्तरों (Phospholipid) के बीच घुले हुए प्रथिन के अणु ऐसी प्ररसकला की रचना होती हैं।

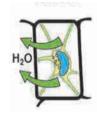
प्ररसकला कुछ निश्चित पदार्थों को अंदर-बाहर जाने देती हैं; तो कुछ पदार्थों को रोकती हैं; इसलिए इसे 'अर्ध पारगम्य झिल्ली' (selective Permeable membrane) कहते हैं। इस गुणधर्म के कारण पानी, नमक, ऑक्सीजन जैसे उपयोगी अण् कोशिका में प्रवेश करते हैं। तो कार्बनडाय ऑक्साइड जैसे वर्ज्य पदार्थ कोशिका के बाहर परागमन करते हैं।

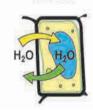
कोशिका के बाहर कुछ परिवर्तन हो तो भी कोशिका प्रद्रव्य के भीतर पर्यावरण एक जैसा रखने का कार्य प्ररस कला करती हैं इसे ही 'समस्थिति' कहते हैं।


10.2 कोशिकाभित्ति रचना

बताओ तो

कोशिका में पदार्थों का आदान प्रदान कैसे होता है? कोशिका की ऊर्जा का उपयोग कर चलनेवाली प्रकियाएँ


- 1. कोशिकीय भक्षण (Endocytosis) बाहरी परिवेश से अन्न तथा अन्य पदार्थों का भक्षण करना।
- 2. कोशिकीय उत्सर्जन (Exocytosis) वर्ज्य पदार्थ कोशिका के बाहर निष्कासित करना।



10.3 प्ररसकला की रचना

कोशिका की उर्जा का उपयोग किए बिना चलनेवाली प्रकियाएँ

- 1. विसरण (Diffusion) $: O_2, CO_2$ जैसे छोटे अणुओं का कोशिका में प्रवेश होना/बाहर जाना ।
- 2. परासरण (Osmosis) : पानी के अधिक अनुपातवाले भाग से पानी के कम वाले भाग की ओर अर्धपारगम्य झिल्ली से होकर जाने वाले पानी के प्रवाह को परासरण कहते हैं। यह भौतिक क्रिया होकर तथा इसके होने की तीन भिन्न भिन्न संभवानाएँ हो सकती हैं।

वनस्पति कोशिका में परासरण

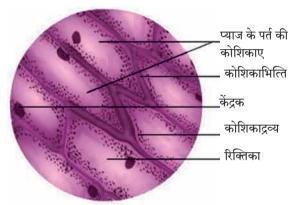
10.4 परासरण

प्राणी कोशिका में परासरण

अ. 4-5 किशमिश पानी में भिगोकर रखो, एक घंटे बाद क्या होता है उसका निरीक्षण को । वही किशमिश शक्कर के द्रव्य में रखो, एक घंटे बाद उसका निरीक्षण करो।

आ.वर्षा ऋतु में लकड़ी के दरवाजे पक्के बैठने के कारण आसानी से नहीं खुलते। ऐसा क्यों होता हैं?

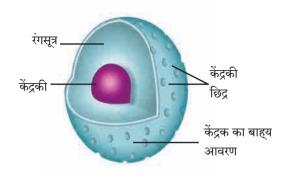
- अ. समपरासारी (Isotonic) द्रव्य: कोशिका के परितः रहने वाले पानी का अनुपात कोशिका के भीतर के पानी के बराबर होता हैं। इसलिए पानी अंदर या बाहर नहीं जाता।
- ब. अधो परासरी (Hypotonic) द्रव्य: कोशिका के परितः रहने वाले पानी का अनुपात यह कोशिका के भीतर के पानी की अपेक्षा अधिक होने से बाहरी पानी कोशिका में प्रवेश करता हैं। इसे अंतःपरासरण (Endosomis) कहते हैं। उदा. सूखी हुई किशमिश पानी में रखने पर कुछ समय बाद वह फूल जाती है।
- क. ऊर्ध्व परासरी (Hypertonic) द्रव्य: कोशिका के भीतर के पानी का अनुपात अधिक तथा कोशिका के परितः माध्यम के पानी का अनुपात कम हो तो पानी कोशिका से बाहर निष्कासित होता हैं। उदा. फलों के टुकडों को शक्कर के पानी में डालने पर उन टुकडों का पानी शक्कर के द्रव्य से घुलकर थोडी देर बाद वे टुकडे सिकुड जाते हैं। ऊर्ध्वपरासरी द्रव्य में रखने से प्राणी कोशिका या वनस्पति कोशिका के भीतर का पानी बहि:परासरण (Exosmosis) प्रक्रिया के कारण बाहर निकलता हैं और कोशिका द्रव्य सिकुड जाता हैं। इस प्रक्रिया को जीवद्रव्य कुंचन (Plasmolysis) कहते हैं।
- 3. कोशिका द्रव्य (Cytoplasm)

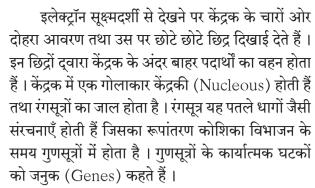

थोड़ा याद करो । प्याज के छिलकों में अत्यधिक द्रव से भरी हुई आयताकार कोशिकाएँ क्या आपने देखी हैं?

प्रसकला और केंद्रक के बीच फैले तरल पदार्थ को कोशिका द्रव्य कहते हैं। कोशिका द्रव्य यह चिपचिपा पदार्थ होता है, निरंतर हलचल करता रहता है। इसमें कई कोशिका अंगक बिखरे होते हैं। कोशिका में रासायनिक अभिक्रिया घटित होने हेतु कोशिका द्रव्य यह एक माध्यम है। कोशिका अंगकों के अलावा कोशिका में 'कोशिका द्रव्य' (Cytosol) भी होता हैं। कोशिका द्रव्य में अमीनो अम्ल, ग्लूकोज, जीवनसत्त्व संग्रहित होते हैं। बडी केन्द्रीय रिक्तिकाओं के कारण वनस्पति कोशिका में कोशिका द्रव्य यह किनारे की ओर ढकेला हुआ होता है। वनस्पति कोशिका का कोशिका द्रव्य प्राणी कोशिका के कोशिका द्रव्य की अपेक्षा अधिक कणाकार एवं सघन होता है।

कोशिका अंगक (Cell organelles): विशेष कार्य करने वाले कोशिका की छोटी इकाईयों को 'कोशिका अंगक' कहते हैं। ये अंगक अर्थात कोशिका के घटक हैं। प्रत्येक अंगक के चारों ओर प्रथिनयुक्त वसा का आवरण होता है। केंद्रक तथा हरितलवक के अलावा अन्य सभी अंगकों को केवल इलेक्ट्रॉन सूक्ष्मदर्शी द्वारा ही देखा जा सकता है।

केंद्रक (Nucleus)


10.5 प्याज की झिल्ली


10.6 इलेक्ट्रॉन सूक्ष्मदर्शी

कृति – स्वच्छ काँचपट्टी पर पानी की एक बूँद लो । आइस्क्रीम के चम्मच से अपने गाल की आंतरिक सतह को खरोंचो। चम्मच पर लगा थोड़ा पदार्थ सुई की नोक पर लेकर काचपट्टी पर रखी पानी की बूँद में फैलाओ । इसपर मेथिलीन ब्लू रंजक की एक बूँद डालो । कवर स्लिप लगाकर संयुक्त सुक्ष्मदर्शी के नीचे निरीक्षण करो । क्या तुम्हें केंद्रक दिखाई दिया?

प्याज के छिलके की आयोडिन रंजित काँचपट्टी सूक्ष्मदर्शी के नीचे देखते समय प्रत्येक कोशिका में दिखाई देनेवाला गोलाकार गहरा धब्बा अर्थात् उस कोशिका का केंद्रक हैं।

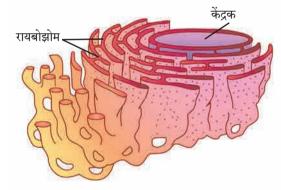
10.7 केंद्रक

कार्य

- 1. कोशिका के सभी चयापचय क्रियाओं तथा कोशिका विभाजन पर नियंत्रण रखना ।
- 2. जनुकों द्वारा आनुवांशिक गुणधर्म अगली पिढी में संक्रमित करना।

क्या तुम जानते हो?

- रक्त के लाल रक्तकणिकाओं (RBC) के केंद्रक नष्ट होने से हिमोग्लोबिन के वहन हेतू अधिक जगह उपलब्ध होती हैं और अधिक मात्रा में ऑक्सीजन का वहन किया जाता है।
- वनस्पतियों के रसवाहिनी में स्थित चालनी नलिकाओं के केंद्रक नष्ट होने से वे खोखली हो जाती हैं तथा उनसे अन्नपदार्थों का परिवहन आसानी से होता हैं।


आंतर्द्रव्यजालिका (Endoplasmic Reticulum)

तुम्हारे ईमारत में कितने प्रकार की पाईपलाईनें हैं ? वे कौन-कौन से कार्य करती हैं? वे ना हो तो क्या होगा ?

कोशिका के भीतर विभिन्न पदार्थों का वहन करने वाले अंगक को आंतरद्रव्यजालिका कहते हैं । आंतरद्रव्यजालिका अर्थात तरल पदार्थों से भरी हुई सुक्ष्मनलिका तथा पटल एक दूसरे से जुड़कर बनी हुई जाल जैसी संरचना होती हैं । आंतरद्रव्यजालिका अंदर से केंद्रक को तथा बाहर से प्ररस कला से जुड़ी होती हैं।

इसके पृष्ठतल पर रायबोझोम्स के कण हो तो उसे रूक्ष आंतर्द्रव्यजालिका कहते हैं ।

10.8 आंतर्द्रव्यजालिका

कार्य

- कोशिका को आधार प्रदान करनेवाली चौखट।
- 2. प्रथिनों का परिवहन करना।
- अन्न, हवा, पानी द्वारा शरीर में प्रवेश करनेवाले विषैले पदार्थों को पानी में घुलनशील करके शरीर से बाहर निष्कासित करना।

- तुम्हारे पसंद की बिस्किट, चॉकलेट्स इनके चारों ओर कौन-से आवरण होते हैं?
- कारखानों का 'पॅकिंग विभाग' कौन-सा कार्य करता हैं?

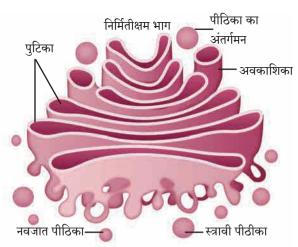
गाल्गी काय (गॉल्गी पिंड) – Golgi Complex : एक दूसरे से समांतर रची हुई 5-8 चपटी, खोखली थैलियों से गाल्गी पिंड बनता हैं । इन थैलियों को 'पुटिकाएँ' कहते हैं । इनमें विभिन्न प्रकार के प्रकिण्व भरें होते हैं । आंतरद्रव्यजालिका द्वारा संश्लेषित किए हुए प्रथिन गोलीय पीठिकाओं में कैद होते हैं । कोशिका द्रव्य से होती हुई ये पीठिकाएँ गाल्गी काय तक पहुचती हैं, उसके निर्मितक्षम भाग से संयोग कर द्रव्य गाल्गी काय की पुटिकाओं में भेज दिए जाते हैं ।

गाल्गी काय की विभिन्न परतों से गुजरते समय प्रकिण्वों के कारण इन प्रथिनयुक्त द्रव्यों में परिवर्तन होते जाता है । ये परिवर्तित प्रथिन पुनः गोलीय पीठिका में बंद होकर गाल्गी काय के दूसरी परिपक्व परत से बाहर चली जाती हैं । अर्थात कारखानों की वस्तुएँ बाँधकर आगे भेजनेवाले पॅकिंग विभाग के जैसा काम पुटिकाओं द्वारा होता हैं ।

कार्य

- 1. गाल्गी पिंड, कोशिका का 'स्त्राव अंगक' हैं।
- कोशिका में संश्लेषित हुए प्रिकण्व, प्रिथन, रंगद्रव्य आदि पदार्थों में परिवर्तन करके उनका वर्गीकरण करना, उन्हें कोशिका में या कोशिका के बाहर अपेक्षित स्थानों तक पहँचाना।
- 3. रिक्तिकाओं और स्त्राव पीठिकाओं का निर्माण करना।
- 4. कोशिका भित्ति, प्ररसकला और लयकायिका के निर्माण में मदद करना ।

लयकायिका (Lysosomes)

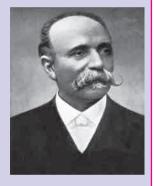


खेती काम में निर्माण होनेवाले खरपतवार एवं अन्य कचरे को कंपोस्ट के गड्ढे में डालने पर कुछ दिनों बाद उस कचरे का क्या होता है ?

कोशिका में घटित होनेवाली चयापचय की क्रियाओं में जो वर्ज्य पदार्थ निर्मित होते हैं, उन्हें ठिकाने लगाने वाला संस्थान अर्थात लयकायिका । लयकायिका यह सामान्यतः इकहरे पटल द्वारा वेष्ठित थैली होकर उसमे पाचक रस (प्रकिण्व) होते हैं।

कार्य

- रोगप्रतिकारक प्रक्रिया कोशिका पर आक्रमण करनेवाले जीवाणु तथा विषाणुओं को नष्ट करती हैं।
- 2. विध्वंसक दस्ता जीर्ण तथा कमजोर कोशिका अंगकों, सेंद्रिय मलबा, ये वर्ज्य पदार्थ लयकायिका द्वारा बाहर फेंके जाते हैं।
- 3. आत्मघाती थैली जब कोई कोशिका जीर्ण अथवा क्षतिग्रस्त हो जाती है, तो लयकायिका फट जाती है और उनमें स्थित पाचक रस (प्रकिण्व) स्वयं की कोशिका का पाचन कर लेते हैं।
- 4. भूखमरी के समय लयकायिका, कोशिका में संग्रहित प्रथिनों और वसा इनका पाचन करती है।


10.9 गॉल्गी पिंड

परिचय वैज्ञानिकों का

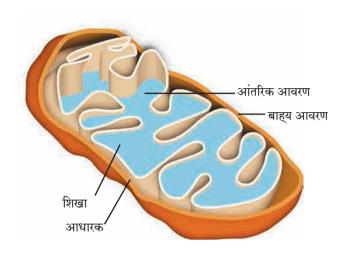
कॅमिलो गाल्गी इस वैज्ञानिक ने सबसे पहले गाल्गी काय का वर्णन किया हैं। उन्होंने 'काली अभिक्रिया' इस रंजक तकनीक को विकसित किया और इस तकनीक द्वारा

उन्होंने तंत्रिका संस्थान का गहन अध्ययन किया।

'तंत्रिका संस्थान की संरचना' इस अध्ययन के लिए सँटियागो काजल इस वैज्ञानिक के साथ उन्हें 1906 में नोबेल पुरस्कार मिला।

10.10 लयकायिका

तंतुकणिका (Mitochondria)


आपकी कक्षा के दीप, पंखे उसीप्रकार विद्यालय के संगणक कौनसी ऊर्जा पर कार्य करते हैं ? यह ऊर्जा कहाँ निर्मित होती है?

प्रत्येक कोशिका को ऊर्जा की आवश्यकता होती है। कोशिका को ऊर्जा प्रदान करने का काम तंतुकणिका करती है। इलेक्ट्रॉन सूक्ष्मदर्शी के नीचे देखने पर तंतुकणिका दिवकला आवरण से युक्त संरचना बनी दिखाई देती है।

तंतुकणिका का बाह्य आवरण छिद्रयुक्त होता है। आंतरिक आवरण की सतह कई मोडों (शिखा) में मुडी होती है। तंतुकणिका के आंतरिक गुहा में जेली जैसा पदार्थ होता हैं, जिसमें रायबोझोम्स, फॉस्फेट के अणु तथा डीऑक्सीरायबो न्यूक्लिक अम्ल (DNA) अणु होने से तंतुकणिकाएँ स्वयं प्रथिनों को संश्लेषित कर सकती है। तंतुकणिका, कोशिका में उपस्थित कार्बोज और वसा का प्रकिण्वों की सहायता से ऑक्सीकरण करती है। इस प्रक्रिया के दौरान मुक्त हुई ऊर्जा ATP (ॲडेनोसाईन ट्राय फॉस्फेट) के रूप में संग्रहित की जाती हैं। प्राणीकोशिका की अपेक्षा वनस्पति कोशिका में तंतूकणिकाओं की संख्या कम होती है।

कार्य

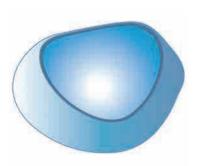
- 1. ऊर्जा से समृद्ध ATP यौगिकों का निर्माण करना।
- 2. ATP में संग्रहित ऊर्जा का उपयोग कर प्रथिनों, कार्बोज, वसायुक्त पदार्थों का संश्लेषण करना।

10.11 तंतुकणिका

क्या तुम जानते हो?

लाल रक्तकणिकाओं में तंतुकणिका नहीं होती । इसलिए वे कोशिकाएँ जिस ऑक्सीजन का वहन करती हैं, उसका वे स्वयं के लिए उपयोग नहीं करतीं ।

थोड़ा सोचो।


तंतुकणिका का आंतरिक आवरण शिखायुक्त होने का क्या लाभ हैं?

रिक्तिका (Vacuoles)

कोशिका के घटक द्रव्यों का संग्रह करने वाला कोशिका अंगक अर्थात रिक्तिका हैं। रिक्तिका का कोई विशिष्ट आकार नहीं होता। कोशिका की आवश्यकतानुसार रिक्तिका का स्वरूप बदलता हैं। रिक्तिका इकहरे आवरणयुक्त होती हैं।

कार्य

- 1. कोशिका का जलभिसारक दाब नियंत्रित रखना।
- 2. चयापचय की क्रियाओं में उत्पन्न उत्पादों (ग्लायकोजन, प्रथिन, पानी) का संग्रह करना ।
- 3. प्राणीकोशिका की रिक्तिका वर्ज्य पदार्थों का संग्रह करती हैं। तो अमीबा की रिक्तिका पाचन के पूर्व खाद्यपदार्थ संग्रहित करती है।
- 4. वनस्पित कोशिका की रिक्तिका में कोशिका द्रव भरा होकर वे कोशिका को दृढ़ता तथा कठोरता प्रदान करती है।

10.12 रिक्तिका

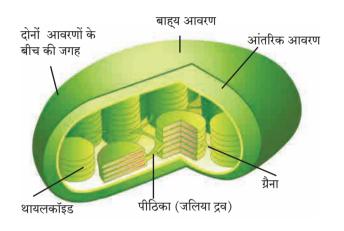
लवक (Plastids): वनस्पतियों की पत्तियों को हरा, तो फूलों को लाल, पीला, केसरी, नीला ऐसे अनेक रंग किस कारण प्राप्त होते होंगे ? ऐसे रंग देने वाला एक अंगक केवल वनस्पति कोशिकाओं में पाया जाता हैं, जो अर्थात लवक हैं। लवक दोहरे आवरणयुक्त रचना होकर दो प्रकार की होती हैं।

वनस्पति के अव्ययों का रंग	संगद्रव्य
हरा (उदा. पत्ते)	हरितद्रव्य (क्लोरोफिल)
लाल (उदा. गाजर)	कॅ रोटिन
पीला	झॅन्थोफिल
जामुनी, नीला	ॲन्थोसायनिन
मजींडा (उदा. बीट)	बिटालीन्स

- 1. अवर्णलवक (सफेद/रंगहीन लवक/Leucoplasts)
- 2. वर्णलवक (रंगीन लवक/Chromoplasts)

हरितलवक यह वर्ण लवक होकर अन्य प्रकार के वर्ण लवकों में रूपांतरित हो सकते हैं। उदा. कच्चे हरे टमाटरों के पकने के बाद हरितलवक का रूपांतरण लायकोपीन (Lycopene) में होने से टमाटर को लाल रंग प्राप्त होता हैं।

हरितलवक (Chloropalst)


कृति: क्रोटन/रिओ वनस्पति की पत्ती की ऊपरी पर्त निकालो । उसे काँचपट्टीपर रखो और उसमें स्थित वर्णलवको का संयुक्त सुक्ष्मदर्शी के नीचे निरीक्षण करो ।

तुम्हें पता हैं कि वनस्पतियों की पत्तियों में होने वाली प्रकाशसंश्लेषण प्रक्रिया के लिए हरितलवक अत्यंत आवश्यक है। हरितलवक सौर उर्जा का रासायनिक ऊर्जा के रूपांतरण करते हैं।

हरित लवक की पीठिकाओं में प्रकाश संश्लेषण के लिए आवश्यक प्रकिण्व, DNA, रायबोझोम्स और कार्बोज पदार्थ होते हैं।

इंटरनेट मेरा मित्र

फूलों, फलों में पाए जानेवाले और कुछ रंग और उसके लिए जिम्मेदार रंगद्रव्यों की जानकारी इंटरनेट से प्राप्त करो और ऊपर्युक्त तालिका पूर्ण करो।

10.13 हरितलवक

लवकों के कार्य

- 1. हरितलवक सौर ऊर्जा का अवशोषण करके उसका भोजन रूपी रासायनिक ऊर्जा में रूपांतरण करते हैं।
- 2. वर्णलवको के कारण फूलों तथा फलों को रंग प्राप्त होते हैं।
- 3. वर्ण लवक, कार्बोज, स्निग्ध तथा प्रथिन पदार्थों का संश्लेषण तथा संग्रह करते हैं। तंतुकणिका और लवकों में DNA तथा रायबोझोम्स होने से ये अंगक स्वयं की प्रतिकृति बना सकते हैं।

कोशिका की संरचना तथा अंगकों का अध्ययन करने के बाद तुम्हें पता चला होगा कि वनस्पित कोशिका और प्राणीकोशिका में पाए जानेवाले अंगकों के कारण कोशिका का कार्य ठीक तरह से चलता हैं। ऐसी विकसित कोशिकाओं को दृश्यकेंद्रकी कोशिका कहते हैं। पिछली कक्षा में जीवाणुओं के आदिकेंद्रकी कोशिका का अध्ययन किया था। अब इन दोनों प्रकारों की कोशिका का तुलनात्मक अध्ययन करनेवाले है।

कार्य संस्थानों के : राष्ट्रीय कोशिका विज्ञान केंद्र (National Centre for Cell Science - NCCS) भारत सरकार के जैव प्रौद्योगिकी विभाग के अंतर्गत कार्य करनेवाला स्वतंत्र संस्थान है । इस संस्थान का कार्यालय सावित्रीबाई फुले पुणे विश्वविद्यालय, पुणे में है । इस संस्थान द्वारा कोशिका विज्ञान में संशोधन, राष्ट्रीय प्राणी कोशिका के संग्रह के लिए सेवा देने का प्रमुख कार्य तथा कैंसर जैसे रोगों के उपचार से संबंधी संशोधन कार्य किए जा रहे हैं ।

दृश्यकेंद्रकी कोशिका■ आकार – 5–100 मायक्रोमीटर ■ गुणसूत्र संख्या – एक से अधिक ■ केंद्रक – केंद्रकपटल, केंद्रकी और केंद्रकद्रव्य युक्त सुस्पष्ट केंद्रक होता है। ■ तंतुकणिका, लवक – होते हैं। ■ उदाहरण – उच्चिवकसित एककोशिकीय और बहुकोशिकीय वनस्पित एवं ■ ग्रीवाणु

स्वाध्याय

1. मुझे पहचानो ।

प्राणियों में पाई जाती हैं।

- अ. मैं ATP निर्माण करने वाला कारखाना हूँ।
- आ. मैं इकहरे आवरण युक्त हूँ फिर भी कोशिका का जलभिसारण दाब नियंत्रित रखता हूँ।
- इ. मैं कोशिका को आधार प्रदान करता हूँ । पर मैं कोशिकाभित्ति नहीं हूँ । मेरा शरीर तो जालीजैसा है।
- ई. मैं कोशिका का जैसे रसायन कारखाना।
- उ. मेरे कारण ही तो पत्तियाँ हरी हैं।

2. तो क्या हुआ होता ?

- अ. लाल रक्त कणिकाओं में तंतुकणिकाएँ होतीं।
- आ. तंतुकणिका और लवकों में अंतर नहीं होता।
- इ. गुणसूत्रों पर जनुक नही होते।
- ई. झिल्ली अर्धपारगम्य ना होती।
- उ. वनस्पति में ॲन्थोसायानिन न होता ।

3. हम में अलग कौन? कारण बताओ।

- अ. केंद्रकी, तंतुकणिका, लवक, आंतरद्रव्यजालिका
- आ. DNA, रायाबोझोम्स, हरितलवक

4. कार्य लिखो।

- अ. कोशिका कला
- आ. कोशिका द्रव्य
- इ. लयकायिका
- ई. रिक्तिका
- उ. केंद्रक

5. मेंरा रंग किसके कारण? (अचूक पर्याय चूनो)

- अ. लाल टमाटर 1. क्लोरोफिल/हरितलवक
- आ. हरी पत्ती 2. कॅरोटिन
- इ. गाजर 3. ॲन्थोसायनिन
- ई. जामून 4. लायकोपीन

उपक्रम

- 1. विभिन्न पर्यावरण स्नेही वस्तुओं का उपयोग कर कोशिका की प्रतिकृति तैयार करो।
- कक्षा में अपने मित्रों का एक समूह बनाओ । कोशिका के प्रत्येक अंगक की भूमिका प्रत्येक को दो और नाटिका तैयार करके कक्षा में प्रस्तुत करो ।
- पार्चमेंट कागज या उसके जैसे कागज का उपयोग करके परासरण का अध्ययन करो।

11. मानव शरीर और अंग संस्थान

1. अंग और अंग संस्थान किससे बने होते है?

2. मानव शरीर में कौन-कौन से अंग संस्थान हैं?

पिछली कक्षा में तुमने सजीवों की कुछ विशेषताएँ / लक्षणों का अध्ययन किया है। सजीवों के लक्षणो को प्रमुख रूप से करने वाले सभी जीवनावश्यक प्रक्रियाओं को जीवनप्रक्रिया (Life processes) कहते हैं।

1. हम जब गहरी नींद में होते हैं तब हमारे शरीर में कौन-से कार्य चल रहे होते हैं?

2. हमारे शरीर में कौन-कौनसी जीवनप्रक्रियाएँ निरंतर चलती रहती हैं?

हमारे शरीर में जीवनप्रक्रिया सुचारू रूप से चलने के लिए कई इंद्रिया सामृहिक रूप से कार्य करती हैं। इन जीवनप्रक्रियाओं के भिन्न भिन्न सोपान होते हैं। विशिष्ट सोपानों पर विशिष्ट अंगकों दुवारा सुचारू रूप से कार्य होते रहता हैं। निश्चित कार्य सामूहिक रूप से करनेवाले अंग समूह को अंग संस्थान कहते हैं। हमारे शरीर में पाचनसंस्थान, श्वसन संस्थान, रक्तपरिवहन संस्थान, तंत्रिका संस्थान, उत्सर्जन संस्थान, प्रजनन संस्थान, अस्थि संस्थान, पेशीय संस्थान ऐसे कई अंग संस्थान कार्यरत तंत्र हैं।

थोडा याद करो ।

प्राणियों के शरीर में श्वासोच्छ्वास का कार्य कौन-कौनसे अंग करते हैं?

मानव शरीर की सभी जीवनप्रक्रियाएँ सुचारू रूप से चलने के लिए ऊर्जा की अत्यधिक आवश्यकता होती है। ऊर्जानिर्मिती कोशिका में होती है। जिसके लिए कोशिका को घुलनशील अन्न घटक एवं ऑक्सीजन की आपूर्ति करनी पड़ती हैं। यह कार्य श्वसन संस्थान तथा रक्तपरिवहन संस्थान दवारा किया जाता हैं। श्वसन की प्रक्रिया आगे दिए तीन चरणों में होती हैं।

1. बहि:श्वसन / बाह्यश्वसन :

- (अ) नि:श्वास नाक के दवारा हवा अंदर ली जाती हैं जहाँ से वह श्वसननलिका द्वारा दोनों फेफड़ो में जाती हैं।
- (ब) उच्छ्वास (श्वास छोड़ना) फेफड़ों में ली हुई हवा की ऑक्सीजन रक्त में जाती है । रक्त शरीर का CO फेफड़ों में पहुँचाता हैं और वो हवा उच्छ्वास द्वारा बाहर फेंकी जाती हैं।

फेंफडो के माध्यम से होने वाले इन दोनों क्रियाओं को एकत्रित रूप से बहिश्वसन कहते हैं।

- 2. अंत:श्वसन: शरीर की सभी कोशिकाओं और रक्त में होनेवाले गैसों के आदान प्रदान को अंतःश्वसन कहते हैं। रक्त से O्र कोशिकाओं में जाता हैं तथा कोशिकाओं से CO्र रक्त में आता हैं।
- 3. कोशिका श्वसन : ऑक्सीजन के कारण कोशिका में ग्लूकोज जैसे घुलनशील घटक का मंद ज्वलन होकर ATP के रूप में ऊर्जा मुक्त होती हैं। उसीप्रकार CO, और जलवाष्प यह निरूपयोगी पदार्थ तैयार होते हैं इस प्रकिया को कोशिकीय श्वसन कहते हैं । निम्न समीकरण की सहायता से कोशिकीय श्वसन को सारांश रूप में स्पष्ट किया जाता हैं।

C₆H₁₂O₆+6O₂→6CO₂+6H₂O+ ऊर्जा(38ATP)

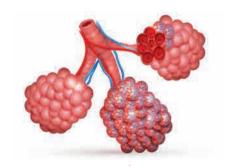
थोडा सोचो।

अमीबा, केंचूआ, तिलचट्टा, वनस्पति, विविध जलचर प्राणी. पक्षी किस की सहायता से श्वसन करते हैं ? इसकी सारणी बनाओ।

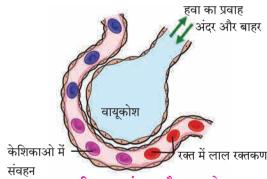
विचार करो।

ईंधन के ज्वलन से ऊष्मा के साथ साथ ध्वनि और प्रकाश निर्मित होता हैं, इसी प्रकार कोशिका में अन्न घटकों का ज्वलन होते समय ध्वनि और प्रकाश की निर्मिति होती होगी क्या?

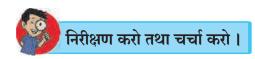
- 1. श्वसन संस्थान में कौन कौन से अंगकों का समावेश होता हैं?
- 2. खाना खाते समय बोलना नहीं चाहिए, ऐसा क्यों?

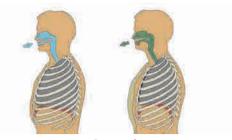

श्वसन संस्थान (Respiratory system): रचना और कार्य

- 1. **नाक (Nose)** :श्वसन प्रकिया की और श्वसनसंस्थान की शुरूआत नाक से होती है । नाक में स्थित बालों के और चिपचिपे पदार्थ की सहायता से हवा छनकर अंदर ली जाती हैं ।
- 2. ग्रसनी (Pharynx): ग्रसनी से आहारनाल तथा श्वसननिका की शुरूआत होती हैं। श्वसननिका आहारनाल के आगे होती श्वसननिका है। श्वसननिका के ऊपरी भाग में एक ढक्कन होता हैं। आहार नाल में भोजन के कण जाते समय इस ढक्कन के कारण श्वसननिका ढँक दी जाती हैं। जिससे श्वसननिका में भोजन के कण प्रवेश नहीं करते। अन्य समय में श्वसननिका खुली होती है। जिससे हवा ग्रसनी से होकर श्वसन निलका में जाती है।
- 3. श्वसननिका (Trachea) : श्वसननिका का शुरूआती हिस्सा स्वरयंत्र के कारण फूला हुआ होता हैं । वक्ष में श्वसन-निलका दो शाखाओं में विभाजित होती हैं । एक शाखा दाँए फेंफडें की ओर और दूसरी बाँए फेंफडें की ओर जाती हैं । 4. फेंफड़ें (Lungs) : वक्ष की गुहा में हृदय के दाएँ और बाएँ भाग में एक-एक फेंफडा होता हैं । वक्ष के गुहा का बहुतसा हिस्सा फेफडों से घरा होने के कारण हृदय का पृष्ठभाग उसके द्वारा ढ़क जाता हैं । प्रत्येक फेफडें पर द्विस्तरीय आवरण होता है । जिसे फुफ्फुसावरण (Pleura) कहते हैं । फेफडें स्पंज की भाँति प्रत्यास्थ होते हैं । फेफडें छोटे-छोटे कुप्पियों से बने होते हैं जिन्हें वायुकोश कहते हैं । वायुकोश के चारों ओर केशवाहिनीओं का घना जाल होता हैं ।


वायुकोश का आवरण काफी झिरझिरा होता है उसी प्रकार केशवाहिनीओं का आवरण भी बहुत पतला होता हैं । इस पतले आवरण से गैसों का आदान प्रदान आसानी से हो सकता हैं। फेफड़ों में स्थित असंख्य वायुकोशों के कारण गैसों के आदान प्रदान हेतु बहुत विस्तृत पृष्ठभाग उपलब्ध होता है ।

श्वसन संस्थान


वायूकोश

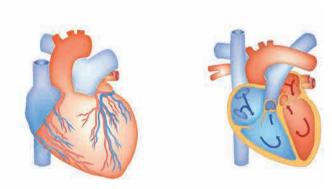

11.1 मानवी श्वसनसंस्था और वायुकोश

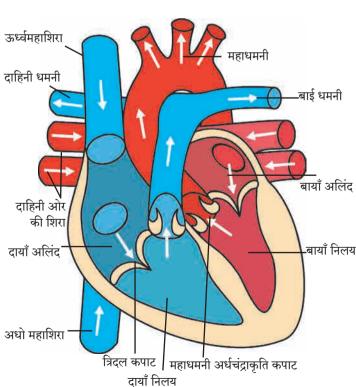
फेफडों में होनेवाला गैसों का आदानप्रदान : फेफडों के वायुकोशों के चारों ओर रक्त प्रवाहित होते समय गैसों का निरंतर आदानप्रदान होते रहता हैं । रक्त की लाल कोशिकाओ (RBC) में हिमोग्लोबिन यह लोहयुक्त प्रिथन होता है । वायुकोशों में आनेवाली हवा की ऑक्सीजन हिमोग्लोबिन द्वारा अवशोषित की जाती हैं । उसी समय CO_2 और जलवाष्प रक्त से वायुकोश में जाते हैं और वहाँ की हवा में घुल जाते हैं । ऑक्सीजन रक्त द्वारा लिया जाता हैं । CO_2 तथा जलवाष्प रक्त से बाहर निकाले जाते हैं और उच्छ्वास द्वारा बाहर छोड़ दिए जाते हैं ।

5. श्वासपटल (मध्यपटल)(Diaphragm): पसिलयों से बने छाती के पिंजडे के निचले भाग में पेशियों से बना एक परदा होता है। इसे श्वासपटल कहते हैं। श्वासपटल यह उदर गुहा और वक्ष गुहा के मध्य स्थित होता है। पसिलयों का थोड़ा ऊपर उठना और श्वासपटल का नीचे जाना ये दोनों क्रियाएँ एक साथ होने से फेफडों पर का दाब कम हो जाता हैं। जिससे बाहर की हवा नाक द्वारा फेफड़ों में जाती हैं। पसिलयाँ अपने मूल स्थानपर आने से और श्वसनपटल फिरसे ऊपर उठाए जाने से फेफडों पर दाब पडता हैं। उनमें स्थित हवा नाक से होकर बाहर ढकेली जाती है। श्वासपटल का निरंतर ऊपर और नीचे होने की हलचल श्वासोच्छवास की क्रिया के लिए आवश्यक होती है।

श्वसन क्रिया होते समय छाती के पिंजड़े के निचले भाग में होनेवाली हलचल का निरीक्षण करो और चर्चा करो।

11.2 श्वसनक्रिया और हलचल

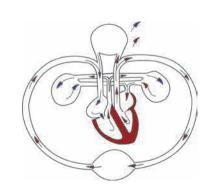



थोड़ा याद करो।

- 1. रक्त परिसंचरण अर्थात क्या है?
- 2. रक्त परिसंचरण संस्थान में कौन कौन से अंगको का समावेश होता हैं ?

रक्त परिसंचरण संस्थान (Blood circulatory system)

शरीर के विभिन्न अंगों में पानी, संप्रेरक, ऑक्सीजन, घुलनशील अन्नघटक, वर्ज्यपदार्थ जैसे विभिन्न पदार्थों का वहन रक्तपरिसंचरण संस्थान करता है। मनुष्य और उच्च वर्ग के प्राणियों में रक्तपरिसंचरण के लिए स्वतंत्र संस्थान होता हैं। रक्त परिसंचरण संस्थान में हृदय, रक्तवाहिनियाँ और केशवाहिनीओं का समावेश होता हैं।

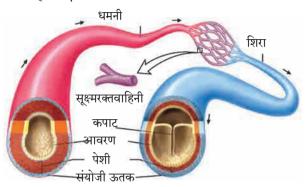


11.3 हृदय रचना और रक्तपरिसंचरण

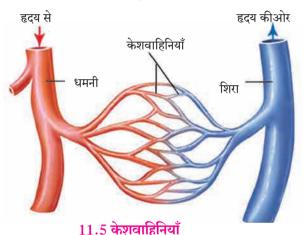
हृदय – संरचना और कार्य

छाती के पिंजडे के लगभग मध्यभाग में हृदय होता है। वह पसिलयों के पीछे दोनों फेफडों के बीच और उसके बाईं ओर थोड़ा झुका हुआ होता हैं। हमारे हृदय का आकार हमारी मुट्ठी के बराबर होता है और वजन लगभग 360 ग्राम होता हैं। हमारे हृदय कें चारों ओर द्विस्तरीय हृदयावरण होता है। हृद्यावरण के इन दो स्तरों में एक द्रवरूप पदार्थ होता है, जिससे घर्षण से तथा धक्कों से हृदय का संरक्षण होता है।

मानवी हृदय यह एक स्नायुमय, मांसल अवयव हैं । हृदय यह हृदपेशी से बना होता है । हृदय की पेशियाँ अनैच्छिक होती हैं । उनका संकुचन एवं शिथीलन एक निश्चित ताल में होता हैं इसी को हृदय का स्पंदन कहते हैं । हृदय के आंतरिक उर्ध्वा परदे के कारण दायाँ और बायाँ ऐसे दो भाग हो जाते हैं । इन दोनों भागों के पुनः दो–दो कक्ष होते हैं । इस प्रकार हृदय के चार कक्ष होते हैं । ऊपरी कक्षों को अलिंद तथा निचले कक्षों को निलय कहते हैं ।


रक्तवाहिनियाँ – संरचना एवं कार्य: हृदय का निरंतर स्पंदन चलता रहता हैं। जिससे रक्तवाहिनियों में भी निरंतर रक्त प्रवाहित होते रहता हैं। रक्तवाहिनियाँ मुख्य रूपसे दो प्रकार की होती हैं (1) धमनी (2) शिरा।

धमनी: हृदय से शरीर के विभिन्न भागों की ओर रक्त ले जानेवाली रक्तवाहिनियों को धमनियाँ कहते हैं। फुफ्फुस धमनी को छोड़कर अन्य सभी धमनियों से ऑक्सीकृत रक्त (शुद्ध रक्त) प्रवाहित किया जाता हैं। धमनियाँ शरीर में गहराई तक स्थित होती हैं इसकी भित्ति मोटी होती हैं। इनकी गुहाओं में कपाट नहीं पाए जाते।


शिरा: शरीर के विभिन्न भागों से रक्त हृदय की ओर लाने वाली रक्तवाहिनियों को शिराएँ कहते हैं। फुफ्फुस शिराओं को छोड़कर अन्य सभी शिराओं में से अनाक्सिकृत रक्त (कार्बनडाय ऑक्साइडयुक्त) प्रवाहित किया जाता हैं। सामान्यतः शिराएँ त्वचा की सतह के पास स्थित होती हैं। इसकी भित्ति पतली होती है। उसी प्रकार इनके गुहाओं में जाते हैं।

ऐसा हुआ था...

ई.स 1628 में विल्यम हार्वे इस ब्रिटिश डॉक्टरने, शरीर में रक्तपरिसंचरण क्रिया किस प्रकार होती हैं, उसका वर्णन किया था। हमारा हृदय अर्थात एक पेशीयुक्त पंप हैं। इस पंपद्वारा हमारे शरीर में रक्त परिसंचरण होता हैं ऐसा सिद्धांत रखा। रक्तवाहिनियों में स्थित कपाटो का कार्य किस प्रकार चलता हैं, इसकी खोज हार्वे इन्होंने की।

11.4 धमनी तथा शिरा की रचना

शिराओं मे कपाट किसलिए होते हैं? कपाट नहीं होते तो क्या होता?

केशवाहिनी (केशिकाएँ) (Capillaries)

शरीर के विभिन्न अंगो में जाकर धमनियाँ अधिक महीन शाखाओं में विभाजित हो जाती हैं। उनका व्यास छोटा-छोटा होकर वे बालों जैसी पतली दिखाई देती हैं। उन्हें केशिका कहते हैं। केशिका काफी महीन और पतली भित्ति वाली निलकाएँ हैं। केशिकाओं की भित्ति पतली होने के कारण केशिका और कोशिकाओं के बीच पदार्थों का आदानप्रदान आसानी से होता हैं। इस आदान प्रदान में रक्त की ऑक्सीजन, अन्नघटक, संप्रेरक और जीवनसत्व कोशिकाओं में घुल जाते हैं। उसी समय कोशिका के वर्ज्य पदार्थ रक्त में आते हैं। केशिकाएँ एक दूसरे से जुड़कर अधिक व्यासवाली वाहिनियाँ बनाती हैं। जिन्हें हम शिरा कहते हैं। प्रत्येक अंगो में केशवाहिनियों का जाल सा फैला होता है।

क्या तुम जानते हो?

सामन्यतः निरोगी मनुष्य के हृदय के प्रतिमिनट 72 स्पंदन होते हैं। व्यायाम करने या काम करने से उसी प्रकार मन में निर्माण होनेवाली भावनाओं के कारण हृदय के स्पंदन बढ़ जाते हैं। उसी प्रकार ऐसा दिखाई दिया हैं कि मनुष्य आराम करते समय या सोते समय स्पंदन कम हो जाते हैं। छोटे बालको में हृदय के स्पंदनों की संख्या अधिक होती है।

हृदय का स्पंदन होते समय दो प्रकार की आवाजें आती हैं। जिसमें से एक आवाज का वर्णन 'लब्ब' तो दूसरे आवाज का वर्णन 'डब्ब' ऐसा करते हैं। हृदय प्रत्येक स्पंदन में 75 मिलिलीटर रक्त आगे ढकेलता हैं।

हृदय में परिसंचरण/हृदय का कार्य

हृदयद्वारा शरीर के विभिन्न अंगों की ओर रक्त पहुँचाने की और वहाँ से पुनः हृदय की ओर लाने की क्रिया को रक्त परिसंचरण कहते हैं। रक्त निरंतर प्रवाहित होते रहने के लिए हृदय का एकान्तरित रूप से संकुचन एवं शिथिलन का कार्य निरंतर चलता रहता हैं। हृदय का लगातार एक संकुचन और एक शिथीलन मिलकर हृदय का एक स्पंदन होता हैं।

सामग्री: बारीक छिद्र वाली दो फूट लंबी रबर की नली, घड़ी, कीप

- 1. रबर के नली के एक सिरेपर कीप जोडो।
- 2. कीप का खुला भाग अपने वक्ष के बाई ओर रखो।
- 3. नली का दूसरा सिरा हृदय की आवाज सुनने के लिए कान के पास रखो।
- 4. घड़ी की सहायता से एक मिनट में होनेवाले हृदय के स्पंदन को नोट करो।

नाडी का स्पंदन : हृदय के स्पंदन और हाथ की नाडी के स्पंदन इनके बीच सहसंबंध खोजो।

- 1. कान के पीछे या पैरों की एड़ियों के ऊपरी भाग में भी स्पंदन महसूस किए जाते हैं, ये स्पंदन किसके कारण होते हैं ?
- 2. ऊँगली कटने पर या कहीं पर भी जख्म होने पर क्या बहता हैं?

रक्त (Blood)

रक्त यह लाल रंग का एक प्रवाही पदार्थ है। रक्त यह तरल संयोजी ऊतक है। ऑक्सीकृत रक्त का रंग गहरा लाल होता है और स्वाद नमकीन होता हैं, तथा (pH) मान 7.4 होता हैं। रक्त दो प्रमुख घटकों से बना है।

रक्तद्रव (Plasma) रक्तकणिका / रक्तकोशिका (Blood corpuscles / cells) अ. रक्तद्रव हल्के पीले रंग का, 1. लाल रक्त कणिकाएँ (RBC) आकार में छोटी, वृत्ताकार, केंद्रक विहीन कोशिकाएँ हैं। इन कोशिकाओं में पारदर्शक क्षारीय गुणधर्म वाला द्रव है। इसमें करीब स्थित हिमोग्लोबिन इस घटक के कारण रक्त लाल रंग का दिखाई देता हैं। हिमोग्लोबिन के कारण ऑक्सीजन रक्त में घुल जाता हैं। 90 से 92% पानी, 6 से 8% प्रथिन. - रक्त के प्रति घनमिलीमीटर में 50-60 लाख RBC होते हैं। RBC का 1 से 2% अकार्बनिक घटक निर्माण अस्थिमज्जा में होता है और वे लगभग 100 से 127 दिनों तक जीवित एवं अन्य घटक होते हैं। रहते हैं। ब. अल्ब्युमिन - पूरे शरीर में पानी 2. श्वेत रक्तकणिकाएँ (श्वेत पेशी) (WBC) आकार में बड़ी, केंद्रकयुक्त, रंगहीन कोशिकाएँ हैं। रक्त के प्रति घन मिलीमीटर विभाजित करने का कार्य करता में 5000-10,000 श्वेत रक्त कणिकाएँ होती हैं। क. ग्लोब्युलीन्स - संरक्षण का - इन कोशिकाओं के 5 प्रकार हैं - बेसोफील, इओसिनोफिल, न्यूट्रोफील, कार्य करते हैं। मोनोसाईटस्, लिम्फोसाईट्स ड. फायब्रिनोजेन और प्रोथ्नोम्बीन - श्वेत कणिकाओं का निर्माण अस्थिमज्जा में होता है। रक्त जमने की प्रक्रिया में कार्य - श्वेत कणिकाएँ हमारे शरीर में सैनिक का काम करती हैं। शरीर में कही पर भी रोग जंतूओं का प्रवेश होने पर श्वेत कणिकाएँ उनपर हमला करती हैं। सहायता करते हैं। सुक्ष्मजीवों द्वारा होनेवाले रोगों से सुरक्षा करती हैं। अकार्बनिक आयन-कैल्शियम. 3. रक्तपट्टिका (Platelets) सोडियम, पोटैशियम ये तंत्रिका और पेशीकार्यों पर नियंत्रण - ये बहुतही छोटी और तश्तरी के आकारवाली होती हैं। रखते हैं। – रक्त के एक घन मिलीमीटर में लगभग 2.5 लाख से 4 लाख होती हैं।

कार्य - ये रक्त जमने की क्रिया में भाग लेती हैं।

रक्त के कार्य

- 1. गैसों का परिवहन: फेंफडों में स्थित ऑक्सीजन रक्त द्वारा शरीर के सभी भागों की कोशिकाओं तक प्रवाहित किया जाता है। उसी प्रकार ऊतकों से फेफडों में CO लाया जाता हैं।
- 2. पोषक तत्वों का परिवहन (कोशिकाओं को भोजन पहुँचाना) : आहारनाल के भित्ति में से ग्लुकोज, अमिनो अम्ल, वसायुक्त अम्ल, जिनका पाचन हो चुका है ऐसे सरल पोषक तत्व रक्त में लिए जाते हैं और वे शरीर की प्रत्येक कोशिका तक पहुचाएँ जाते हैं।
- 3. वर्ज्य पदार्थों का परिवहन: युरिया, अमोनिया, क्रिएटिनीन आदि नाइट्रोजनयुक्त वर्ज्य पदार्थ ऊतकों से रक्त में इकट्ठा किए जाते हैं। बाद में ये पदार्थ शरीर के बाहर निष्कासित करने के लिए रक्तद्वारा वृक्कों की ओर ले जाए जाते हैं।
- 4. शरीर रक्षण : रक्त में प्रतिरक्षी का निर्माण होने से सुक्ष्मजीवों और अन्य हानिकारक कणों से शरीर का संरक्षण करते हैं।
- **5. प्रकिण्व तथा संप्रेरको का परिवहन** : प्रकिण्वों तथा संप्रेरको का उनके स्त्रवण वाले स्थान से, उनकी अभिक्रियावाले स्थान तक प्रवाहित करने का कार्य रक्त द्वारा होता है।
- 6. ताप नियमन : वाहिनियों के उचित विस्फारण (dilation) एवं संकुचन के कारण शरीर का तापमान 37 °C बना रहता हैं।
- 7. शरीर में सोडियम, पोटैशियम जैसे लवणो का संतुलन बनाए रखना।
- चोट लगने से रक्तप्रवाह होने पर वहाँ रक्त का थक्का बनाकर जख्म को बंद करना यह कार्य प्लेटलेट और रक्तद्रव में स्थित
 फायब्रिनोजेन नामक प्रथिन करते हैं।

मानवी रक्तसमूह (Human blood groups)

रक्त के प्रतिजन और प्रतिरक्षी इन दो प्रथिनों के आधार पर रक्त के अलग-अलग समूह किए गए हैं। मनुष्य में रक्त के A, B, AB तथा O ऐसे चार प्रमुख समूह होकर 'आर एच' (न्हीसस) पॉझिटिव्ह और 'आर एच' निगेटिव्ह ऐसे इन प्रत्येक समूह के दो प्रकार मिलाकर कुल आठ रक्त समूह होते हैं। (उदाहरणार्थ, A Rh +Ve a A Rh -Ve)

रक्तदान: कोई व्यक्ति दुर्घटनाग्रस्त होने पर जख्मों द्वारा रक्तस्त्रावित होकर शरीर में रक्त की कमी हो जाती है। शल्यक्रिया के समय भी कई बार रोगी को रक्त देना पड़ता है, उसी प्रकार ॲनेमिया, थॅलॅसेमिया (Thalassemia), कॅन्सर से ग्रसित रोगियों को बाहर से रक्त की आपूर्ति की जाती हैं। शरीर में रक्त की कमी को पूरा करने के लिए उस व्यक्ति को बाहर से रक्त दिया जाता हैं इसे 'रक्त-आधान' कहते हैं।

रक्त-आधान के लिए रक्त की आपूर्ति कहाँ से होती हैं?

रक्तबैंक: रक्त बैंको में विशिष्ट पद्धित से निरोगी व्यक्ति के शरीर से रक्त निकालकर रखा जाता हैं और फिर जरूरतमंद लोगों को दिया जाता है। एकत्रित किया हुआ रक्त तुरंत आवश्यकता न हो तो कुछ दिनों तक प्रशीतक में संग्रहित करके रखा जाता है।

रक्तदाता: जो व्यक्ति रक्त देता हैं, उसे रक्तदाता कहते हैं। रक्तग्राहक: जिस व्यक्ति को रक्त दिया जाता हैं उसे रक्त ग्राहक कहते हैं।

'O' समुह का रक्त अन्य सभी समूहवाले रक्त को दिया जाता है, तो 'AB' समुह के रक्तवाले व्यक्ति सभी से रक्त ले सकते है, इसलिए 'O' रक्त समुह को सार्वभौम दाता (Universal Donor) कहते हैं तो 'AB' इस रक्त समुह को सार्वभौम ग्राहक (Universal Recipient) कहते हैं।

रक्तसमूह आनुवांशिक होते हैं और वे अपने शरीर में माता और पिता से प्राप्त होनेवाले जनुकों पर आधारित होते हैं। रक्तदान करते समय दाता और ग्राहक के रक्तसमूह मेल खाते हो तभी रोगी को रक्त दिया जाता हैं। रक्त दान में रक्त समूह न जुड़ने पर रोगी के लिए घातक हो सकता हैं। इससे रोगी व्यक्ति की मृत्यू होने की संभावना होती हैं। आज का रक्तदाता कल का ग्राहक हो सकता है। किसी भी स्वार्थ के बिना किया गया रक्तदान यह जीवनदान हैं। दुर्घटना, रक्तस्राव, प्रसवकाल और शल्य क्रिया ऐसी परिस्थिति में रोगी को रक्त की आवश्यकता होती है, निरोगी व्यक्ति द्वारा किया गया रक्तदान का उपयोग जरूरतमंद रोगियों का जीवन बचाने के लिए किया जाता है इसलिए रक्तदान यह सर्वश्रेष्ठ दान है।

तुम्हारे परिसर के किसी रक्तबैंक में जाकर रक्तदान के संबंध में अधिक जानकारी प्राप्त करो ।

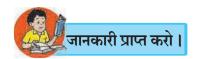
रक्तदाब (Blood pressure): हृदय के संकुचन और शिथीलन की सहायता से धमनियों से रक्त को निरंतर प्रवाहित रखा जाता हैं। संकुचन के कारण धमनियों की भित्तिपर रक्त का दाब पडता हैं, उसे 'रक्तदाब' कहते हैं। शरीर के सभी भागों में रक्त पहुँचने हेतु उचित रक्तदाब आवश्यक होता हैं। हृदय के संकुचन के समय उत्पन्न दाब को प्रकुंचन दाब (सिस्टॉलिक दाब) कहते हैं और शिथीलन के समय उत्पन्न दाब को अनुशिथिलन दाब (डायस्टोलिक दाब) कहते है। स्वस्थ व्यक्ति का रक्तदाब 120/80 मिमी से लेकर 139/89 मिमी पारे के स्तंभ के दाब के बराबर होता हैं। रक्तदाब मापने के लिए 'स्फिग्मोमॅनोमीटर' नामक यंत्र का उपयोग करते हैं।

11.6 रक्तदाबमापक यंत्र

उच्च रक्तदाब: उच्चरक्तदाब यह मनुष्य के शरीर के साधारण रक्तदाब की अपेक्षा अधिक वाला दाब है। जिस व्यक्ति में उच्च रक्तदाब हो, उसकी धमनियों में अनावश्यक तनाव निर्माण होता है। उच्च रक्तदाब में हृदय को आवश्यकता से अधिक कार्य करना पडता हैं। इसमें अनुशिथिलन दाब और प्रकुंचन दाब दोनों ही बढ़ जाते हैं।

इसे सदैव ध्यान में रखो ।

- प्रतिदिन हमारे शरीर में लगातार नया रक्त बनते रहता हैं।
- * रक्तदान के लिए एक समय में एक व्यक्ति से 350 ml रक्त लिया जाता हैं, जो हमारा शरीर 24 घंटो में ही लिए गए रक्त के प्रवाही भाग की आपूर्ति कर लेता हैं।
- जिन स्त्रियों में स्तनपान चल रहा हो या जो अभी गर्भावस्था में हो, वे स्त्रियाँ रक्तदान नहीं कर सकती।
- रक्तदान करते समय या करने के बाद कोई भी परेशानी नहीं होती।
- * 18 वर्ष से अधिक आयु वाला निरोगी व्यक्ति वर्ष में 3-4 बार रक्तदान कर सकता हैं।


प्रकार	सिस्टॉलिक दाब	डायस्टॉलिक दाब
साधारण रक्तदाब	90-119 मिमी	60-79 मिमी
पूर्व उच्च रक्तदाब	120-139 मिमी	80-89 मिमी
उच्च रक्तदाब अवस्था -1	140-159 मिमी	90-99 मिमी
उच्च रक्तदाब अवस्था - 2	≥ 160 मिमी	≥ 100 मिमी

A, B और O इन रक्त समूहो की खोज इ.स. 1900 में डॉ. कार्ल लॅंड्स्टेनर ने की। इसके लिए उन्हें 1930 साल का नोबेल पुरस्कार दिया गया। AB रक्तसमूह की खोज डिकास्टेलो और स्टर्ली ने 1902 में की।

क्या तुम जानते हो?

रक्तिवज्ञान (हिमॅटॉलॉजी): रक्त, रक्त बनानेवाले अंग और रक्त में उत्पन्न रोग इनका अध्ययन करनेवाली चिकित्सकीय विज्ञान की शाखा। रक्त के सभी रोगों का निदान एवं उपचार करने, रक्त से संबंधित अनुसंधान भी इस शाखा में किया जाता हैं।

तुम्हारे नजदीक के किसी अस्पताल में जाओ । रक्तदाब मापने के यंत्र की सहायता से B.P. कैसे मापा जाता है इस विषय की जानकारी प्राप्त करो ।

स्वाध्याय

1. मेरा जोडीदार खोजो।

'अ' समूह

1. हृदय के स्पंदन

2. RBC

3. WBC

4. रक्तदान

5. निरोगी व्यक्ति के शरीर का तापमान

रका उ. 50 ते 60 लाख प्रति घन

'ब' समूह

आ. 7.4

ई. 72

इ. 37 °C

अ. 350 मिली

6. ऑक्सीजनयुक्त रक्त का pH ऊ. 5000 तेमान 10,000 प्रति

घन मिलीलीटर

मिलीलीटर

2. निम्नलिखित सारणी पूर्ण करो।

अंग संस्थान	अंग	कार्य
 श्वसन संस्थान रक्तपरिसंचारण संस्थान 		

- 3. स्वच्छ एवं नामांकित आकृतियाँ बनाओ।
 - अ. श्वसन संस्थान आ. हृदय की आंतरिक संरचना

4. सकारण स्पष्ट करो ।

- अ. मनुष्य में रक्त लाल रंग का होता हैं।
- आ. श्वासपटल (मध्य पटल) के ऊपर नीचे होने की क्रिया एक के बाद एक होती रहती हैं।
- इ. रक्तदान को सर्वश्रेष्ठ दान संबोधित किया जाता है।
- ई. 'O' रक्त समूहवाले व्यक्ति को 'सार्वभौम दाता' कहते हैं।
- उ. भोजन में नमक की मात्रा कम होनी चाहिए।

5. नीचे दिए प्रश्नों के उत्तर तुम्हारे शब्दों में लिखो।

- अ. रक्त परिसंचरण संस्थान का श्वसन, पाचन और उत्सर्जन संस्थान के साथ का संबंध कार्य के आधार पर लिखो।
- आ. मनुष्य के रक्त की संरचना एवं कार्य लिखो।
- इ. रक्तदान का महत्त्व एवं आवश्यकता स्पष्ट करो।

6. अंतर स्पष्ट करो।

- अ. धमनियाँ और शिराएँ
- आ. बाह्यश्वसन और आंतरिक श्वसन
- 7. रक्तदान करनेवाले व्यक्ति के संबंध में निरोगी होने के लिए कौनसे मापदंड ध्यान में रखोगे ?

- कोष्टक में दिए गए विकल्पों का उचित स्थान पर उपयोग करो और रिक्त स्थानों की पूर्ति करो । (हिमोग्लोबिन, क्षारीय, श्वासपटल, अस्थिमज्जा, ऐच्छिक, अनैच्छिक, अम्लीय)
 - अ. रक्त की लाल कोशिकाओं में..... यह लौह यौगिक होता हैं।
 - आ. यह उदरगुहा और वक्षगुहा के मध्य होता हैं।
 - इ. हृदय की पेशियाँ होती हैं।
 - ई. आक्सीकृत रक्त का pH होता हैं।
 - उ. RBC का निर्माण में होता हैं।

9. हम में अलग कौन पहचानो ।

- अ. A, O, K, AB, B
- आ. रक्तद्रव्य, रक्तपट्टिका, रक्त-आधान, रक्तकणिका
- इ. श्वसननलिका, वायुकोश, श्वासपटल, केशिका
- ई. न्यूट्रोफिल, ग्लोब्युलिन्स, ॲल्ब्युमिन, प्रोथ्रोम्बीन
- 10. नीचे दिया गया परिच्छेद पढ़ो और रोग/विकार पहचानो। आज उसका बालक डेढ़ साल का हो गया । परंतु वह निरोगी, हँसमुख नहीं हैं । वो लगातार चिडचिड़ करता हैं, दिनोंदिन रोगी और कमजोर दिखाई देता है । उसे दम लगता हैं । उसकी श्वसनक्रिया तीव्र हो गई है। उसके नाखून नीलाभ दिखाई देने लगे ।
- 11. तुम्हारे पड़ोस के चाचा के रक्तदाब के रोग का निदान डॉक्टर ने किया हैं । उनका रक्तदाब नियंत्रण में रहने के लिए उन्होंने क्या करना चाहिए ?

उपक्रम :

हृदय रोग के कार्य से संबंधित विभिन्न आधुनिक चिकित्सकीय उपचारों की जानकारी प्राप्त करो।

12. अम्ल, क्षारक की पहचान

- 1. हम रोज के भोजन में अनेक खाद्य पदार्थों का उपयोग करते हैं, जैसे नींबू, इमली, टमाटर, शक्कर, सिरका (व्हिनेगर), नमक इत्यादि। क्या सभी पदार्थों का स्वाद एक समान हैं?
- 2. नींबू, शक्कर, दही, चूने का पानी, खाने का सोड़ा, आँवला, इमली, आम, अनार, पानी इन पदार्थों का स्वाद कैसा हैं उसे लिखो। (खट्टा, कसैला, मीठा, कडवा, स्वादहीन)

अम्ल (Acid)

तुम्हारे ध्यान में आएगा कि कुछ पदार्थों का स्वाद मीठा, कुछ का कडवा तो कुछ का खट्टा अथवा कसैला होता हैं। नींबू, इमली, सिरका (व्हीनेगर) अथवा आँवला इन सब पदार्थों का स्वाद खट्टा होता हैं। उनका यह स्वाद उसमें उपस्थित एक विशिष्ट प्रकार के यौगिकों के कारण प्राप्त होता हैं। इस खट्टे स्वाद को देनेवाले यौगिकों को अम्ल कहते हैं अम्ल पानी में घुलनशील होते हैं और वे क्षरणकारक भी होते हैं। प्राणी और वनस्पित में भी अम्ल होता है।

खाद्य पदार्थों में स्थित अम्लों को प्राकृतिक अम्ल अथवा कार्बनिक अम्ल ऐसा भी कहते हैं ये अम्ल क्षीण प्रकृति के होने के कारण उन्हें सौम्य अम्ल (weak acid) कहते हैं । कुछ अम्ल तीव्र स्वरूप के होते हैं वे दाहक होते हैं । उदा. सल्फ्यूरिक अम्ल (H_2SO_4) , हाइड्रोक्लोरिक अम्ल (HCl) और नायट्रिक अम्ल (HNO $_3$) इन अम्लों को खनिज अम्ल भी कहते हैं । इनके सांद्र द्रव्य त्वचा पर पड़ने पर त्वचा झुलसती हैं तथा उनका धूँआ श्वसन के द्वारा अथवा मुहँ के द्वारा शरीर में जाने से हानिकारक होता है । सान्द्र अम्ल को धीरे-धीरे पानी में डालने पर उसका रूपांतर तनु अम्ल में होता हैं । ऐसे तनु अम्ल सान्द्र अम्लों की तुलना में कम हानिकारक होते हैं ।

तुमने खाने के सोड़े के तनु विलयन का स्वाद यदि चखा हो तो वह कुछ कसैला/कड़वा लगेगा। जिस पदार्थ का स्वाद कसैला/कड़वा होता हैं और स्पर्श करने पर चिकने लगते हैं उदाहरण चूने का पानी $Ca(OH)_2$, खाने का सोड़ा $NaHCO_3$, कॉस्टिक सोड़ा (NaOH) और साबुन इत्यादि पदार्थों को क्षारक कहते हैं। क्षारक अम्ल की अपेक्षा पूर्णरूप से भिन्न होते हैं। वे रासायनिक दृष्टि से अम्ल के विपरीत गुणधर्म वाले होते हैं। ये भी सान्द्र अवस्था में त्वचा को झुलसा देते हैं। हमें मालूम हैं कि उर्ध्वपातित पानी स्वादहीन होता हैं। पानी यह अम्लीय अथवा क्षारीय नहीं होता।

सूचक (Indicator)

जो पदार्थ अम्लीय अथवा क्षारीय नहीं होते हैं वे रासायनिक दृष्टि से उदासीन होते हैं। अम्ल अथवा क्षारक का स्वाद लेना अथवा उन्हें स्पर्श करना यह अत्याधिक हानिकारक होने के कारण उनकी पहचान करने के लिए 'सूचक' (Indicator) इस विशिष्ट पदार्थ का उपयोग किया जाता हैं। वे पदार्थ जो अम्ल अथवा क्षारक के संपर्क में आने पर स्वयं का रंग बदलते हैं उन्हें सूचक कहते हैं।

प्रयोगशाला के सूचक (Indicators in Laboratory): अम्ल और क्षारक पदार्थों का परीक्षण लिटमस कागज़ का उपयोग कर किया जाता हैं। यह कागज़ लाइकेन (पत्थरफूल) नामक वनस्पति के अर्क से तैयार किया जाता हैं। वह लाल अथवा नीले रंग का होता हैं। नीला लिटमस पत्र अम्ल में डालने पर लाल होता है और लाल लिटमस कागज़ क्षारक के कारण नीला हो जाता है उसी प्रकार फेनाफ्थलीन. मेथिल ऑरेंज व मेथिल रेड़ ये सूचक द्रव्य के रूप में प्रयोगशाला में उपयोग में लाए जाते हैं। मेथिल ऑरेंज यह दर्शक अम्ल में गुलाबी तथा क्षारक में पीला हो जाता है। फेनाफ्थलीन अम्ल में रंगहीन और क्षारक में गुलाबी हो जाता है। वैश्विक सूचक (Universal Indicator) ये द्रव्य रूप का सूचक है, जो अम्ल तथा क्षारक के संपर्क में आने पर अलग अलग रंग परिवर्तन दिखाता है।

蛃.	सूचक पदार्थों के नाम	सूचक के मूल रंग	अम्ल में रंग	क्षारक में रंग
1.	लिटमस कागज़	नीला	लाल	नीला (वैसा ही रहता हैं)
2.	लिटमस कागज़	लाल	लाल (वैसा ही रहता हैं)	नीला
3.	मेथिल ऑरेंज	नारंगी	गुलाबी	पीला
4.	फेनाफ्थलीन	रंगहीन	रंगहीन	गुलाबी
5.	मेथिल रेड	लाल	लाल	पीला

12.2: सूचक और उसके अम्ल तथा क्षारक द्रव्य में रंग

घरेलू सूचक: प्रयोगशाला में सूचक पदार्थ उपलब्ध न होनेपर घर के अनेक पदार्थों की सहायता से प्राकृतिक सूचक बना सकते हैं। अन्न का पीला दाग साबुन से धोने पर लाल हो जाता हैं ये तुमने देखा होगा। यह रंग बदल, अन्न में स्थित हल्दी और साबुन में स्थित क्षारक के बीच होनेवाली रासायनिक क्रिया का परिणाम होता हैं। यहाँ हल्दी यह सूचक का कार्य करती हैं इसी प्रकार लाल गोभी, मूली, टमाटर तथा गुड़हल और गुलाब से भी प्राकृतिक सूचक बना सकते हैं।

प्राकृतिक सूचक तैयार करना

करो और देखो।

सामग्री : गुड़हल, गुलाब, हल्दी, लाल गोभी के पत्ते, छन्ना कागज़ (फिल्टर पेपर) इत्यादि ।

कृति: लाल गुड़हल के फूलों की पंखुड़ियों को सफेद छन्ना कागज़ पर रगड़ो । ये पट्टी काट लो । ये हुआ, गुड़हल से तैयार हुआ सूचक कागज़ उसी प्रकार गुलाब की पंखुड़ियों को सफेद छन्ना कागज़ पर रगड़ो इस कागज़ की पट्टी को काट लो । ये बना गुलाब का सूचक कागज़ । हल्दी का चूर्ण लो उसमें थोड़ा पानी डालो । इस हल्दी के पानी में छन्ना कागज़ अथवा सादा कागज़ थोड़े समय तक डुबा कर रखो । सूखने पर इस कागज़ की पट्टी तैयार करो । इस प्रकार हल्दीसूचक कागज़ तैयार करो । लाल गोभी के पत्तों को थोड़े पानी में डालकर पानी गर्म करो । गोभी के पत्तों का द्रव्य ठंड़ा होने पर उसमें कागज़ डुबाकर बाहर निकालो । कागज़ सूखने पर उसके छोटे टुकड़े करो । इस प्रकार गोभी के पत्तों का सूचक बना कर देखो ।

इस प्रकार बने सूचक कागज़ पर नीचे दिए गए विविध पदार्थों की बूँद डालो व क्या परिणाम होता हैं उसे लिखो।

蛃.	पदार्थ	हल्दी के पट्टी पर होनेवाला परिणाम	अम्लीय / क्षारीय
1.	नींबू का रस		
2.	चूने का पानी		
3.			

खाने का सोड़ा लो, उसमें थोड़ा पानी डालो। जो द्रव्य तैयार होगा उसमें नींबूरस, सिरका (व्हीनेगर), संतरा रस, सेब रस इत्यादि पदार्थ डालकर निरीक्षण ज्ञात करके लिखो।

खाने के सोड़े के जलीय द्रव्य में फलों का रस डालने पर, तुम्हें क्या दिखाई दिया? बुलबुले निकले या फलों का रस फसफसाने लगा?

ऊपर दी गई पहली कृति से समझता हैं, कि हल्दी से बने सूचक कागज़ की पिट्टयों का पीला रंग कुछ विशिष्ट पदार्थों के द्रव्यों में लाल हो जाता हैं। क्षारीय पदार्थों में हल्दी के सूचक कागज़ का रंग लाल होता हैं, उसी प्रकार अम्लीय पदार्थों के द्रव्य में खाने के सोड़े का जलीय द्रव्य डालने पर बुलबुले दिखाई देते हैं या वो फसफसाता हैं।

इन दोनों सरल और आसान कृति से पदार्थ अम्ल हैं या क्षारक हम इसकी पहचान कर सकते हैं।

शिक्षकों के मार्गदर्शन में सिरका (व्हीनेगर), नींबूरस, अमोनियम हाइड्राक्साइड् करो और देखो । (NH,OH) और तनु हाइड्रोक्लोरिकअम्ल (HCl) के नमुने अलग अलग परखनली में लो । उसमें नीचे दिए गए सूचकों की एक-दो बूँद डालो उसी प्रकार लिटमस कागज़ भी द्रव्य में डुबाओ । निरीक्षण ज्ञात करके तालिका में लिखो ।

नमूना द्रव्य	लाल लिटमस	नीला लिटमस	फेनाफ्थलीन	मेंथिल ऑरेंज	अम्ल/क्षारक
नींबू रस					
NH ₄ OH					
HCl					
HNO ₃					

ऊपर्युक्त प्रयोग से ऐसा दिखाई देता है कि अम्ल में लिटमस का नीला रंग बदलकर लाल हो जाता है और क्षारक में लाल लिटमस पत्र नीला हो जाता है। मेथिल ऑरेंज का नारंगी रंग अम्ल में गुलाबी हो जाता हैं तो रंगहीन फेनाफ्थलीन क्षारक में गुलाबी हो जाता है ।

12.3 अम्ल व क्षारक का लिटमस कागज पर परिणाम

बताओ तो

- 1. घर के शहाबादी फर्श पर, रसोई के चबूतरे पर, नींबू का रस, इमली का जलीय द्रव्य जैसे खट्टे पदार्थ गिरने पर क्या होता हैं? क्यों?
- 2. अपने परिसर की मिट्टी लाकर वह अम्ल, क्षारक उदासीन हैं, ये देखो।
- 3. हरे दाग पड़े ताँबे के बर्तन और काले पड़े चांदी के बर्तन चमकाने के लिए किसका उपयोग किया जाता हैं?
- 4. दाँत साफ करने के लिए ट्रथपेस्ट का उपयोग क्यों करते हैं?

अम्ल ये एक ऐसा पदार्थ होता हैं जिसका जलीय द्रव्य हाइड्रोजन आयन (H+) उपलब्ध कर देता हैं /निर्माण करता हैं । उदा. जलीय द्रव्य में हाइड्रोक्लोरिक अम्ल (HCl) का विघटन होता हैं।

$$HCl(aq) \longrightarrow H^+ + Cl^-$$

(हायड्रोक्लोरिक अम्ल) (हायड्रोजन आयन) (क्लोराइड आयन)

अम्लों के कुछ उदाहरण: हाइड्रोक्लोरिकअम्ल (HCl), नायट्रिक अम्ल (HNO3), सल्फ्यूरिक अम्ल (H3SO1), कार्बोनिक अम्ल (H2CO2) शीतपेयों में, नींबू और अन्य अनेक फलों में एस्कार्बिक अम्ल, सायट्रिक अम्ल, सिरका में एसीटिक अम्ल इत्यादि।

हमारे उपयोग में आनेवाले कुछ खाद्य पदार्थों में कुछ प्राकृतिक (सेन्द्रीय) अम्ल होते हैं। ये अम्ल सौम्य प्रकृति के होने के कारण खनिज अम्ल की तरह हानिकारक/ अपायकारक नहीं होते हैं । कुछ प्राकृतिक अम्ल वाले खादय पदार्थ नीचे तालिका में दिए गए हैं।

क्र.	पदार्थ/स्रोत	अम्ल (प्राकृतिक/कार्बनिक)
1	सिरका	एसीटिक अम्ल
2	संतरा	सायट्रिक अम्ल
3	इमली	टार्टारिक अम्ल
4	टमाटर	ऑक्सॅलिक अम्ल
5	दही	लॅक्टिक अम्ल
6	नींबू	सायट्रिक अम्ल

12.4 कुछ प्राकृतिक अम्ल

12.4 : अम्ल के गुणधर्म

- 1. अम्ल स्वाद में खट्टे होते हैं।
- 2. अम्ल के अणु में हाइड्रोजन (H+) आयन मुख्य घटक होता है।
- 3. अम्ल के साथ धातु अभिक्रिया करके हाइड्रोजन का निर्माण करते हैं।
- 4. अम्ल की कार्बोनेट के साथ अभिक्रिया होने पर CO, गैस मुक्त होती हैं।
- 5. अम्ल के कारण नीला लिटमस कागज़ लाल होता हैं।

अम्ल के उपयोग

- 1. रासायनिक खाद के उत्पादन में अम्लों का उपयोग किया जाता है।
- 2. तेल के शुद्धिकरण की प्रक्रिया में, औषधियों में, रंग में, विस्फोटक द्रव्यों के निर्माण प्रक्रिया में अम्लों का उपयोग किया जाता है।
- 3. भिन्न-भिन्न क्लोराइड लवण बनाने के लिए हाइड्रोक्लोरिक अम्ल का उपयोग करते हैं।
- 4. तन् सल्फ्यूरिक अम्ल का उपयोग बैटरी (विद्युत सेल) में करते हैं।
- 5. पानी को जंतुविरहित करने के लिए तनु हाइड्रोक्लोरिक अम्ल का उपयोग किया जाता है।
- 6. लकड़ी की लुगदी से सफेद कागज़ बनाने के लिए अम्ल का उपयोग किया जाता है।

सान्द्र अम्ल तथा क्षारक की दाहकता : सान्द्र सल्फ्यूरिक अम्ल जब पानी में घुलता हैं तो बहुत ऊष्मा का निर्माण होता हैं इसलिए उसका विरलीकरण करने के लिए अम्ल को बहुत ही धीरे धीरे पानी में डालते हैं और काँच की छड़ से धीरे-धीरे हिलाते रहें जिससे निर्माण होनेवाली ऊष्मा एक ही जगह पर न रहकर संपूर्ण विलयन में एक समान फैल जाए । ऐसा इसलिए करते हैं जिससे अम्लयुक्त द्रव्य छलक कर बाहर न आए । कभी भी सान्द्र सल्फ्यूरिक अम्ल में पानी नहीं डालना चाहिए क्योंकि ऐसा करने से प्रचंड़ ऊष्मा का निर्माण होकर स्फोट होने की संभावना हो सकती हैं ।

सोडियम हाइड्राक्साइड़ और पोटेशियम हाइड्राक्साइड़ जैसे क्षारक भी तीव्र और दाहक होते हैं। उनका सांद्र द्रव्य त्वचा पर गिरने से त्वचा झुलस जाती हैं क्योंकि वे त्वचा में स्थित प्रथिन का विघटन करते हैं।

नींबू, आम जैसे खट्टे पदार्थ लोहे के चाकू से काटने पर चाकू की पांत चमकदार बनती है, क्यों?

- हमने देखा हैं, कि खनिज अम्ल शरीर के लिए हानिकारक होते हैं परंतु अनेक कार्बनिक अम्ल हमारे शरीर में और वनस्पतियों में भी पाए जाते हैं और वे लाभदायक होते हैं।
- हमारे शरीर में DNA (डी-आक्सीरायबोन्यूक्लिक अम्ल) यह अम्ल होता है, जो हमारे आनुवांशिक गुणधर्मों को निश्चित करता है।
- प्रथिन (प्रोटीन) शरीर की कोशिकाओं का भाग है वह अमीनो अम्ल से बना होता है।
- शरीर में वसा (Fat) यह वसीय अम्ल (Fatty acid) से बना होता है।

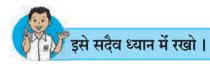
श्वारक (Base) : क्षारक एक ऐसा पदार्थ हैं जिसका जलीय द्रव्य हाइड्राक्साइड़ (OH^-) आयन देता है / निर्माण करता हैं । उदा. NaOH (aq) $\longrightarrow Na^+$ (aq) + OH^- (aq) (thोडियम हाइड्रॉक्साइड) (thोडियम आयन) (हाइड्रॉक्साइड आयन)

सोड़िअम हाइड्रॉक्साइड NaOH

पोटैशियम हाइड्रॉक्साइड KOH

कैल्शियम हाइड्रॉक्साइड Ca(OH)

मैग्नीशियम हाइड्रॉक्साइड Mg(OH)


अमोनियम हाइड्रॉक्साइड NH₄OH

12.5 क्षारक के कुछ उदाहरण

क्र.	क्षारक के नाम	सूत्र	उपयोग
1	सोडियम हाइड्राक्साइड/कास्टिक सोडा	NaOH	कपड़े धोने के साबुन में
2	पोटेशियम हाइड्राक्साइड / कास्टिक पोटाश	KOH	नहाने के साबुन में, शॅम्पू में
3	कैल्शियम हाइड्राक्साइड / चूने का पानी	Ca(OH) ₂	चूना/रंग सफेदी के लिए
4	मैग्नेशियम हाइड्राक्साइड/मिल्क ऑफ मैग्नेशिया	Mg(OH) ₂	अम्ल विरोधक औषध
5	अमोनियम हाइड्राक्साइड	NH ₄ OH	खाद बनाने के लिए

12.6 क्षारक के सूत्र तथा उनके उपयोग

किसी भी पदार्थ को पहचानने के लिए उस पदार्थ का स्वाद लेना, सूँघना या उन्हें स्पर्श करना यह उचित नहीं हैं। ऐसा करने से शरीर को हानि हो सकती हैं।

क्षारक के गुणधर्म:

- 1. क्षारक का स्वाद कड़वा होता हैं।
- 2. क्षारक को स्पर्श करने पर चिकना लगता हैं।
- 3. क्षारक का प्रमुख घटक हाइड्राक्साइड़ (OH-) आयन होता हैं।
- 4. सामान्यतः धात् के आक्साइड् क्षारीय होते हैं।

उदासीनीकरण : हमने देखा हैं कि अम्ल में हाइड्रोजन आयन (H^+) और क्षारक में हाइड्राक्साइड आयन (OH^-) होते हैं । अम्ल और क्षारक के संयोग करने से लवण और पानी का निर्माण होता है ।

इस रासायनिक अभिक्रिया को उदासीनीकरण कहते हैं।

क्या तुम जानते हो?

हमारे जठर में हाइड्रोक्लोरिक अम्ल होता हैं उसके कारण अन्न का पाचन सुलभता से होता हैं परंतु ये अम्ल आवश्यकता से अधिक होने पर अपचन होता है । इस पर उपाय के रूप में सामान्यतः क्षारीय औषधियाँ दी जाती हैं । उसमें मिल्क ऑफ मैग्नेशिया ${\rm Mg(OH)}_2$ का समावेश होता हैं । ऐसे क्षारीय पदार्थ, जठर में उपस्थित अतिरिक्त अम्ल का उदासीनिकरण कर देते हैं । रासायनिक खादों का अनावश्यक व बेशुमार उपयोग करने से कृषि भूमि में अम्ल का अनुपात बढ़ता हैं । जब जमीन अम्लीय हो जाती है तब जमीन में क्षारीय चूने का पत्थर या चूने का पानी जैसे रसायन कृषितज्ञ के मार्गदर्शन में डालते हैं, इस प्रकार क्षारक जमीन के अम्ल का उदासीनीकरण करते हैं ।

1. नीचे दिए गए द्रव्य अम्ल हैं या क्षारक पहचानो ।

द्रव्य	सूचक में हुआ परिवर्तन			अम्ल /
	लिटमस	फेनाफ्थलीन मेथिल ऑरेंज		क्षारक
1.		परिवर्तन नहीं		
2.			नारंगी रंग बदल कर लाल हो जाता	
			हैं।	
3.	लाल लिटमस नीला होता हैं।			

2. सूत्र की सहायता से रासायनिक नाम लिखो।

H₂SO₄, Ca(OH)₂, HCl, NaOH, KOH, NH₄OH

- 3. सल्फ्युरिक अम्ल का रासायनिक उद्योगधंधो में सबसे अधिक महत्व क्यों हैं?
- 4. उत्तर लिखो।
 - अ. क्लोराइड लवण प्राप्त करने के लिए कौन-सा अम्ल उपयोग में लाया जाता हैं ?
 - आ. एक पत्थर के नमूने पर नींबू का रस निचोड़ते ही वह फसफसाता हैं और निर्माण होनेवाली गैस से चूने का पानी दुधिया हो जाता हैं। पत्थर में कौन-से प्रकार का यौगिक हैं?
 - इ. प्रयोगशाला में एक अभिक्रियाकारक के बोतल पर की चिठ्ठी खराब हो गई हैं उस बोतल में रखा द्रव्य (पदार्थ) यह अम्ल हैं या नहीं, यह तुम कैसे पहचानोंगे?
- 5. नीचे दिए गए प्रश्नों के उत्तर लिखो।
 - अ. अम्ल और क्षारक में अंतर स्पष्ट करो।
 - आ. सूचक पर नमक का परिणाम क्यों नहीं होता?
 - इ. उदासीनीकरण से कौन-से पदार्थ तैयार होते हैं?
 - ई. अम्ल के औद्योगिक उपयोग कौन-से हैं?
- 6. रिक्त स्थानों की पूर्ति करो।
 - अ. अम्ल का प्रमुख घटक हैं। आ. क्षारक का प्रमुख घटक..... हैं। इ. टार्टारिक ये अम्ल हैं।

7. जोड़ियाँ लगाओ।

'अ' गट 'ब' गट

1. इमली a. एसीटिक अम्ल

2. दही b. सायटिक अम्ल

 2. ५६।
 0. सायाट्रफ अम्ल

 3. नींब्
 c. टार्टारिक अम्ल

4. सिरका (व्हिनेगर) d. लॅक्टिक अम्ल

- 8. सही / गलत पहचानकर लिखो।
 - अ. धातुओं के आक्साइड क्षारीय होते हैं।
 - आ. नमक अम्लीय है।
 - इ. लवणों के कारण धातुओं का क्षरण होता है।
 - ई. लवण उदासीन होते है ?
- 9. नीचे दिए गए पदार्थों का अम्लीय, क्षारीय और उदासीन इन समूहों में वर्गीकरण करो । HCl, NaCl, MgO, KCl, CaO, H₂SO₄,

HNO₃, H₂O, Na₂CO₃

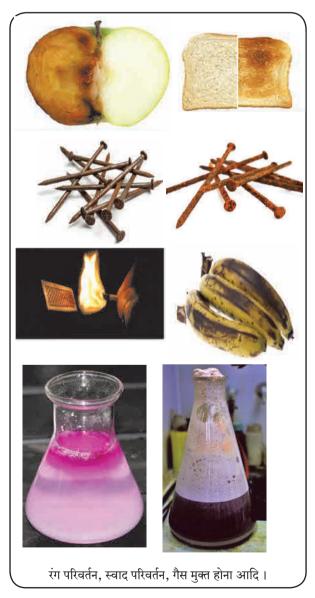
उपक्रम :

हमारे दैनिक जीवन में उदासीनीकरण के उपयोग और महत्त्व अपनी भाषा में लिखो।

13. रासायनिक परिवर्तन और रासायनिक बंध

थोड़ा याद करो।

- 1. परिवर्तनों के वर्गीकरण की विविध पद्धतियाँ कौन सी हैं?
- 2. भौतिक परिवर्तन और रासायनिक परिवर्तन में अंतर क्या हैं ?
- 3. नीचे दिए गए परिवर्तनों का भौतिक परिवर्तन और रासायनिक परिवर्तन में वर्गीकरण करो।


परिवर्तन: कच्चे आमों का पकना, बर्फ का पिघलना, पानी का उबलना, नमक का पानी में घुलना, हरे केले का पीला होना, फल के पकने पर सुगंध आना, आलू काट कर रखने पर काला होना, फूला हुआ गुब्बारा फट से फूटना, पटाखे जलाने पर आवाज होना, खाद्यपदार्थ खराब होने पर खट्टी गंध का आना।

कोई भी रासायनिक परिवर्तन होते समय मूल पदार्थ का संघटन बदलता हैं और उससे अलग संघटन वाला तथा भिन्न गुणधर्म वाला नया पदार्थ मिलता हैं। कोई परिवर्तन यह रासायनिक परिवर्तन हैं यह कैसे पहचानोगे?

करो और देखो।

एक स्वच्छ काँच के पात्र में नींबू का रस लो । चम्मच में दो बूँद नींबू का रस लेकर उनका स्वाद लो । अब नींबू के रस में चुटकी भर खाने का सोडा डालो । क्या दिखाई देता है? सोडे के कणो के चारों ओर बुलबुले तैयार होते हुए दिखाई देते हैं क्या? काँच के पात्र के पास कान ले जाने पर आवाज सुनाई देती है क्या? अब काचपात्र से दो बूँद लेकर उसका स्वाद लो प्रारंभ में नींबू रस का स्वाद खट्टा था उसी प्रकार का स्वाद आया क्या? (उपर की कृति में स्वच्छ सामग्री और खाद्य पदार्थ लेने पर ही स्वाद लेकर परीक्षण करना संभव हो सकता है । अन्यथा स्वाद लेना यह परीक्षण करना संभव नहीं होगा यह ध्यान में रखो ।)

उपर्युक्त कृति में परिवर्तन होते समय अनेक विविधतापूर्ण निरीक्षण दिखाई देते हैं बुलबुले के स्वरूप में गैस मुक्त होती है, हल्की सी ध्विन भी सुनाई देती है। खाने के सोड़े के सफेद ठोस कण अदृश्य हो जाते हैं। मूल खट्टा स्वाद भी कम अथवा नष्ट होता हैं। इस प्रकार के परिवर्तन में एक भिन्न स्वाद का नया पदार्थ तैयार होता हैं यह समझ में आता है। ऊपर के परिवर्तन अंत में पदार्थ का स्वाद बदलता है अर्थात पदार्थ का संघटन बदलता है अर्थात इस परिवर्तन में मूल पदार्थ का संघटन बदल कर भिन्न गुणधर्म वाला नया पदार्थ तैयार होता है इसलिए नींबू के रस में खाने का सोडा मिलाने पर रासायिनक परिवर्तन होता है। कभी-कभी रासायिनक परिवर्तन होते समय भिन्न-भिन्न विविधतापूर्ण निरीक्षण दिखाई देते हैं तथा इस आधार पर रासायिनक परिवर्तन हुआ हैं यह पहचान सकते हैं। उनमें से कुछ निरीक्षण तालिका क्र 13.1 में दिया हैं।

13.1 रासायनिक परिवर्तन के कुछ समझ में आनेवाले निरीक्षण

रासायनिक परिवर्तन और शाब्दिक समीकरण : रासायनिक परिवर्तन होते समय मूल पदार्थ का रासायनिक संघटन बदल कर, भिन्न रासायनिक संघटन वाला, भिन्न गुणधर्म वाला नया पदार्थ तैयार होता है। रासायनिक संघटन की अचक जानकारी प्राप्त होने पर रासायनिक परिवर्तन के लिए रासायनिक अभिक्रिया लिख सकते हैं। रासायनिक अभिक्रिया लिखते समय मुल पदार्थ का रासायनिक नाम और रासायनिक सूत्र उसी प्रकार तैयार हुए नए पदार्थ का नाम व रासायनिक सूत्र इनका का उपयोग करते हैं। उदाहरणार्थ नींबू के रस में खाने का सोड़ा मिलाने पर होनेवाला रासायनिक परिवर्तन, ये नींबू के रस में उपस्थित सायट्रिक अम्ल में होता है व तैयार होने वाली गैस कार्बन 13.2 फसफसाने की क्रिया होकर डायऑक्साइड होती हैं। रासायनिक अभिक्रिया के लिए निम्नानुसार शाब्दिक समीकरण कार्बन डायऑक्साइड की निर्मिती लिख सकते हैं।

सायट्कि अम्ल + सोडियम बाइकार्बोनेट --- कार्बन डायऑक्साइड + सोडियम सायट्रेट

क्षारक

CO,

+ लवण यह उदासीनीकरण अभिक्रिया है।

ँइसे सदैव ध्यान में रखो ।

किसी भी रासायनिक अभिक्रिया को लिखने का पहला चरण अर्थात संबंधित पदार्थ के नामों का उपयोग कर शाब्दिक समीकरण लिखना । इसमें प्रत्येक पदार्थ के नाम की जगह उस पदार्थ का रासायनिक सूत्र लिखा तो वह रासायनिक समीकरण होता है। रासायनिक अभिक्रिया को लिखते समय मूल पदार्थ को बाएँ पक्ष में तथा तैयार हए नए पदार्थ को दाएँ पक्ष में लिखते हैं व बीच में तीर का चिन्ह लगाते हैं व तीर की दिशा नए पदार्थ की ओर होती है। यह अभिक्रिया की दिशा दर्शानेवाला तीर (बाण) है। तीर के बाएँ पक्ष में लिखे मलपदार्थ अर्थात अभिक्रिया में भाग लेने वाले पदार्थ हैं उन्हें अभिक्रियाकारक या अभिकारक कहते हैं। अभिक्रिया के कारण तैयार होने वाले नए पदार्थ को उत्पाद कहते हैं। अभिक्रिया में उत्पाद की जगह तीर के दाएँ पक्ष में होती हैं।

दैनिक जीवन में होने वाले रासायनिक परिवर्तन : अपने चारों ओर, शरीर में, घर में तथा प्रयोगशाला में हमें रासायनिक परिवर्तन के अनेक उदाहरण दिखाई देते हैं। शाब्दिक व रासायनिक समीकरण लिख सकते हैं, ऐसे रासायनिक परिवर्तन देखेगें।

प्राकृतिक रासायनिक परिवर्तन

(अ) श्वसन : श्वसन हमारे जीवन में निरंतर चलने वाली जैविक प्रक्रिया हैं। इस क्रिया में हम श्वास के दवारा हवा अंदर लेते हैं और उच्छवास के दवारा कार्बन डायऑक्साइड़ गैस और पानी की भाप (वाष्प) बाहर छोड़ते हैं। गहन अध्ययन के बाद समझता है कि श्वास लेते समय हवा की ऑक्सीजन का कोशिका की ग्लुकोज के साथ अभिक्रिया होकर कार्बन डायऑक्साइड और पानी तैयार होता है। इस रासायनिक अभिक्रिया का शाब्दिक व रासायनिक समीकरण निम्न प्रकार से हैं (यहाँ रासायनिक समीकरण का संतुलन नहीं किया गया हैं)

शाब्दिक समीकरण :

ग्लुकोज + ऑक्सीजन ^{ख्वसन} ▶कार्बन डायऑक्साइड़ + पानी रासायनिक समीकरण :

$$C_6H_{12}O_6 + O_2 \xrightarrow{\text{volet}} CO_2 + H_2O$$

करो और देखो।

एक परखनली में ताजा चूने का पानी (कैल्शियम हायड्रॉक्साइड का द्रव्य) लो उसमें फुँकनली द्वारा फूँको कुछ समय के बाद क्या दिखाई देगा ? रंगहीन चूने का पानी दिधया हुआ क्या ? और थोड़ी देर बाद में सफेद अघुलनशील पदार्थ परखनली के तल में जमा हुआ दिखाई देगा यह कैल्शियम कार्बोनेट का अवक्षेप हैं। चूने का पानी दिधया होता है इसका अर्थ उसमें फूँक द्वारा मिली गैस कार्बन डायऑक्साइड थी।

कैल्शिअम

ऊपर दिए गए शाब्दिक समीकरण के लिए रासायनिक समीकरण लिखो ।

आ. प्रकाशसंश्लेषण: सूर्यप्रकाश की उपस्थिति में हरी वनस्पतियाँ प्रकाश संश्लेषण करती हैं यह तुम्हे मालूम हैं। इस प्राकृतिक रासायनिक परिवर्तन के लिए शाब्दिक समीकरण तथा रासायनिक समीकरण (असंतुलित) निम्न प्रकार से लिखते हैं।

शाब्दिक समीकरण : कार्बन डायऑक्साइड + पानी स्वर्गप्रकाश म्लूकोज + ऑक्सीजन

रासायनिक समीकरण :
$$CO_2 + H_2O \xrightarrow{\frac{4 \sqrt{2} \sqrt{3} \sqrt{4} \sqrt{3}}{2}} C_6 H_{12}O_6 + O_2$$

मानविर्नित रासायिनक परिवर्तन : हम दैनंदिन जीवन में अपने उपयोग के लिए अनेक रासायिनक परिवर्तन संपन्न करवाते हैं । उनमें से कुछ रासायिनक परिवर्तन अब देखेंगे । पहले कृति में जो रासायिनक परिवर्तन देखा उसका उपयोग 'सोड़ा नींबू' इस शीतपेय में करते हैं अर्थात यह एक उपयुक्त मानविन्मित रासायिनक परिवर्तन हैं या नहीं यह तुम निश्चित करो । कारण सोडा-लिंबू के पेय में कार्बन डाय ऑक्साइड तथा साइट्रिक अम्ल ये दोनों अम्लीय गुणधर्मवाले है । जिसके कारण जठर रस की अम्लीयता बढ़ती हैं ।

(अ) ईंधन का ज्वलन : ऊर्जा प्राप्त करने के लिए लकड़ी, कोयला, पेट्रोल या रसोई गैस जलाते हैं । इन सभी ईंधनों में जलने वाला एक जैसा पदार्थ 'कार्बन' हैं । ज्वलन प्रक्रिया में कार्बन का हवा की ऑक्सीजन के साथ संयोग होकर कार्बन इायऑक्साइड उत्पाद तैयार होता हैं । इस सभी ज्वलन की क्रिया के लिए सामान्य समीकरण निम्न प्रकार से लिखते हैं । शाब्दिक समीकरण: कार्बन + ऑक्सीजन —> कार्बन डायऑक्साइड

रासायनिक समीकरण : $C + O_2 \longrightarrow CO_2$ ईंधन का ज्वलन यह शीघ्र तथा अपरिवर्तनीय रासायनिक परिवर्तन है । **(आ)** तनु हाइड्रोक्लोरिकअम्ल से शहाबादी फर्श स्वच्छ करना : यहाँ शहाबादी फर्श का रासायनिक संघटन मुख्य रूप से कैल्शियम कार्बोनेट है । जब हम फर्श को हाइड्रोक्लोरिक अम्ल से स्वच्छ करते हैं तब फर्श के ऊपरी परत की हाइड्रोक्लोरिक अम्ल के साथ रासायनिक अभिक्रिया होती है और तीन उत्पाद तैयार होते है । उसमें से एक उत्पाद कैल्शियम क्लोराइड हैं जो पानी में घुलनशील होने से पानी से धोने पर निकल जाता है । दूसरा उत्पाद कार्बन डायऑक्साइड इसके बुलबुले हवा में मिल जाते हैं । तीसरा उत्पाद पानी हैं जो पानी में मिल जाता हैं । इस रासायनिक परिवर्तन के लिए निम्न समीकरण लिखते हैं ।

शाब्दिक समीकरण:

कैल्शियम कार्बोनेट + हाइड्रोक्लोरिक अम्ल \longrightarrow कैल्शियम क्लोराइड + कार्बन डायऑक्साइड + पानी ऊपर दी गई अभिक्रिया के लिए रासायनिक समीकरण (असंतुलित) लिखो ।

(इ) दुष्फेन पानी को सुफेन बनाना : कुछ कुँओं का और निलकाकूपों का पानी दुष्फेन होता हैं । यह पानी स्वाद में खारा होता है उसमें साबुन का झाग नहीं बनता इसका कारण दुष्फेन पानी मे कैल्शियम तथा मैग्नीशियम के क्लोराइड और सल्फेट ये लवण घुले होते हैं । इस दुष्फेन पानी को सुफेन बनाने के लिए उसमें धोने के सोड़ा का विलयन डालते हैं । जिसके कारण रासायनिक अभिक्रिया होकर कैल्शियम और मैग्नीशियम के अघुलनशील कार्बोनेट लवण के अवक्षेप तैयार होकर वे बाहर निकलते है । पानी में घुले हुए कैल्शियम और मैग्नीशियम के लवण कार्बोनेट लवणों के अवक्षेपों के रूप में बाहर निकलने के कारण पानी सुफेन बन जाता हैं । इस रासायनिक परिवर्तन के लिए निम्न समीकरण लिखते हैं ।

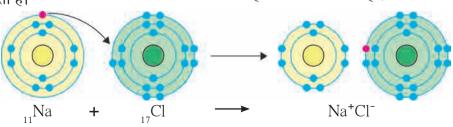
शाब्दिक समीकरण :

$$CaCl_2 + Na_2CO_3 \longrightarrow CaCO_3 + NaCl$$

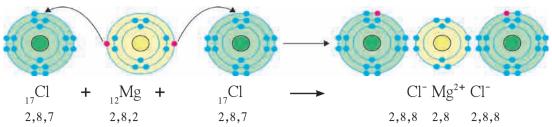
दुष्फेन पानी को सुफेन बनाने के लिए मैग्नीशियम के लवणों में होनेवाले रासायनिक परिवर्तन का शाब्दिक व रासायनिक समीकरण लिखो । रासायनिक परिवर्तन होने पर पदार्थ का रासायनिक संघटन बदलता है तथा मूल पदार्थों की, अभिकारकों की रासायनिक अभिक्रिया होकर भिन्न गुणधर्मवाले नए पदार्थ, उत्पाद तैयार होते हैं यह हमने देखा है। यह क्रिया घटित होने पर अभिक्रियाकारकों के कुछ रासायनिक बंध टूटते हैं और अभिक्रिया में नए रासायनिक बंध का निर्माण होने से नए पदार्थ अर्थात उत्पाद तैयार होते हैं। किसी एक परमाणु द्वारा तैयार किए कुछ रासायनिक बंधों की संख्या अर्थात परमाणु की संयोजकता यह भी हमने 'द्रव्य का संघटन' इस पाठ में देखा है। रासायनिक बंध क्या हैं, ये अब देखेगें।

रासायनिक बंध (Chemical Bond): 'परमाणु का अंतर्भाग' इस पाठ में हमने तत्त्वों का इलेक्ट्रॉनिक संरूपण तथा तत्त्वों की संयोजकता के बीच संबंध देखा। निष्क्रिय गैसे रासायनिक बंध तैयार नहीं करते क्योंकि उनके इलेक्ट्रॉनों की अष्टक/द्विक स्थिति पूर्ण होती हैं। इसके विपरीत इलेक्ट्रॉन की अष्टक/द्विक स्थिति अपूर्ण होने पर परमाणु उसके संयोजकता इलेक्ट्रॉन का उपयोग करते हैं। उसी प्रकार संयोजकता की संख्या के अनुसार रासायनिक बंध तैयार करने पर परमाणु को इलेक्ट्रॉन की अष्टक का /द्विक का संरूपण प्राप्त होता है। इलेक्ट्रॉन की अष्टक/द्विक स्थिति पूर्ण करने की प्रमुख दो पदधितयाँ अब देखेगें।

1.आयनिक बंध (Ionic Bond) : प्रथम सोडियम और क्लोरीन उन तत्त्वों के परमाणुओं से सोडियम क्लोराइड ये यौगिक कैसे तैयार होता है यह देखेगें । इसके लिए सोडियम और क्लोरिन का इलेक्ट्रॉनिक संरूपण देखेगे ।


सोडियम की संयोजकता कवच में एक इलेक्टॉन होने से उसकी संयोजकता एक तथा क्लोरीन की संयोजकता कक्षा में सात इलेक्टॉन होने पर अर्थात अष्टक स्थिति में एक इलेक्ट्रॉन कम होने से क्लोरीन की संयोजकता भी एक यह संबंध हमने देखा । सोडियम का परमाणु जब उसके M कवच से एक संयोजकता इलेक्ट्रॉन को त्यागता हैं तब उसकी 'L' कक्षा बाह्यतम होती हैं । उसमें आठ इलेक्ट्रॉन हैं परिणामतः अब सोडियम को इलेक्ट्रॉन की अष्टक स्थिति प्राप्त होती हैं, परंतु अब इलेक्ट्रॉन की संख्या 10 होने के कारण सोडियम के केंद्रक पर +11 इस धनावेश का संतुलन नहीं होता व केवल +1 इतना धनआवेश वाला, Na⁺ यह धन आयन तैयार होता हैं। इसके विपरित क्लोरिन की संयोजकता कवच में अष्टक स्थिति की अपेक्षा एक इलेक्ट्रॉन कम हैं बाहर से एक इलेक्ट्रॉन लेने पर क्लोरीन का इलेक्ट्रॉन का अष्टक पूर्ण होता हैं, लेकिन क्लोरीन के परमाण् पर एक इलेक्ट्रॉन ज्यादा होने से आवेश का संतुलन बिगडता हैं व केवल -1 इतना ऋणआवेशित Cl- यह ऋण आयन तैयार होता हैं।

सोडिअम और क्लोरीन ये तत्त्व जब संयोग करते हैं तब सोडियम का परमाणु अपना संयोजकता इलेक्ट्रॉन क्लोरीन परमाणु को देता है इसलिए Na⁺ यह धन आयन तथा Cl⁻ यह ऋण आयन तैयार होता हैं । विजातीय आवेशों में स्थिर विद्युत आकर्षण बल होने के कारण ये विपरित आवेशित आयन एक दूसरे की ओर आकर्षित होते हैं और उनमें रासायनिक बंध का निर्माण होता हैं ।

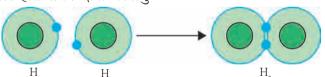

परस्पर विपरीत आवेश वाले धन आयन और ऋण आयन के बीच स्थिर विद्युत आकर्षण बल के कारण निर्माण होने वाले रासायनिक बंध को आयनिक बंध अथवा विद्युत संयोजकीय बंध कहते हैं। एक अथवा अधिक आयनिक बंध द्वारा निर्माण होने वाले यौगिक को आयनिक यौगिक कहते हैं।

सोडियम और क्लोरीन इस तत्त्व से सोडियम क्लोराइड इस आयनिक यौगिक का निर्माण इलेक्ट्रॉनिक संरूपण के रेखांकन का उपयोग कर आकृति 13.3 में दिखाया गया हैं।

आयन पर होने वाले +1 अथवा -1 विद्युत आवेश के कारण एक आयनिक बंध तैयार होता है । आयन पर जितना धनावेश अथवा ऋणआवेश होता है उतनी ही उस आयन की संयोजकता होती हैं और उतना ही आयनिक बंध वह आयन तैयार करता हैं ।

13.3 NaCl आयनिक यौगिक के निर्माण

13.4 MgCl, इस आयनिक यौगिक का निर्माण


मैग्नीशियम क्लोराइड इस आयनिक यौगिक का निर्माण मैग्नीशियम और क्लोरीन इन दो तत्त्वों से कैसे होता हैं यह आकृति 13.4 में दिखाया गया हैं।

संबंधित तत्त्वों द्वारा निम्न आयनिक यौगिकों की निर्मित संख्यात्मक इलेक्ट्रॉन संरूपण तथा इलेक्ट्रॉन संरूपण के रेखांकन इन दोनों पद्धित से दर्शाओ (अ) $_{19}K$ व $_{0}F$ से $K^{+}F^{-}$, (आ) $_{20}Ca$ व $_{8}O$ से $Ca^{2+}O^{2-}$

2. सहसंयोजकीय बंध : जब समान गुणधर्म वाले तत्त्वो के परमाणुओं का संयोग होता हैं तब सामान्यतः सहसंयोजकीय बंध का निर्माण होता हैं । ऐसे परमाणुओं में इलेक्ट्रॉनों का आदान प्रदान नहीं हो सकता उसके बदले में इन परमाणु में इलेक्ट्रॉनों की साझेदारी (sharing) होती है। साझेदारी किए हुए इलेक्ट्रॉन दोनों परमाणुओं की सामान्य संपत्ति होने के कारण दोनों परमाणुओं का इलेक्ट्रॉन अष्टक/द्विक पूर्ण होता है । प्रथम हाइड्रोजन के अणु का (H_{γ}) उदाहरण देखेंगे।

'परमाणु का अंतर्भाग इस पाठ में हमने देखा है कि हाइड्रोजन के परमाणु में एक इलेक्ट्रॉन होता है उसका द्विक स्थिति पूर्ण करने के लिए एक इलक्ट्रॉन कम है तथा हाइड्रोजन की संयोजकता एक है । हाइड्रोजन के दो परमाणुओं के बीच बंध तैयार होते समय दोनों परमाणु एकसमान और एक ही प्रवृत्ति के होने के कारण वे एक दूसरे के साथ अपने इलेक्ट्रॉन की साझेदारी करते हैं। जिससे हाड्रोजन के दोनों परमाणुओं की द्विक स्थिति पूर्ण होती है व उनसे रासायनिक बंध का निर्माण होता है।

जब दो परमाणुओं के मध्य संयोजकता इलेक्ट्रॉन की साझेदारी होकर जो रासायनिक बंध तैयार होता हैं उसे सहसंयोजकीय बंध कहते हैं । दो संयोजकता इलेक्ट्रॉन की साझेदारी से एक यह संयोजकीय बंध तैयार होता हैं । हाइड्रोजन के दो परमाणु मिलकर H_2 अणु की निर्मिति इलेक्ट्रॉन संरूपण के रेखांकन का उपयोग कर आकृति 13.5 में दिखाया गया है । दो परमाणुओं के बीच सहसंयोजकीय बंध उस परमाणुओं के संकेतों को से जोड़नेवाली रेखा से भी दर्शाया जाता है ।

 $13.5~{
m H}_{_2}$ इस सहसंयोजकीय अणु का निर्माण

अब H_2O इस सहसंयोजकीय यौगिक की निर्मिति हाइड्रोजन और ऑक्सीजन इन परमाणुओं से किस प्रकार होती है यह हम देखेंगे (देखो आकृति 13.6) ऑक्सीजन परमाणु की संयोजकता कवच में 6 इलेक्ट्रॉन हैं । अर्थात ऑक्सीजन में इलेक्ट्रॉन की अष्टक स्थिति की अपेक्षा दो इलेक्ट्रॉन कम हैं तथा ऑक्सीजन की संयोजकता '2' हैं । H_2O अणु में ऑक्सीजन का परमाणु दो सहसंयोजकीय बंध तैयार कर अपनी अष्टक स्थिति पूर्ण करता है । ऑक्सीजन का एक परमाणु यह दो सहसंयोजकीय बंध दो हाइड्रोजन परमाणुओं के साथ प्रत्येक के साथ एक, इस प्रकार बंध बनाता है । इससे दोनों हाइड्रोजन के परमाणु इलेक्ट्रॉन द्विक स्थिति स्वतंत्ररूप से प्राप्त करते है ।

HCl इस अणु में H a Cl इन परमाणु में एक सहसंयोजकीय बंध होता है। इस जानकारी के आधार पर H a Cl परमाणु द्वारा HCl इस अणु का निर्माण कैसे होता है. उसे इलेक्टॉन संरूपण के रेखाकंन दवारा दर्शाओ।

स्वाध्याय

- कोष्ठक में दिए विकल्पों में से उचित विकल्प चुनकर वाक्य पूर्ण करो ।
 (धीरे-धीरे, रंगीन, तीर, शीघ्र, गंध, दूधिया, भौतिक, उत्पादित, रासायनिक, अभिकारक, सहसंयोजकीय, आयनिक, अष्टक, द्विक, आदान-प्रदान, साझेदारी बराबर का चिहन)
 - अ. रासायनिक अभिक्रिया का समीकरण लिखते समय अभिकारक और उत्पाद के बीच...... निकालते हैं।
 - आ. लोहे में जंग लगना परिवर्तन हैं ।
 - इ. भोज्य पदार्थ का खराब होना यह रासायनिक परिवर्तन हैं, उसमें विशिष्ट निर्माण होती हैं उसके द्वारा पहचाना जाता हैं।
 - ई. परखनली में कैल्शियम हाइड्रॉक्साइड़ के रंगहीन विलयन को फूंकते रहने से कुछ समय के बाद द्रव्य होता हैं।
 - उ. नींबू के रस में थोड़ा सा सोड़ा चूर्ण डालने पर कुछ समय बाद सफेद कण अदृश्य होते हैं इसलिए ये परिवर्तन हैं।
 - ऊ. श्वसन की क्रिया में ऑक्सीजन यह एकैं।
 - ए. सोडियम क्लोराइड यौगिक हैं तो हाइड्रोजन क्लोराइड यौगिक हैं।
 - ऐ. हाइड्रोजन के अणु में प्रत्येक हाइड्रोजन के इलेक्ट्रॉन पूर्ण होता हैं।
 - ओ. दो परमाणु में इलेक्ट्रॉन की होकर टी अणु तैयार होता हैं।

2. शाब्दिक समीकरण लिखकर स्पष्ट करो :

- अ. श्वसन यह एक रासायनिक परिवर्तन हैं
- आ. धोने के सोड़ा का द्रव्य मिलाने से दुष्फेन पानी सुफेन हो जाता है।
- इ. तनु हाइड्रोक्लोरिक अम्ल डालने पर चूने का पत्थर अदृश्य हो जाता है ।
- ई. खाने के सोड़े के चूर्ण पर नींबू का रस डालने पर बुलबुले दिखाई देते हैं।

3. जोडियाँ मिलाओ :

अ. प्रकाशसंश्लेषण

i. इलेक्ट्रॉन खोने की प्रवृत्ति

आ. पानी

ii. ज्वलन की क्रिया का अभिकारक

इ. सोडियम क्लोराइड iii. रासायनिक परिवर्तन

ई. पानी में नमक

iv. सहसंयोजकीय बंध

घुलना

उ. कार्बन

v. आयनिक यौगिक

ऊ. फ्लोरिन

vi. भौतिक परिवर्तन

ए. मैग्नीशियम

vii. ऋण आयन बनाने की प्रवृत्ति

घटक परमाणुओं से निम्नलिखित यौगिक का निर्माण

किस प्रकार होता है यह इलेक्ट्रॉनिक संरूपण के रेखांकन से दर्शाओं ।

अ. सोडियम क्लोराइड

इ. पानी

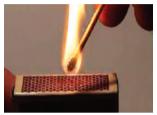
आ. पोटैशियम फ्लोराइड

ई.हाइड्रोजन क्लोराइड

उपक्रम :

तुम्हारे घर तथा तुम्हारे परिसर में दिखाई देने वाले रासायनिक परिवर्तन की सूची बनाओ तथा कक्षा में इस संबंध में चर्चा करो।

14. ऊष्मा का मापन तथा प्रभाव


थोडा याद करो।

- हमें ऊष्मा कौन-कौन से स्रोतों से प्राप्त होती हैं?
- 2. ऊष्मा का स्थानांतरण किस प्रकार होता है?
- 3. ऊष्मा के कौन-कौन से प्रभाव तुम्हें मालूम हैं? आकृति 14.1 में ऊष्मा के विविध परिणाम दिखाए गए हैं, वे कौन-से हैं?

हमने पिछली कक्षा में देखा हैं कि ऊष्मा यह ऊर्जा का एक रूप है, जो अधिक तापमान वाले वस्तु से कम तापमानवाली वस्तु की ओर प्रवाहित होती है। किसी एक वस्त का तापमान यह वह वस्त कितनी गर्म या कितनी ठंड़ी है यह दर्शाता है। ठंड़े वस्तु का तापमान गर्म वस्तु के तापमान से कम होता है। अर्थात आइस्क्रीम का तापमान यह चाय के तापमान से कम होता है।

14.1 ऊष्मा के विविध परिणाम

हमने यह भी देखा है कि ऊष्मा देने पर पदार्थ का प्रसरण होता है तथा पदार्थ ठंडा करने पर उसका आकुंचन होता है। उसी प्रकार ऊष्मा के कारण द्रव्य में अवस्था परिवर्तन होता है।

ऊष्मा की SI प्रणाली में इकाई जूल (Joule) तथा CGS प्रणाली में ऊष्मा की इकाई कॅलरी है। 1 cal ऊष्मा = 4.18 J के बराबर होती है। 1 ग्राम पानी का तापमान 1 °C तक बढ़ाने के लिए आवश्यक ऊष्मा (ऊर्जा) 1 cal होती हैं।

हल किए गए उदाहरण

उदाहरण 1. 1.5 Kg पानी का तापमान $15 \, ^{\circ}\text{C}$ से $45 \, ^{\circ}\text{C}$ ऊष्मा के स्रोत (Source of heat) तक बढ़ने के लिए कितनी ऊर्जा (ऊष्मा) लगेगी? उत्तर कैलरी और ज्यूल इन दोनों में दो।

दिया गया है :

पानी का द्रव्यमान = 1.5 Kg = 1500 gm

तापमान में अंतर = 45 °C - 15 °C = 30 °C

तापमान वृद्धि के लिए आवश्यक ऊर्जा (cal) = पानी का द्रव्यमान (gm) × तापमान में हुई वृद्धि (°C)

 $= 1500 \text{ gm x } 30 \, ^{\circ}\text{C} = 45000 \text{ cal}$

 $= 45000 \times 4.18 = 188100 \text{ J}$

उदाहरण 2: 300 cal ऊष्मा देने पर पानी का तापमान 10 °C से बढ़ता हैं तो पानी का द्रव्यमान कितना होगा? दिया गया हैं:

ऊष्मा (cal) = 300 cal

तापमान में अंतर = 10 °C, पानी का द्रव्यमान (m)=? ऊष्मा (cal) = पानी का द्रव्यमान (gm) × तापमान में वृद्धि (°C)

 $300 = m \times 10$

m = 30 gm

- 1. सूर्य : सूर्य यह पृथ्वी को प्राप्त होनेवाली ऊष्मा का सबसे बड़ा स्रोत है। सूर्य के केंद्र में होनेवाले नाभिकीय संलयन (Nuclear Fussion) के कारण अत्याधिक मात्रा में ऊर्जा का निर्माण होता है। नाभिकीय संलयन प्रक्रिया में हाइड़ोजन के नाभिक का संयोग होकर हीलियम के नाभिक तैयार होते हैं और उसी से ऊर्जा की निर्मिति होती है । इसमें की कुछ ऊर्जा प्रकाश तथा ऊष्मा के स्वरूप में पृथ्वी तक पहुँचती है।
- 2. पृथ्वी : पृथ्वी के केंद्र का तापमान अधिक होने से पृथ्वी भी ऊष्मा का स्रोत हैं। इस ऊष्मा को भू-औष्णिक ऊर्जा कहते हैं।
- 3. रासायनिक ऊर्जा : लकड़ी, कोयला, पेट्रोल आदि ईंधनों के ज्वलन में ईंधन की ऑक्सीजन के साथ रासायनिक अभिक्रिया होकर ऊष्मा का निर्माण होता हैं।
- 4. विद्युत ऊर्जा : विद्युत ऊर्जा का उपयोग करके ऊष्मा निर्माण करने के अनेक साधन उपलब्ध हैं जिसमें विद्युत इस्त्री, विद्युत चुल्हा इत्यादि को तुमने दैनिक जीवन में देखा ही है अर्थात विद्युत भी ऊष्मा का स्रोत

- 5. **परमाणु ऊर्जा**: कुछ तत्त्वों जैसे युरेनियम, थोरियम इत्यादि के परमाणुओं के केंद्रकों का विभाजन करने पर अत्यंत कम समय में प्रचंड़ ऊर्जा और ऊष्मा का निर्माण होता हैं। परमाणु ऊर्जा प्रकल्प में इसी प्रकार की प्रक्रिया का उपयोग किया जाता हैं।
- 6. हवा : हमारे आसपास में पाई जानेवाली हवा में भी अधिक मात्रा में ऊष्मा समाविष्ट हैं।

तापमान (Temperature): कोई एक पदार्थ कितना गर्म है अथवा कितना ठंड़ा है यह हम उस पदार्थ को हाथ लगाकर बता सकते हैं; परंतु हमें महसुस होनेवाली गर्म अथवा ठंड़ा यह संवेदना सापेक्ष होती हैं। यह हम नीचे दी गई कृति के द्वारा समझ सकते हैं।

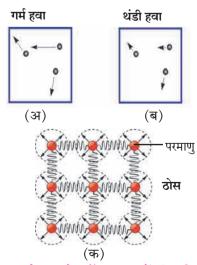
करो और देखो

- तीन एक जैसे बर्तन लो, उन्हें अ, ब और क नाम दो।
 (आकृति 14.2 देखो)
- 2. 'अ' बर्तन में गरम और 'ब' बर्तन में ठंड़ा पानी भरो। 'क' बर्तन में 'अ' और 'ब' बर्तन का थोड़ा थोड़ा पानी डालो।
- तुम्हारा दाया हाथ 'अ' बर्तन में और बाया हाथ 'ब' बर्तन में ड्रबाओ और 2-3 मिनट तक खो ।
- 4. अब दोनों हाथ एक साथ 'क' बर्तन में डुबाओ। तुम्हें क्या महसुस हुआ ?

14.2 सापेक्ष संवेदना

दोनों हाथ एक ही बर्तन के पानी में अर्थात एक ही तापमानवाले पानी में डालने पर भी दाएँ हाथ को वह पानी ठंड़ा लगेगा और बाएँ हाथ को वही पानी गरम लगेगा इसका क्या कारण हैं? इस पर विचार करो।

उपर्युक्त कृति से तुम्हारे ध्यान में आया होगा की केवल स्पर्श से किसी पदार्थ का या किसी वस्तु का तापमान हम सटीक रूप से बता नहीं सकते । उसी प्रकार अधिक गर्म अथवा अधिक ठंड़ी वस्तु को हाथ लगाने पर जख्म होने की संभावना भी होती हैं । इसलिए तापमान का मापन करने के लिए हमें उपकरण की आवश्यकता होती है । तापमापी (thermometer) यह तापमान का मापन करने का साधन (उपकरण) हैं । तुमने पिछली कक्षा में तापमापी के विषय में पढ़ा हैं । इस पाठ में हम तापमापी की रचना एवं कार्यप्रणाली के बारे में जानकारी लेने वाले हैं ।



थोडा याद करो।

स्थितिज ऊर्जा और गतिज ऊर्जा क्या हैं ?

उष्मा और तापमान (Heat and temperature): ऊष्मा और तापमान इनमें क्या अंतर है? पदार्थ परमाणुओं से बना होता है यह हमें मालुम है। पदार्थ में परमाणु सतत गतिशील होते है। उनमें पाई जानेवाली गतिज ऊर्जा की कुल मात्रा यह उस पदार्थ में पाई जानेवाली ऊष्मा का द्योतक होता हैं, तो तापमान यह परमाणुओं के औसत गतिज ऊर्जा पर निर्भर होता है। दो पदार्थों में परमाणुओं की औसत गतिज ऊर्जा समान होने पर उनका तापमान भी समान होता हैं।

आकृति 14.3 'अ'और 'ब' में अधिक तापमान और उसकी अपेक्षा कम तापमानवाले गैसों के परमाणुओं की गति क्रमशः दिखाई गई हैं । परमाणुओं को जोड़कर दिखाए गए तीरों की दिशा और लंबाई क्रमशः परमाणुओं के वेग की दिशा और परिणाम दर्शाते हैं । गर्म हवा में परमाणुओं का वेग ठंडी हवा में परमाणुओं के वेग की अपेक्षा अधिक होता है ।

14.3 गैस व ठोस में परमाणुओं की गति

आकृति 'क' में ठोस पदार्थ के परमाणुओं का वेग तीरों दुवारा दर्शाया गया है। ठोस में परमाणु उनमें पाए जानेवाले परस्पर बल से आबद्ध होते हैं और उसी कारण वे अपने स्थान से विस्थापित नहीं होते। ऊष्मा के कारण अपने स्थिर जगह पर ही दोलनित होते हैं। जितना ठोस पदार्थ का तापमान अधिक उतना उसका दोलन वेग अधिक होता है।

मानलो 'अ' और 'ब' एक ही पदार्थ दुवारा बनी दो वस्तुएँ हैं। 'अ' का द्रव्यमान 'ब' के द्रव्यमान से दगना है अर्थात 'अ' में परमाणुओं की संख्या यह 'ब' में परमाणुओं की संख्या से दुगनी है । यदि 'अ' तथा 'ब' का तापमान समान हो अर्थात उसमें पाए जानेवाले परमाणुओं की औसत गतिज ऊर्जा समान हो तो भी 'अ' में के परमाणुओं की कुल गतिज ऊर्जा यह 'ब' में के परमाणुओं की कुछ गतिज ऊर्जा की अपेक्षा दो गुनी होगी अर्थात, 'अ' और 'ब' का तापमान समान होने पर भी 'अ' की ऊष्मा यह 'ब' की ऊष्मा की अपेक्षा दुगनी होगी।

करो और देखो। 1. एक ही आकार के दो 'अ' और 'ब' स्टील के बर्तन लो।

- 2. 'अ' में थोड़ा पानी डालो और 'ब' में उसके दुगना पानी लो। दोनों बर्तनों के पानी का तापमान समान हैं ये सुनिश्चित करो।
- 3. एक स्पिरिट लॅम्प लेकर 'अ' और 'ब' के पानी को गर्म करके तापमान $10~^{\circ}\mathrm{C}$ से बढ़ाओ । दोनों बर्तनो का तापमान बढाने के लिए क्या समान समय लगा?

'ब' इस बर्तन के तापमान में वृद्धि करने के लिए तुम्हें अधिक समय लगा होगा अर्थात समान तापमान वृद्धि'के लिए तुम्हें 'ब' को अधिक ऊष्मा देनी पड़ी । अर्थात 'अ' और 'ब' में का तापमान समान होने पर भी 'ब' में की पानी की ऊष्मा यह 'अ' में की पानी की ऊष्मा की अपेक्षा अधिक होगी। तापमान का मापन करने के लिए अंश सेल्सियस (°C), फॅरेन हाइट (°F) और केल्व्हीन (K) इन इकाईयों का उपयोग करते हैं। केल्व्हीन यह इकाई वैज्ञानिक प्रयोग में उपयोग में लाते हैं तो अन्य दोनों इकाईयों का उपयोग दैनिक व्यवहार में करते हैं। इन तीनों का संबंध निम्न सूत्रों द्वारा दिखाया गया हैं।

$$\frac{(F-32)}{9} = \frac{C}{5}$$
 ----(1)

$$K = C + 273.15$$
 ----(2)

संलग्न तालिका में कुछ विशिष्ट तापमान सेल्सियस, फैरेनहाइट और केल्व्हीन इन तीनों इकाईयों में दिए गए हैं। वे उपर्युक्त सूत्रों के अनुसार हैं, इसकी जाँच करो और रिक्त स्थानों में उचित मान लिखो।

वर्णन	0 F	°C	K
पानी का क्वथनांक	212	100	373
पानी का हिमांक	32	0	273
कमरे का तापमान	72	23	296
पारे का क्वथनांक		356.7	
पारे का हिमांक		-38.8	·

हल किए गए उदाहरण

उदाहरण 1. 68 ^oF तापमान सेल्सियस और केल्व्हीन इन इकाईयों में कितना होगा?

दिया गया है : फॅरेनहाइट में तापमान = F = 68

सेल्सियस में तापमान = C = ?, केल्व्हिन में तापमान = K = ?

सूत्र (1) के अनुसार
$$\frac{(F-32)}{9} = \frac{C}{5}$$

$$\frac{(68-32)}{9} = \frac{C}{5}$$

$$C = 5 \text{ x} \frac{36}{9} = 20 \, {}^{\circ}\text{C}$$
; सूत्र (2) से, $K = C + 273.15$

K = 20 + 273.15 = 293.15 K

सेल्सियस में तापमान = 20 $^{\circ}$ C व केल्व्हिन में तापमान = 293.15 K

उदाहरण 2 : कौन-सा तापमान सेल्सियस और फॅरेनहाईट इन दोनों इकाइयों में समान होगा? दिया गया है :माना सेल्सियस का तापमान C हो तो और फॅरेनहाइट का तापमान F हो तो F = C.

सूत्र (1) से
$$\frac{(F-32)}{9} = \frac{C}{5}$$

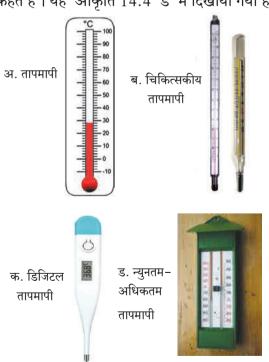
अर्थात, $\frac{(C-32)}{9} = \frac{C}{5}$

$$(C-32) \times 5 = C \times 9$$

$$5 \text{ C} - 160 = 9 \text{ C}$$

$$4C = -160$$

C = -40 $^{\circ}C = -40$ $^{\circ}F$ सेल्सियस में व फॅरेनहाईट में तापमान -40 $^{\circ}$ होने पर समान होगा ।


तापमापी (Thermometer) :घर में किसी को बुखार प्रसरण का उपयोग न करते हुए एक संवेदक (Sensor) आने पर उपयोग में लाया जाने वाला तापमापी तुमने देखा का उपयोग करते हैं । जो शरीर से निकलनेवाली ऊष्मा होगा। उस तापमापी को चिकित्सकीय तापमापी कहते है। इसके अतिरिक्त अन्य प्रकार के तापमापी भिन्न-भिन्न प्रकार के मापन के लिए उपयोग में लाए जाते हैं । सर्वप्रथम सामान्य (सरल) तापमापी के रचना एवं कार्य के विषय में जानकारी लेंगे।

आकृति 14.4 'अ' में एक तापमापी का चित्र दिखाया गया है। तापमापी में एक काँच की पतली नली होती है जिसके एक सिरे पर एक गुब्बारा होता है। नली में पहले पारा भरा हुआ होता था परंतु पारा हमारे लिए हानिकारक होने के कारण उसके स्थान पर अब अल्कोहल का उपयोग करते हैं। नली की शेष जगह निर्वात के रूप में होकर नली का दूसरा सिरा बंद होता है। जिस पदार्थ या वस्तु का तापमान मापते हैं, उस वस्तु के संपर्क में तापमापी का गुब्बारा कुछ समय तक रखा जाता हैं जिसके कारण उसका तापमान वस्तु के तापमान के बराबर होता हैं। तापमान में हुई वृद्धि के कारण अल्कोहल का प्रसरण होता हैं और नली में उसका स्तर बढता हैं। अल्कोहल के प्रसरण के गुणधर्म का उपयोग कर (इसकी चर्चा इस पाठ में आगे की गई हैं) उसके नली में के स्तर से तापमान मालुम करते आता है और उस प्रकार से तापमापी की नली चिह्नांकित होती है।

आकृति 14.4 'ब' में चिकित्सकीय तापमापी दिखाई गई हैं। एक स्वस्थ्य मनुष्य के शरीर का तापमान 37 °C होता हैं जिसके कारण चिकित्सकीय तापमापी में सामान्यतः 35 °C से 42 °C तक के तापमान का मापन करते आता हैं। आजकल चिकित्सकीय उपयोग के लिए उपर्युक्त तापमापी के स्थान पर डिजिटल तापमापी का उपयोग किया जाता है। यह आकृति 14.4 'क' में दिखाया गया है। इसमें तापमान का मापन करने के लिए ऊष्मा के कारण होनेवाले द्रव के

का और उस आधार पर तापमान का प्रत्यक्ष मापन कर सकता है।

प्रयोगशाला में उपयोग में लाया जानेवाला तापमापी उपर्युक्त आकृति 14.4 'अ' नुसार ही होता है परंतु उसके तापमान की गणना करने का विस्तार अधिक हो सकता हैं। उसके दवारा-40 °C से 110 °C के बीच का अथवा उससे भी कम व अधिक तापमान का मापन किया जा सकता है । दिन भर के न्युनतम और अधिकतम तापमान का मापन करने के लिए एक विशिष्ट प्रकार के तापमापी का उपयोग करते हैं जिसे न्युनतम-अधिकतम तापमापी कहते हैं। यह आकृति 14.4 'ड' में दिखाया गया है।

14.4: विविध प्रकार के तापमापी

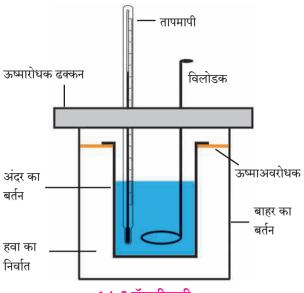
कोई एक गर्म वस्तु और ठंड़ी वस्तु एक दूसरे के संपर्क में रखने पर उन दोनों में ऊष्मा का आदान-प्रदान होता है। गर्म वस्तु ऊष्मा देती है और ठंड़ी वस्तु ऊष्मा ग्रहण करती है, जिसके कारण गर्म वस्तु का तापमान कम होता हैं तो ठंड़ी वस्तु का तापमान में वृद्धि होती है अर्थात गर्म वस्तु में परमाणुओं की गतिज ऊर्जा कम होती जाती हैं तो ठंडी वस्तु का परमाणूओं की गतिज ऊर्जा बढ़ती जाती हैं। एक स्थिति ऐसी आती हैं कि उस समय दोनों परमाणुओं की औसत गतिज ऊर्जा समान होती है, अर्थात उनका तापमान भी समान होता है।

विशिष्ट ऊष्मा (Specific heat) : पदार्थ की विशिष्ट ऊष्मा यह एक इकाई द्रव्यमानवाले पदार्थ के तापमान में $1~^{\circ}$ C तापमान में वृद्धि करने के लिए लगनेवाली ऊष्मा हैं । इसे 'C' इस चिन्ह द्वारा दर्शाते हैं । इसकी SI प्रणाली में इकाई $J/(Kg~^{\circ}C)$ और CGS प्रणाली में इकाई $Cal/(gm~^{\circ}C)$ यह है । विशिष्ट ऊष्मा c और द्रव्यमान m वाले पदार्थ का तापमान T_i से T_i तक बढ़ाना हो तो उसे Q ऊर्जा देनी पड़ेगी । यह पदार्थ के द्रव्यमान, विशिष्ट ऊष्मा और तापमान में हुई वृद्धि पर निर्भर होती हैं । यह हम निम्न सूत्र के अनुसार लिख सकते हैं ।

$Q = m \times c \times (T_f - T_i) - - - - (3)$

भिन-भिन पदार्थों की विशिष्ट उष्मा भिन-भिन होती हैं। अगली कक्षा में इस संबंध में अधिक जानकारी लेंगे । संलग्न तालिका में कुछ वस्तुओं की विशिष्ट ऊष्मा दी हैं। कॅलरीमापी (Calorimeter): हमने देखा है कि पदार्थ का तापमान मापने के लिए तापमापी का उपयोग करते हैं। पदार्थ की ऊष्मा का मापन करने के लिए कैलरी मापी इस उपकरण का उपयोग करते हैं। इस उपकरण दवारा किसी रासायनिक अथवा भौतिक प्रक्रिया में बाहर निकलने अथवा अभिशोषित होनेवाली ऊष्मा का मापन कर सकते हैं। आकृति 14.5 में एक कैलरी मापी दिखाया गया है। इसमें किसी थर्मास फ्लास्क के अनुसार ही अंदर और बाहर ऐसे दो बर्तन होते हैं जिसके कारण अंदर के बर्तन में रखे पदार्थों की ऊष्मा अंदर से बाहर जा नहीं सकती और उसी प्रकार ऊष्मा बाहर से अंदर आ नहीं सकती अर्थात अंदर का बर्तन और उसमें के पदार्थ को आसपास से ऊष्मीय दृष्टि से द्र रखे जाते हैं। यह बर्तन तांबे के होता हैं। इसमें तापमान का मापन करने के लिए एक तापमापी और द्रव हिलाने के लिए एक विलोडक रखा जाता हैं।

- 1. बुखार आने पर माँ तुरंत कपाल पर ठंडे पानी की पट्टियाँ रखती है। क्यों?
- 2. कैलरी मापी तांबे की क्यों बनाते हैं?


कैलरीमापी में एक स्थिर तापमानवाला पानी रखा जाता है। अर्थात पानी का और अंदर के बर्तन का तापमान

पदार्थ	विशिष्ट ऊष्मा cal /(gm °C)	पदार्थ	विशिष्ट ऊष्मा cal /(gm °C)
एल्युमिनियम	0.21	लोहा	0.11
अल्कोहल	0.58	ताँबा	0.09
सोना	0.03	पारा	0.03
हाइड्रोजन	3.42	पानी	1.0

समान होता है। उसमें कोई एक गर्म वस्तु डालने पर उस वस्तु, पानी और अंदर के बर्तन इनमें ऊष्मा का आदान-प्रदान होता है और इस कारण उनका तापमान समान होता है। कैलरीमापी के अंदर वाले बर्तन और उसमें रखा पदार्थ आसपास की अन्य सभी वस्तुओं से और वातावरण से ऊष्मीय दृष्टि से दूर रखने पर गर्म वस्तु द्वारा दी गई कुल ऊष्मा और पानी द्वारा तथा कैलरीमापी द्वारा ग्रहण की गई कुल ऊष्मा यह समान होती है।

इसी प्रकार कैलरीमापी में गर्म वस्तु के स्थान पर ठंड़ी वस्तु डालने पर वह वस्तु पानी में से ऊष्मा ग्रहण करेगी और उसके तापमान में वृद्धि होगी । पानी की और कैलरीमापी की ऊष्मा कम होगी और उनका तापमान भी कम होगा ।

मानलो कैलरीमापी के अंदरवाले बर्तनों का द्रव्यमान m_c और तापमान ' T_1 ' हैं और उसमें भरे हुए पानी का द्रव्यमान ' M_w ' है । पानी का तापमान कैलरीमापी के तापमान के बराबर अर्थात' T_1 ' होगा । उसमें हमने ' m_0 'द्रव्यमान और ' T_0 ' तापमान वाला पदार्थ डाला । T_0 यह T_1 की अपेक्षा अधिक होने पर वह पदार्थ ऊष्मा पानी को और कैलरी मापी को देगा और जल्दी ही इन तीनों का तापमान समान होगा ।

इस अंतिम तापमान को हम ${}^{{}^{\prime}}T_{_{\mathrm{F}}}{}^{{}^{\prime}}$ कहेंगे । पदार्थ द्वारा दी गई कुल ऊष्मा (()) यह पानी द्वारा ग्रहण की गई कुल ऊष्मा (Qc) और कैलरीमापी दुवारा ग्रहण की गई कुल ऊष्मा (Oc) इनके योगफल के बराबर होगी। यह समीकरण हम निम्नप्रकार से लिख सकते हैं।

 $Q_{O} = Q_{W} + Q_{C} ----- (4)$ ऊपर दिए अनुसार Q_0 , Q_w और Q_c ये द्रव्यमान, तापमान में परिवर्तन अर्थात ΔT (डेल्टा टी) और पदार्थ की विशिष्ट ऊष्मा इन पर निर्भर होते हैं। कैलरी मापी के पदार्थ का, पानी का और गर्म वस्तु के पदार्थ की विशिष्ट ऊष्मा क्रमशः C_C , C_W और C_C होने पर सूत्र (3) का उपयोग करके.

$$\begin{aligned} & Q_{O} = m_{O} \times \Delta T_{O} \times C_{O}, & \Delta T_{O} = T_{O} - T_{F} \\ & Q_{W} = m_{W} \times \Delta T_{W} \times C_{W}, & \Delta T_{W} = T_{F} - T_{i} \\ & Q_{C} = m_{C} \times \Delta T_{C} \times C_{C}, & \Delta T_{C} = T_{F} - T_{i} = \Delta T_{W} \end{aligned}$$

सूत्र (4) नुसार
$$m_{_{\mathrm{O}}}$$
 x $\Delta T_{_{\mathrm{O}}}$ x $C_{_{\mathrm{O}}}$ = $m_{_{\mathrm{W}}}$ x $\Delta T_{_{\mathrm{W}}}$ x $C_{_{\mathrm{W}}}$ + $m_{_{\mathrm{C}}}$ x $\Delta T_{_{\mathrm{C}}}$ x $C_{_{\mathrm{C}}}$ -----(5)

हम सभी तापमानों का और द्रव्यमानों का मापन कर सकते हैं । उसी प्रकार पानी का और कैलरी मापी का अर्थात तांबे की विशिष्ट ऊष्मा मालुम होने पर वस्तु के पदार्थ की विशिष्ट ऊष्मा हम सूत्र (5) का उपयोग कर ज्ञात कर सकते हैं। इसके विषय में अधिक विस्तृत जानकारी हम अगली कक्षा में सीखनेवाले हैं।

हल किए गए उदाहरण

उदाहरण : मानलो कैलरीमापी, उसमें रखा गया पानी और उसमें डाली गई तांबे की वस्तु इनका द्रव्यमान समान हैं। गर्म वस्तु का तापमान $60\,^{\circ}$ C और पानी का तापमान $30\,^{\circ}$ C हैं। ताँबे की और पानी की विशिष्ट ऊष्मा क्रमश 0.09Cal/ (gm⁰C) तथा 1 cal / (gm ⁰C) है, तो पानी का अंतिम तापमान ज्ञात करो।

दिया गया हैं :
$$m_0 = m_w = m_c$$
, $= m$, $T_i = 30$ °C, $T_0 = 60$ °C $T_f = ?$

= m x (
$$T_f - 30$$
) x 1 + m x ($T_f - 30$) x 0.09

$$\therefore$$
 (60 - T_f) x 0.09 = (T_f - 30) x 1.09

$$60 \times 0.09 + 30 \times 1.09 = (1.09 + 0.09)T_{f}$$

$$T_f = 32.29 \, {}^{0}C$$

पानी का अंतिम तापमान 32.29 ºC होगा।

ऊष्मा का प्रभाव (Effects of heat)

हमने पिछली कक्षा में ऊष्मा के पदार्थों पर होने वाले दो परिणाम देखे हैं।

1. आकंचन / प्रसरण 2. पदार्थ की अवस्था परिवर्तन । इस पाठ में हम प्रसरण के विषय में अधिक जानकारी प्राप्त करनेवाले हैं। पदार्थ की अवस्था परिवर्तन तुम अगली कक्षा में पढ़नेवाले हो।

प्रसरण (Expansion)

किसी भी पदार्थ को ऊष्मा देने पर उसके तापमान में वृद्धि होती है उसी प्रकार उसका प्रसरण होता है । होनेवाला प्रसरण उसके तापमान में होनेवाले वृद्धि पर निर्भर होता है। ऊष्मा के कारण ठोस, द्रव और गैस ऐसे सभी पदार्थों का प्रसरण होता है ।

ठोस का प्रसरण (Expansion of solids)

एकरेखीय प्रसरण (Linear Expansion) : ठोस का एक रेखीय प्रसरण अर्थात तापमान में वृद्धि के कारण तार अथवा छड़ के रूप में ठोस की लंबाई में होनेवाली वृद्धि । एक l_1 लंबाई वाले छड़ का तापमान T_1 से T_2 तक बढ़ने पर उसकी लंबाई l_2 होती हैं । छड़ की लंबाई में होने वाली वृद्धि यह छड़ की मूल लंबाई और होनेवाले तापमान में वृद्धि का ($\Delta T = T_2 - T_1$) अनुपात होता हैं । अर्थात लंबाई में होनेवाला परिवर्तन निम्न सूत्र द्वारा लिखते हैं । लंबाई में होनेवाला परिवर्तन α मूल लंबाई α तापमान में परिवर्तन

रेखीय प्रसरणांक कहते हैं।

भिन्न-भिन्न पदार्थों का प्रसरणांक भिन्न-भिन्न होता हैं। ऊपर्युक्त सूत्र से दिखाई देता हैं कि दो पदार्थों के समान लंबाईवाले छड़ों का तापमान समान परिमाण में बढ़ाने पर (अर्थात ΔT समान रखने पर) जिस पदार्थ का प्रसरणांक अधिक होता हैं वह पदार्थ अधिक प्रसरित होगा और उस पदार्थ की लंबाई में अधिक वृद्धि होगी।

ऊपर्युक्त सूत्र से हम पदार्थ का प्रसरणांक निम्नानुसार लिख सकते हैं।

$$\lambda = (l_2 - l_1) / (l_1 \Delta T) -----(8)$$

अर्थात प्रसरणांक यह इकाई लंबाईवाले छड़ का तापमान इकाई से बढ़ने पर उसके लंबाई में होनेवाला परिवर्तन दर्शाता हैं। उपर्युक्त सूत्र से ऐसा दिखाई देता हैं कि प्रसरणांक की इकाई तापमान की इकाई के प्रतिलोमानुपाती होती हैं। अर्थात 1/°C होती हैं।

निम्न तालिका में कुछ पदार्थों का प्रसरणांक दिया गया हैं।

ठोस पदार्थ	एकरेखीय प्रसरणांक x 10 ⁶ (1/ ⁰ C)	द्रव पदार्थ	घनीय प्रसरणांक x 10³ (1/°C)	गैसीय पदार्थ	प्रसरणांक x 10 ³ (1/°C)
ताँबा	17	अल्कोहल	1.0	हाइड्रोजन	3.66
एल्युमिनियम	23.1	पानी	0.2	हीलियम	3.66
लोहा	11.5	पारा	0.2	नाइट्रोजन	3.67
चांदी	18	क्लोरोफोर्म	1.3	सल्फर डाय ऑक्साइड	3.90

14.6 : कुछ पदार्थों के प्रसारणांक

हल किए गए उदाहरण

उदाहरण : एक आधे मीटर लंबाई वाले स्टील की छड़ का तापमान $60 \, ^{\circ}$ C से बढ़ने पर उसकी लंबाई में कितनी वृद्धि होगी? स्टील का एक रेखीय प्रसरणांक = $0.0000131/^{\circ}$ C हैं।

दिया गया हैं : छड़ की मूल लंबाई = $0.5~\mathrm{m}$, तापमान में हुई वृद्धि = $60~\mathrm{^oC}$, लंबाई में हुई वृद्धि = Δ l = ? सूत्र (6) से Δ l = λ x l₁ x Δ T = 0.000013 x 0.5 x 60 = 0.00039 m लंबाई में हुई वृद्धि = 0.039 cm

ठोस का प्रतलीय प्रसरण (Areal expansion of solids) : ठोस के एकरेखीय प्रसरण के अनुसार ही ठोस के चद्दर का तापमान बढ़ाने पर उसका क्षेत्रफल बढ़ता हैं, उसे ठोस का प्रतलीय प्रसरण कहते हैं । वह निम्न सूत्र से बताया गया हैं ।

$$A_2 = A_1 (1 + \sigma \Delta T)$$
----(9)

यहाँ ΔT यह तापमान में परिवर्तन होकर A_1 और A_2 यह ठोस के चद्दर का प्रारंभिक और अंतिम क्षेत्रफल हैं। σ (सिग्मा) यह पदार्थ का द्विघातिय या प्रतलीय प्रसरणांक हैं।

ठोस का घनीय प्रसरण (Volumetric expansion of solids) : ठोस के चद्दर जैसे ठोस के त्रिमितीय टुकड़े को ऊष्मा देने पर उसका सभी ओर से प्रसरण होता हैं और उसके आयतन में वृद्धि होती हैं । इसे ठोस का घनीय प्रसरण कहते हैं । इसका सूत्र हम निम्नानुसार लिख सकते हैं ।

क्या तुम जानते हो?

तुमने रेल पटरी देखी हैं क्या? वे लंबी ही लंबी एक साथ जुड़ी नहीं होती । कुछ निश्चित दूरी पर उसमें थोड़ी दरार रखी जाती हैं अर्थात तापमान में होनेवाले परिवर्तन के अनुसार उनकी लंबाई कम या अधिक होने में मदद होती हैं । यह दरार रखी नहीं तो ऊष्मा के कारण प्रसरित हुई पटरी टेड़ी होगी और दुर्घटना होने की संभावना होगी ।

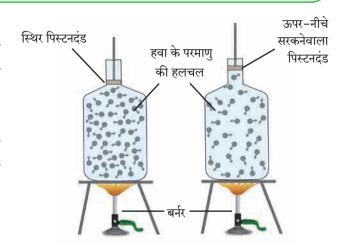
रेल की पटरी के समान प्रसरण के कारण गर्मी में पुलों की लंबाई में वृद्धि होने की संभावना होती है। डेन्मार्क में 18 km लंबाईवाले The great bell bridge की लंबाई गर्मी में 4.7 m से बढ़ती हैं, इसलिए पुल की रचना में भी इस प्रसरण को समाविष्ट करने की व्यवस्था की गई हैं।

द्रव का प्रसरण (Expansion of liquids)

द्रव का निश्चित आकार नहीं होता, परंतु उन्हें निश्चित आयतन होता है । इसलिए हम द्रव का घनीय प्रसरणांक उपर्युक्त सूत्र द्वारा लिख सकते हैं ।

$$V_2 = V_1(1 + \beta \Delta T)$$
----(11)

यहाँ ΔT यह तापमान में होनेवाला परिवर्तन है तथा V_2 और V_1 ये द्रव का अंतिम तथा प्रारंभिक आयतन हैं और β यह द्रव का प्रसरणांक हैं।


थोडा सोचो ।

द्रव के प्रसरण का दैनिक जीवन में होनेवाला कौन-सा उपयोग तुम्हें मालूम है?

ऊष्मा का पानी पर होनेवाला परिणाम यह अन्य द्रवों पर होनेवाले परिणाम की अपेक्षा थोड़ा भिन्न होता है। इसे ही पानी का असंगत व्यवहार कहते हैं। इसके विषय में हम अगली कक्षा में पढ़ने वाले हैं।

गैस का प्रसरण (Expansion of gases)

गैस का निश्चित आयतन भी नहीं होता है। गैस को ऊष्मा देने पर उसका प्रसरण होता है, परंतु गैस को एक निश्चित आकार के बोतल में भरने पर उसके आयतन में वृद्धि नहीं हो सकती और उसका दाब बढ़ता है। यह आकृति 14.7 में दिखाया गया है।

14.7 ऊष्मा का गैस पर होनेवाले परिणाम

आकृति 14.7 देखकर निम्न प्रश्नों के उत्तर दो।

- घनत्व = द्रव्यमान/आयतन इस सूत्र के अनुसार बंद बोतल में गैस के तापमान में वृद्धि करने पर उसके आयतन पर क्या परिणाम होगा?
- 2. बोतल बंद न होने पर और उसमें सरकने वाली छड़ बैठाने पर गैस के आयतन पर कौन-सा परिणाम होगा? जिसके कारण दाब स्थिर रखकर गैस के प्रसरण का मापन करते हैं । इस प्रकार के प्रसरणांक को स्थिर दाब प्रसरणांक कहते हैं । वह निम्न सूत्र द्वारा दिया गया हैं । $V_2 = V_1 \left(1 + \beta \Delta T \right) -----(12)$ यहाँ ΔT तापमान में होनेवाला परिवर्तन होकर V_2 और V_1 ये गैस के समान दाब पर अंतिम और प्रारंभिक आयतन

हैं और यह β गैस का स्थिर दाब प्रसरणांक है।

गैस को ऊष्मा देने पर उसका घनत्व कम होता है। इसका उपयोग आकृति 14.1 में किस चित्र में दिखाई देता है।

स्वाध्याय

1.अ बताओ, मेरी जोड़ी किसके साथ।

समुह 'अ' समुह 'ब' 296 K आ. पानी का क्वथनांक $98.6 \,^{\circ}\text{F}$ इ. कमरे का तापमान $0 \,^{\circ}\text{C}$ ई. पानी का हिमांक $212 \,^{\circ}\text{F}$

1.ब कौन सत्य कहता हैं ?

- अ. पदार्थ का तापमान जूल में मापते हैं।
- आ. ऊष्मा यह गर्म वस्तु से ठंड़ी वस्तु की ओर प्रवाहित होती है।
- इ. ऊष्मा की इकाई जूल है।
- ई. ऊष्मा देने पर पदार्थ में आकुंचन होता हैं।
- उ. ठोस के परमाणु स्वतंत्र होते है।
- ऊ. गर्म पदार्थ के परमाणुओं की औसत गतिज ऊर्जा ठंडे पदार्थ के परमाणुओं की औसत गतिज ऊर्जा की अपेक्षा कम होती है।

1.क खोजोगे तो मिलेगा।

- अ. तापमापी यह उपकरण मापने के लिए उपयोग में लाते हैं।
- आ. ऊष्मा का मापन करने के लिए इस उपकरण का उपयोग करते हैं।
- इ. तापमान यह पदार्थ में के परमाणुओं के गतिज ऊर्जा की मात्रा होती हैं।
- ई. किसी वस्तु की ऊष्मा यह उसमें के परमाणुओं के गतिज ऊर्जा की मात्रा होती हैं।
- 2. निशिगंधा ने चाय बनाने के लिए चाय के सभी घटक डालकर बर्तन सौर चुल्हे पर रखा । शिवानी ने उसी प्रकार का बर्तन गैस पर रखा । किसकी चाय शीघ्र बनेगी और क्यों?

3. संक्षिप्त में उत्तर लिखो।

- अ. चिकित्सकीय तापमापी का संक्षेप में वर्णन करो । इसमें और प्रयोगशाला में उपयोगी तापमापी में क्या अंतर हैं?
- आ. ऊष्मा और तापमान में क्या अंतर हैं? उनकी इकाई लिखो।
- इ. कॅलरी मापी की रचना आकृति के साथ स्पष्ट करो ।
- ई. रेल की पटरी में कुछ निश्चित दूरी पर दरार क्यों रखी जाती है, यह स्पष्ट करो।

 ठोस एवं द्रव का प्रसरणांक क्या है यह सूत्रद्वारा स्पष्ट करो।

4. निम्न उदाहरण हल करो।

अ. फैरेनहाइट इकाई का तापमान कितना होने पर वह सेल्सियस इकाई के तापमान से दुगना होगा?

(उत्तर : 320 °F)

- आ. एक पुल $20~\mathrm{m}$ लंबाईवाले लोहे के छड़ों से तैयार किया गया है। तापमान $18~\mathrm{C}$ होने पर दो छड़ों के बीच में $4~\mathrm{cm}$ का अंतर होता है, तो कितने तापमान तक वह पुल सुरक्षित रहेगा? (उत्तर : $35.40~\mathrm{C}$)
- इ. आयफेल टॉवर की ऊँचाई $15\,^{\circ}\mathrm{C}$ पर $324\mathrm{m}$ हैं तथा वह टॉवर लोहे का होने पर $30\,^{\circ}\mathrm{C}$ तापमान के लिए उसकी ऊँचाई कितने $c\mathrm{m}$ तक बढ़ेगी ?

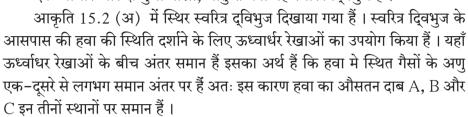
(उत्तर : 5.6 cm)

- ई. 'अ' और 'ब' पदार्थ की विशिष्ट ऊष्मा क्रमशः C और 2C हैं। अ को Q और 'ब' को 4Q इतनी ऊष्मा देने पर उनके तापमान में समान परिवर्तन होता है। यदि 'अ' का द्रव्यमान m हो तो 'ब' का द्रव्यमान ज्ञात करो। (उत्तर: 2 m)
- 3. एक 3 Kg द्रव्यमानवाली वस्तु 600 cal ऊर्जा प्राप्त करती हैं, तब उसका तापमान 10 °C से 70 °C तक बढ़ता हैं, तो वस्तु के पदार्थ की विशिष्ट ऊष्मा जात करो।

(उत्तर 0.0033 cal/gm⁰C)

उपक्रम :

द्विधातु पट्टी (bimetallic strip) के विषय में जानकारी प्राप्त करो और उसका उपयोग कर अग्निसूचक यंत्र कैसे बनाते हैं इस विषय पर कक्षा में चर्चा करो।

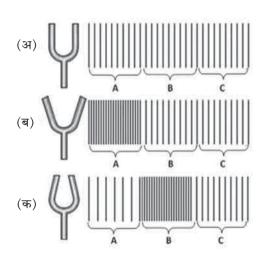


ध्वनि का निर्माण कैसे होता हैं?

ध्वनि का निर्माण (Production of Sound)

किसी वस्तु में कंपन होने के कारण ध्विन का निर्माण होता हैं यह हमने सीखा हैं। ऐसे कंपन के कारण ध्विन का निर्माण किस प्रकार होता हैं यह हम स्विरित्र द्विभुज (Tuning Fork) का उदाहरण लेकर समझेंगे। स्विरित्र द्विभुज की आकृति 15.1 में दर्शाई गई हैं।

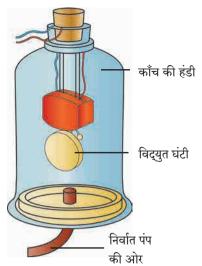
एक आधार और दो भुजा वाला, धातु से बना यह स्वरित्र द्विभुज हैं।



15.1 : स्वरित्र

आधार की सहायता से स्विरत्र द्विभुज द्वारा कठोर रबड़ के टुकड़े पर आघात करने पर भुजाएँ कंपित होने लगती हैं अर्थात उनकी आगे-पीछे ऐसी आवर्ती (periodic) हलचल शुरू होती हैं। इस हलचल के कारण क्या होता हैं वह अब क्रमशः देखेंगे।

कंपित होते समय, आकृति 15.2 (ब) में दर्शाए अनुसार स्विरित्र दि्वभुज की भुजाएँ एक-दूसरे से दूर जाने पर भुजाओं की संपर्कवाली बाहरी हवा संपीड़ित होती हैं और वहाँ की हवा का दाब बढ़ जाता हैं। आकृति में हवा के भाग A के स्थान पर उच्च दाब की स्थिति का निर्माण होता हैं। उच्च दाब और उच्च घनत्व के इस भाग को संपीड़न (Compression) कहते हैं। कंपन की अगली स्थिति में स्विरित्र द्विभुज की भुजाएँ एक दूसरे के नजदीक आनेपर, आकृति 15.2 (क) में दर्शाए अनुसार भुजाओं के संपर्कवाली बाहरी हवा विरल होती हैं और वहाँ (भाग A में) हवा का दाब कम हो जाता हैं। कम दाब और कम घनत्व के इस भाग को विरलन (Rarefaction) कहते हैं।



15.2 : स्वरित्र द्वारा ध्वनि का निर्माण

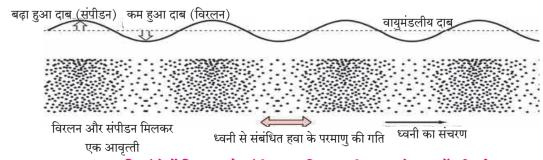
परंतु इसी समय पहले की संपीडन स्थिति की हवा के अणुओ ने (आकृति 15.2(a), भाग A) अपनी ऊर्जा अगले भाग के अणुओं (भाग B) को देने के कारण वहाँ की हवा संपीडन स्थिति में जाती हैं (देखो आकृति 15.2(a), भाग B)। भुजाओं की इस प्रकार लगातर अति वेग से होनेवाली आवर्ती हलचल के कारण हवा में संपीडन और विरलन इनकी मालिका का निर्माण होता हैं और स्विरत्र द्विभुज से दूरतक फैलती जाती हैं। इसे ही ध्विन तंरग (sound wave) कहते हैं। यह ध्विन तरंग कान तक आने पर कान का पर्दा (कर्णपट) कंपित होता हैं और उसके द्वारा विशिष्ट संदेश मित्तिष्क तक पहुँचकर हमें ध्विन सुनाई देती हैं।

हवा में ध्विन तरंग का निर्माण होने पर हवा आगे-आगे जाती हैं या हवा के अणु अपनी ही जगह पर आगे-पीछे होकर केवल संपीड़न व विरलन स्थिति का निर्माण आगे की हवा में होता जाता हैं? ऐसा क्यों होता हैं ?

15.3 : ध्वनी संचलन के लिए माध्यम की आवश्यकता होती हैं।

ध्वनि का संचरण और माध्यम (Propagation of Sound and Medium): कथा कठी में इमने मीखा है कि इवा, पानी या किमी ठोम में मे होकर, ध्वनि तंगों

कक्षा छठी में हमने सीखा हैं कि हवा, पानी या किसी ठोस में से होकर, ध्विन तरंगों के रूप में संचरित होकर हमारे कानों तक पहुँचती हैं, लेकिन ध्विन का स्त्रोत और अपना कान इन के बीच यदि ऐसा माध्यम न हो तो क्या होगा ?


ध्विन का निर्माण करने लिए और संचरण करने के लिए हवा जैसे माध्यम की आवश्यकता हैं, यह प्रयोग द्वारा सिद्ध किया जा सकता हैं। प्रयोग की रचना आकृति 15.3 में दर्शाई गई हैं। इस रचना में काँच की एक हंड़ी (Bell jar) समतल पृष्ठभाग पर रखी हैं। एक नली की सहायता से यह हंड़ी एक निर्वात पंप से (Vacuum-pump) जुड़ी हैं। निर्वात पंप की सहायता से हम हंड़ी की हवा बाहर निकाल सकते हैं। आकृति में दर्शाए अनुसार, हंड़ी में एक विद्युत-घंटी (Electric bell) होकर उसका संयोजन हंडी के ढक्कन द्वारा किया गया है।

प्रयोग के शुरूआत में निर्वात पंप बंद होने पर काँच की हंडी में हवा होगी। इस समय विद्युत घंटी की कुंजी दबाने पर, उसकी आवाज हंड़ी के बाहर सुनाई देगी। अब निर्वात पंप शुरू करने पर, हंड़ी की हवा की मात्रा कम-कम होती जाएगी। हवा की मात्रा जैसे-जैसे कम होगी, विद्युत घंटी की आवाज की तीव्रता भी कम-कम होती जाएगी। निर्वात पंप बहुत समय तक शुरू रखने पर हंड़ी की हवा बहुत ही कम हो जाएगी। उस समय विद्युत घंटी की ध्वनि अत्यंत धीमी सुनाई देगी। इस प्रयोग से यह सिद्ध होता हैं कि ध्वनि के निर्माण के लिए और संचरण के लिए माध्यम की आवश्यकता होती हैं। यदि हम हंड़ी की हवा पूर्णतः बाहर निकाल सकें, तो क्या विद्युत घंटी की ध्वनि सुनाई देगी? चंद्रमा पर गए दो अंतिरक्ष यात्री एक दूसरे के बिल्कुल समीप खड़े होकर बोले तो भी उन्हें एक-दूसरे की बातें सुनाई नहीं देंगी । चंद्रमा पर हवा नहीं हैं । ध्विन संचरण के लिए आवश्यक माध्यम दो अंतिरक्ष यात्रियों के बीच न होने के कारण उनके बीच माध्यम द्वारा होने वाला ध्विन संचरण नहीं हो सकता। अतः वे अंतिरक्ष यात्री भ्रमणध्विन जैसे तंत्रज्ञान का उपयोग कर एक दूसरे से संवाद करते हैं । भ्रमणध्विन में उपयोग में आनेवाली विशिष्ट तरंगों को संचरण के लिए किसी भी माध्यम की आवश्यकता नहीं होती।

ध्वनि तरंगो की आवृत्ति (Frequency of Sound Waves)

आकृति 15.2 में स्विरत्र द्विभुज के कंपायमान होने से हवा में संपीडन तथा विरलन का निर्माण कैसे होता हैं यह हमने देखा। अंत्यत सूक्ष्म पद्धित से देखने पर हवा के घनत्व और दाब में परिवर्तन निम्न आकृति 15.4 में दर्शाए अनुसार होगा। किसी भी वस्तु के कंपायमान होने पर हवा में इस प्रकार की ध्वनितंरगों का निर्माण होता हैं।

15.4 : ध्विन तरंगो में विरलन और संपीडन इनकी आवृत्ती व हवा के दाब में परिवर्तन

आकृति 15.4 में दर्शाए अनुसार विरलन और संपीडन मिलकर एक चक्र (Cycle) होता हैं। एक सेकंड़ में स्विरत्र द्विभुज की भुजाएँ जितनी बार आगे पीछे होगी उतने चक्र एक सेकंड़ में हवा ये तैयार होंगे।

एक सेकंड़ में हवा में या अन्य माध्यम में निर्माण होने वाले कुल चक्रों की संख्या अर्थात उस ध्विन तरंग की आवृत्ति (Frequency) होती है। आवृत्ति को हर्ट्झ (Hz) इस इकाई में नापते हैं। यदि एक सेकंड़ में एक कंपन हुआ तो उस कंपन की आवृत्ति 1 Hz होती हैं। उदाहरणार्थ, आकृति में दर्शाए अनुसार स्विरत्र द्विभुज में एक सेकंड़ में 512 कंपन होते हैं। इस स्विरत्र द्विभुज के कंपन के कारण एक सेकंड में 512 चक्रों का निर्माण होगा। जिससे निर्माण होनेवाली ध्विन की आवृत्ति 512 Hz होगी। कोई स्विरत्र द्विभुज कितनी आवृत्ति से कंपित होगा यह उसकी भुजाओं के आकार (लंबाई, मोटाई) और वह स्विरत्र द्विभुज किस पदार्थ से बना हैं। इस पर निर्भर होता हैं।

काँच के 6-7 गिलास लो । इन्हें एक कतार में रखकर उनमें क्रमशः बढ़ते हुए स्तर तक पानी भरो । एक पेंसिल लेकर उनपर क्रम से आघात करो । प्रत्येक गिलास से निर्माण होने वाली ध्वनि अलग-अलग होगी । ऐसा क्यों ?

प्रत्येक गिलास पर आघात करने पर उसमें स्थित हवा के स्तंभ में तरंगों का निर्माण होता हैं। हवा के स्तंभ की ऊँचाई के अनुसार इन तरंगों की आवृत्ति बदलती हैं। प्रत्येक गिलास में पानी का स्तर अलग-अलग होने के कारण उसमें स्थित हवा के स्तंभ की ऊँचाई भी अलग-अलग होती हैं। अतः वह गिलास कंपायमान होने पर निर्माण होनवाली ध्वनि की आवृत्ति विशिष्ट होती हैं। इसलिए उसके द्वारा निर्माण होने वाली ध्वनि भी अलग-अलग होती हैं।

ध्वनि की आवृत्ति नापने वाले ॲप (App) भ्रमणध्वनी पर उपलब्ध हो

सूचना और प्रौद्योगिकी के साथ

यू-ट्यूब से जलतरंगो का व्हिडिओ डाऊनलोड करो और इ-मेलद्वारा तुम्हारे मित्रों को भेजो।

सकते हैं । अपने शिक्षकों की सहायता से उसका उपयोग कर अलग-अलग गिलास से निकलने वाली ध्विन की आवृत्ति नापो । गिलास में स्थित हवा के स्तंभ की ऊँचाई और ध्विन की आवृत्ति इसमें कुछ संबंध दिखाई देता है क्या ? यह हुआ तुम्हारा सरल जलतंरग वाद्य ! भिन्न-भिन्न आकार के स्टील के बर्तन लेकर भी यह प्रयोग कर सकते हैं क्या ? ध्विन और संगीत (Sound and Music):

ऊपर्युक्त कृति से यह स्पष्ट होता हैं कि ध्विन तरंगों की आवृत्ति बदलने पर निर्माण होने वाली ध्विन अलग-अलग होती हैं। ध्विन तरंगों की अलग-अलग आवृत्ति के कारण अलग-अलग स्वरों की निर्मिती होती हैं। संगीत में स्वरिनमिती के लिए अलग-अलग प्रकार के वाद्यों का उपयोग किया जाता हैं। जिसमें सितार, वॉयलीन, गिटार जैसे तंतुवाद्य यंत्र का उसी प्रकार से बाँसुरी, शहनाई जैसे फूँकवाद्य यंत्रों का उपयोग किया जाता हैं। गले से भी अलग अलग प्रकार के स्वरों का निर्माण किया जाता हैं।

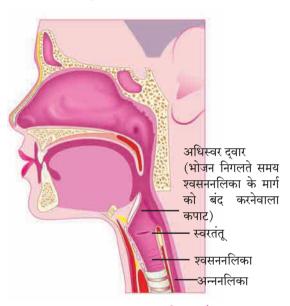
तंतुवाद्य मे उपयोग में लाए गए तार का तनाव कम-ज्यादा करके उसी प्रकार तार के कंपित होनेवाले भाग की लंबाई ऊँगली से कम-ज्यादा करके कंपन की आवृत्ति परिवर्तित करते है, इस कारण भिन्न-भिन्न स्वरों का निर्माण होता है।

बाँसुरी जैसे फूँकवाद्य यंत्र में उँगलियों से बाँसूरी पर बने छिद्रो को दबाकर या खोलकर, बाँसुरी में कंपायमान होने वाले हवा के स्तंभ की लंबाई कम-ज्यादा की जाती हैं जिससे कंपन की आवृत्ति में परिवर्तन होकर विभिन्न स्वरों की निर्मिती होती हैं। इसी प्रकार बाँसुरी वादन के लिए उपयोग में लाई गई फूँक बदलकर भी भिन्न-भिन्न स्वरों का निर्माण करते है।

क्या तुम जानते हो?

मध्य सप्तक के सा, रे, ग, म, प, ध, नी इन सप्तसुरों की आवृत्ति क्या हैं ? नीचे दी गई तालिका में यह जानकारी दी हैं।

स्वर	आवृत्ती (Hz)
सा	256
रे	280
ग	312
म	346
Ч	384
ध	426
नी	480


अलग-अलग स्वरों की निर्मिती करने वाले ॲप (Sound note generator app) भ्रमणध्विन पर उपलब्ध हो सकते हैं । अपने शिक्षकों की सहायता से उसका उपयोग कर अलग-अलग स्वरों की निर्मिती करो ।

मानवनिर्मित ध्वनि (Sound Produced by Human):

थोड़ा जोर से बोलो या गाना गाओ या मधुमक्खी की तरह गुंजन करो और अपने एक हाथ की ऊँगलियाँ गलेपर रखो। तुम्हें कुछ कंपन महसूस होते हैं क्या ?

मनुष्य में ध्विन का निर्माण स्वरयंत्र में होता हैं। कौर निगलते समय अपने हाथों की उँगलियाँ गले पर रखने पर कुछ हिलने वाला एक उभार तुम्हें महसूस होगा। यही स्वरयंत्र (Larynx) हैं। आकृति 15.5 में दर्शाए अनुसार यह श्वसननिका के ऊपरी भाग में होता हैं। उसमें दो स्वरतंतु (Vocal Cords) होते हैं। इन स्वरतंतुओं के बीच की जगह से हवा श्वसननिका में जा सकती हैं। फेंफड़ो की हवा जब इस जगह से जाती हैं तब स्वरतंतु कंपित होते हैं व ध्विन की निर्मिती होती हैं। स्वरतंतुओं से जुड़ी हुई माँसपेशियाँ इन तंतुओं के तनाव को कम-अधिक कर सकती हैं। स्वरतंतुओं का तनाव अलग-अलग होने पर निर्माण होने वाली ध्विन भी अलग होती हैं।

साइकल के निरूपयोगी ट्युब से रबड़ के दो समान आकार वाले टुकड़े काटो । दोनों टुकड़े एक-दूसरे के ऊपर रखकर उनके दोनों सिरे विपरीत दिशा में तानों । उनमें स्थित जगह मे फूँक मारो । तने हुए रबड़ के टुकड़ों में से हवा बहने लगते ही ध्विन का निर्माण होता हैं । मानवी स्वरयंत्र का कार्य इसी प्रकार से चलता हैं ।

15.5 : मानवी स्वरयंत्र

पुरुषों के स्वरतंतु लगभग 20 mm लंबे होते हैं । स्त्रियों में उसकी लंबाई 15 mm होती हैं । छोटे बच्चों में तो और भी कम होती हैं । इसलिए पुरूष, स्त्री और छोटे बच्चे इनकी आवाज अलग-अलग स्तर का होता है ।

कुत्ते के भौंकने की 'भौं...भौं' आवाज बिल्ली की 'म्याँव...म्याँव' ऐसी आवाज निकालो । परंतु ये आवाज निकालते समय स्वरतंतु पर पड़ने वाले तनाव पर भी ध्यान दो । ये दो अलग-अलग आवाजें निकालते समय स्वरतंतु पर पड़ने वाला तनाव बदलता हैं, यह तुम्हें महसूस होता हैं क्या ?

ध्वनिक्षेपक से ध्वनि निर्मिती (Sound generation by loudspeaker):

ध्वनिक्षेपक से भी आवाज की निर्मिती होती हैं यह तुम्हें मालूम हैं। ध्वनिक्षेपक की आंतरिक रचना अनुप्रस्थ काट के रूप में (Cross section) आकृति 15.6 में दर्शाई गई हैं। इसमें एक स्थाई चुंबक (Permanent magnet) होता हैं। उसके चारों ओर लपेटी गई कुंडली (Coil) मे से विद्युत धारा प्रवाहित होने के कारण भी चुंबकीय क्षेत्र का निर्माण होता हैं। यह तुम पिछले पाठ में समझ चूके हो।

दो चुंबक एक-दूसरे के समीप लाने पर उनकी स्थितिनुसार उनकी हलचल होती हैं, यह तुमने देखा ही होगा । इसी प्रकार से, यहाँ कुंडली द्वारा निर्माण हुए चुंबकीय क्षेत्र के अनुसार वह कुंडली आगे-पीछे हिलने लगती हैं । कुंडली का यह हिलना अर्थात उसकी आवृत्ति और आयाम, उसमें से बहनेवाला विद्युत प्रवाह किस प्रकार परिवर्तित होता हैं, इसपर निर्भर होता हैं । इसी कुंडली से जुड़े हुए ध्वनिक्षेपक के परदे की आगे-पीछे हलचल होने लगती हैं ।

15.6 ध्वनिक्षेपक की अंतरिक रचना

हमने इसके पहले देखा हैं कि स्विरत्र द्विभुज की भुजाओं की आगे पीछे होनेवाली हलचल के कारण हवा में ध्विन तरंगों का निर्माण होता हैं। इसी प्रकार से यहाँ, ध्विनक्षेपक के परदे की आगे-पीछे होने वाली हलचल के कारण हवा में ध्विन तरंगों का निर्माण होता हैं ध्विन का निर्माण करनेवाले किसी ध्विनक्षेपक के परदे को हल्का सा स्पर्श करके इस परदे के कंपनों का अनुभव तुम ले सकते हो।

ध्विन क्षेपक का उपयोग करके बहुत ऊँचे स्तर की आवाज का निर्माण किया जा सकता हैं। इसिलए सार्वजिनक स्थानों पर ध्विनक्षेपक का उपयोग किया जाता हैं। परंतु हमने पिछली कक्षा में सीखा हैं कि ध्विन का स्तर लगभग 100 डेसिबेल से अधिक हो तो वह ध्विन हमारे लिए हानिकारक हो सकती हैं। इसीलिए ध्विनक्षेपक की क्षमता यद्यपि उच्च स्तर की ध्विन निर्माण करने वाली हो तो भी उसपर नियंत्रण रखना आवश्यक हैं।

ध्विन और ध्विन निर्मिति का अध्ययन करते समय निर्माण होनेवाली ध्विन की अन्य को परेशानी न हो इसकी हमे सावधानी बरतनी चाहिए। पर्यावरण को हानि पहुँचानेवाले तथा सामाजिक स्वास्थ्य बिघाड़नेवाले प्रमुख कारणों में ध्विन प्रदुषण का समावेश किया गया है। इसके लिए ध्विन प्रदूषण टालने के लिए प्रयत्न करना चाहिए।

इसे सदैव ध्यान में रखो।

भ्रमणध्विन पर ध्विन का स्तर डेसीबल इस इकाई में नापने के लिए ॲप उपलब्ध हो सकता हैं। उसका उपयोग कर अपने शिक्षकों की सहायता से सार्वजिनक स्थान पर उपयोग में लाए जाने वाले किसी ध्विनक्षेपक से आनेवाली आवाज का स्तर नापकर देखो। ध्विनक्षेपक से भिन्न-भिन्न दूरी पर खड़े रहकर ध्विन का स्तर नापो। ध्विनक्षेपक से दूरी और आवाज का स्तर इसमें तुम्हें कोई संबंध दिखाई देता हैं क्या?

स्वाध्याय

1. रिक्त स्थानों पर योग्य शब्द भरो।

- अ. ध्विन तरंग के उच्च दाब और घनत्ववाले भाग कोकहते हैं, तो कम दाब और घनत्व वाले भाग कोकहते हैं।
- आ. ध्वनि के निर्माण के लिए माध्यम की आवश्यकता
- इ. किसी ध्विन तरंग में एक सेकंड़ में बनने वाले विरलन और संपीडन इनकी कुल संख्या 1000 हैं। इस ध्विन तरंग की आवृत्तिHz होगी।
- ई. अलग-अलग सुरों के लिए ध्विन तरंगों की अलग-अलग होती हैं।
- 3. ध्वनिक्षेपक मेंऊर्जा का रुपांतरण ऊर्जा में होता हैं।

2. वैज्ञानिक कारण बताओ।

- अ. मुँह से अलग-अलग स्वर निकालते समय स्वर तंतुओं पर का तनाव बदलना आवश्यक होता हैं।
- आ. चंद्रमा पर अंतरिक्ष यात्रियों का संवाद एक-दूसरे को प्रत्यक्ष रूप से सुनाई नहीं देता ।
- इ. ध्वनितरंगों का हवा मे से एक स्थान से दूसरे स्थान तक संचरण होने के लिए उस हवा का एक स्थान से दूसरे स्थान तक परिवहन होना आवश्यक नहीं होता।
- 3. गिटार जैसे तंतु वाद्य से और बाँसरी जैसे फूँकवाद्य से अलग अलग स्वरों की निर्मिती कैसे होती हैं ?
- 4. मानवी स्वरयंत्र से और ध्वनिक्षेपक से ध्वनि का निर्माण कैसे होता हैं ?
- "ध्विन संचरण के लिए माध्यम की आवश्यकता होती हैं।" यह प्रयोग आकृति सहित स्पष्ट करो।

6. उचित जोड़ियाँ मिलाओ।

मानवी स्वरयंत्र	धातु की भुजाओं में कंपन
ध्वनिवर्धक	हवा के स्तंभों में कंपन
जल तरंग	स्वरतंतु में कंपन
स्वरित्र द्विभुज	तारों में कंपन
तानपुरा	परदे में कंपन

उपक्रमः

- 1. दो प्लास्टिक के गिलास लेकर उनके नीचे के भाग (तल) में छंद करके धागा बाँधकर खेलने का टेलीफोन तैयार करो/क्या आपके मित्र /सहेली की आवाज तुम्हारे कानों तक धागों के माध्यम से पहुँचती हैं? धागे के स्थान पर लोहे की तार लेकर तथा धागा / तार की लम्बाई कम या ज्यादा करके प्रयोग करो और निष्कर्ष निकालो/इस विषय में एक-दसरे से और शिक्षकों के साथ चर्चा करो।
- 2. एक प्लास्टिक या स्टील का गिलास लेकर उसका सीधा नीचे का भाग काटो । दूसरे खुले भाग पर रबरबैंड़ की सहायता से गुब्बारा तानकर सिल करो और उसके ऊपर रागी, बाजरी आदि के छोटे-छोटे दानों को रखो । दूसरे खुले भाग से अपने मित्र को 'हुर्रेऽऽ...हुर्रेऽऽ' ऐसी आवाज जोर से निकालने को कहो रबर के ऊपर के दाने ऊपर /नीचे छलाँग मारते हुए दिखाई देते है क्या? ऐसा क्यों होता है, इस विषय में चर्चा करो ।

of the

16. प्रकाश का परावर्तन

हमें संवेदनाओं की सहायता से भिन्न-भिन्न प्रकार की जानकारी महसुस होती हैं। दृष्टि की संवेदना यह सबसे महत्वपूर्ण संवेदना हैं इस संवेदना के कारण हम अपने आसपास के पर्वत, नदी, पेड़, व्यक्ति और अन्य वस्तुओं को देख सकते हैं। सृष्टि का सुंदर रूप जैसे बादल, इंद्रधनुष्य, उड़नेवाले पक्षी, चंद्रमा, तारे ये भी हम दृष्टि की संवेदनाओं के कारण ही देख सकते हैं।

रात्रि के समय तुम्हारे कमरे का बल्ब कुछ समय तक बंद करके रखो और बाद में शुरू करो ।

बल्ब बंद करने के बाद कमरे में रखी वस्तु तुम्हें क्या स्पष्ट दिखाई देती हैं? पुनः बल्ब चालु करने के बाद तुम्हें क्या महसुस हुआ?

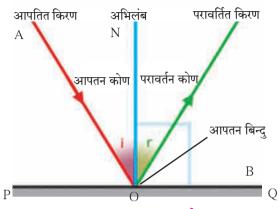
ऊपर्युक्त कृति से तुम्हारे ध्यान ये आता हैं कि दृष्टि की संवेदना होना और प्रकाश इनमें कुछ तो भी संबंध हैं। रात्रि के समय बल्ब बंद करने के बाद तुरंत वस्तु दिखाई नहीं देगी तो बल्ब पुनः चालु करने पर वस्तु पूर्ववत दिखाई देगी, अर्थात वस्तु से आनेवाला प्रकाश जब हमारे आँखो में प्रवेश करता हैं तब वस्तु हमें दिखाई देने लगती हैं। आँख में प्रवेश करनेवाला प्रकाश यह उस वस्तु द्वारा उत्सर्जित किया हुआ होगा अथवा उस वस्तु से परावर्तित हुआ होगा। वस्तु से परावर्तित हुआ प्रकाश अर्थात क्या हैं? यह समझने के लिए प्रकाश का परावर्तन समझेंगे।

प्रकाश का परावर्तन (Reflection of light): किसी एक पृष्ठभाग पर प्रकाश की किरणे टकराती हैं तो उनकी दिशा बदलती हैं और वे वापस लौट जाती हैं इसे ही प्रकाश का परावर्तन कहते हैं।

उपकरण: बॅटरी (टॉर्च), दर्पण, दर्पण स्टैंण्ड, काला कागज़, कंघी, सफेद कागज़, ड्राईंग बोर्ड इत्यादि।

कृति

- 1. सफेद कागज़ टेबल पर अथवा ड्राईंग बोर्ड पर कसकर लगा दो।
- 2. कंघी का मध्य भाग छोड़कर अन्य सभी भाग काले कागज़ से चिपका दो । जिससे प्रकाश यह केवल उस मुक्त भाग से ही जा सकेगा । (आकृति 16.1)
- 3. कंघी सफेद कागज़ के लंबवत पकड़कर टार्च की सहायता से कंघी के खुले भाग पर प्रकाश डालो।
- 4. बैटरी और कंघी इनकी सुयोग्य व्यवस्था कर सफेद कागज़ पर प्रकाश किरण प्राप्त करो और इस प्रकाश किरण के मार्ग में आकृति में दिखाए अनुसार दर्पण रखो।


16.1 प्रकाश का परावर्तन

5. तुम्हें क्या दिखाई दिया?

ऊपर्युक्त कृति में प्रकाश किरण दर्पण पर टकराने के बाद परावर्तित होती हैं और अन्य दिशाओं में जाती हैं। जो प्रकाश किरणे किसी भी पृष्ठभाग से टकराती हैं उन्हें आपितत किरण (Incident ray) कहते हैं। आपितत किरण पृष्ठभाग के जिस बिन्दु पर टकराती हैं, उस बिन्दु को आपतन बिन्दु कहते हैं तो उस पृष्ठभाग से वापस लौटनेवाली किरण को परावर्तित किरण (Reflected ray) कहते हैं। परावर्तित किरणों की दिशा कुछ नियमानुसार निश्चित होती हैं। इस नियम को प्रकाश के परावर्तन का नियम कहते हैं। यह नियम समझने से पहले कुछ संकल्पनाएँ समझेंगे।

(आकृति 16.2 में दिखाए अनुसार)

- 1. दर्पण की स्थिति दर्शानेवाली रेखा PQ खींचो।
- 2. आपतित किरण AO और परावर्तित किरण OB खींचो।
- 3. दर्पण की स्थिति दर्शानेवाली रेखा से 90° का कोण बनानेवाली रेखा ON यह बिन्दु O पर खीचों । इस रेखा को अभिलंब कहते हैं । रेखा ON यह रेखा PQ को लंबवत होने के कारण \angle PON = \angle QON= 90° होता हैं ।

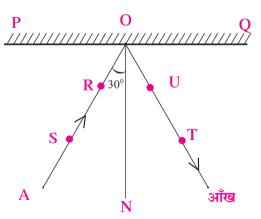
परावर्तन के नियम

प्रकाश परावर्तन के तीन नियम निम्न प्रकार से दिए गए हैं।

- 1. आपतन कोण और परावर्तन कोण का माप समान होता हैं।
- 2. आपतित किरण, परावर्तित किरण और अभिलंब एक ही प्रतल में स्थित होते हैं।
- 3. आपतित किरण और परावर्तित किरण, अभिलंब के विपरीत ओर होती हैं।

16.2 प्रकाश का परावर्तन

परावर्तन से संबंधित विभिन्न प्रकार की संकल्पनाएँ निम्न प्रकार से हैं।


- i. किरण AO आपतित किरण ii. बिन्दु O आपतन बिन्दु
- iii. किरण OB परावर्तित किरण
- iv. रेखा ON अभिलंब
- v. आपितत किरण और अभिलंब के मध्य का कोण \angle AON आपतन कोण (i)
- vi. परावर्तित किरण और अभिलंब के मध्य का कोण \angle BON परावर्तन कोण (r)

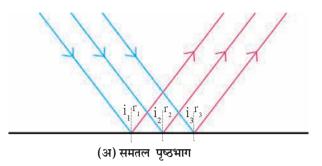
उपकरण: दर्पण, ड्राईंग बोर्ड, आलिपनें, सफेद कागज़, कोणमापक, पट्टी, पेन्सिल इत्यादि।

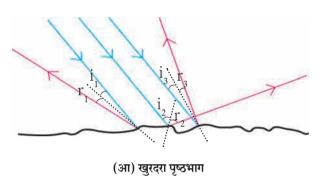
कृति:

- 2. कागज़ पर एक ओर दर्पण की स्थिति दर्शानेवाली रेखा PQ खींचो। (आकृति 16.3)
- 3. रेखा PQ पर बिन्द O लेकर उस बिन्द से रेखा ON लंब खीचो।
- 4. रेखा ON से 30° का कोण बनानेवाली किरण AO खींचो।
- 5. किरण AO पर दो आलपिनें S और R लगा दो।
- 6. दर्पण स्टॅंड़ में लगाकर रेखा PQ पर आकृति में दिखाए अनुसार लंबवत स्थिति में रखो ।
- 7. दर्पण में देखकर दर्पण में दिखनेवाले आलिपनों के प्रतिबिंबों के नीचे के सिरों के सीधी सरल रेखा में T और U ये पिने लगा दो।
- 8. अब दर्पण को बाजु में रख दो और बिन्दु T और U को बिन्दु O से जोड़ दो।
- ∠TON मापो.
- 10. कृति 4 से 9, 45°, 60° आपतन कोण के लिए पुनः करो और तालिका में कोणों के माप लिखो।

16.3: परावर्तन के नियमों का सत्यापन

अ.क्र.	आपतन कोण	परावर्तित कोण	
	(∠i)	(∠r)	
1.	30^{0}		
2.	45°		
3.	60°		


आपतन कोण और परावर्तन कोण इनमें कौन-सा संबंध दिखाई देता हैं। तुमने कृति यदि सावधानीपूर्वक की होगी तो तुम्हें यह दिखाई दिया होगा कि तीनों समय आपतन कोण और परावर्तित कोण का माप समान होता हैं। अर्थात परावर्तन के नियमों का सत्यापन होता हैं।



प्रकाश किरण दर्पण पर लंबवत स्थिति मे पड़ने पर क्या होगा?

आकृति 16.4 (अ) और (आ) में समतल और खुरदरे पृष्ठभाग पर समांतर आनेवाली तीन आपतित किरणें नीले रंग द्वारा दिखाई गई हैं। प्रकाश के परावर्तन के नियम का उपयोग कर आपतन बिन्दुओं पर परावर्तित किरणें लाल रंग द्वारा दिखाई गई है।

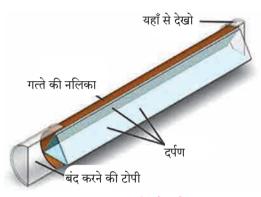
- 1. किस पृष्ठभाग पर परावर्तित किरणें एक दूसरे को समांतर होगी?
- 2. आकृतिद्वारा कौनसा निष्कर्ष प्राप्त होगा?
- 1. प्रकाश का नियमित परावर्तन (Regular reflection): समतल तथा चिकने पृष्ठभाग से होनेवाले प्रकाश के परावर्तन को 'नियमित परावर्तन' कहते हैं । नियमित परावर्तन में समांतर आनेवाली आपतित किरणों के आपतन कोण और परावर्तन कोण के माप समान होते हैं । इसलिए परावर्तित किरण परस्पर एक दूसरे के समांतर होती हैं । यदि आपतित किरणों के आपतित कोण $i_1, i_2, i_3, \ldots, i_3, \ldots$ हो और उनके परावर्तन कोण क्रमशः $r_1, r_2, r_3, \ldots, r_1 = r_2 = r_3 = \ldots$ (आकृति 16.4 अ)

16.4 समतल व खुरदरे पृष्ठभाग पर प्रकाश का परावर्तन

2. प्रकाश का अनियमित परार्तन (Irregular reflection) : खुरदरे पृष्ठभाग से होनेवाले प्रकाश के परावर्तन को 'अनियमित परावर्तन' कहते हैं । अनियमित परावर्तन में समांतर आनेवाली आपितत किरणों के आपितन कोण समान माप के नहीं होते और इसलिए उनके परावर्तन कोण के माप भी समान नहीं होते अर्थात $\mathbf{i_1} \neq \mathbf{i_2} \neq \mathbf{i_3}$ व $\mathbf{r_1} \neq \mathbf{r_2} \neq \mathbf{r_3} \neq \ldots$ इसलिए परावर्तित किरणें एक दूसरे के समांतर नहीं होती वे विस्तृत पृष्ठभाग पर फैलती हैं । ऐसा क्यों घटित होता यह आकृति 16.4 (आ) से स्पष्ट होता हैं ।

इसे सदैव ध्यान में रखो।

- 1. नियमित और अनियमित इन दोनों परावर्तनों में प्रकाश के परावर्तन के नियम का पालन किया जाता हैं।
- 2. अनियमित परावर्तन में होनेवाले प्रकाश का परावर्तन यह परावर्तन के नियम का पालन नहीं होने के कारण प्राप्त परावर्तन न होकर वे परावर्तित पृष्ठभाग अनियमित (खुरदरा) होने से प्राप्त हुआ हैं।
- 3. अनियमित परावर्तन में प्रत्येक आपतन बिन्दु से प्राप्त होनेवाला आपतन कोण भिन्न होता हैं, परंतु एक ही आपतन बिन्दु से प्राप्त होनेवाले आपतन कोण और परावर्तित कोण समान माप के होते हैं, अर्थात् $i_1=r_1$, $i_2=r_2$,

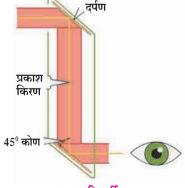

परावर्तित प्रकाश का परावर्तन (Reflection of reflected light)

- 1. केश कर्तनालय में तुम्हारे गर्दन के बाल कारागिर ने ठीक प्रकार से काटे हैं क्या यह तुम कैसे देखते हो?
- 2. दर्पण में हमारा प्रतिबिंब कैसा दिखता हैं? दाएँ व बाएँ भाग का क्या होता हैं?
- 3. पानी में चंद्रमा का प्रतिबिंब कैसे दिखाई देता हैं ?

केश कर्तनालय में तुम्हारे सामने और पीछे की ओर दर्पण लगे होते हैं। तुम्हारे पीठ के पीछे के भाग का प्रतिबिंब पीछे के दर्पण में निर्माण होता हैं। इस प्रतिबिंब का प्रतिबिंब सामनेवाले दर्पण में दिखाई देता हैं, जिसके कारण केश कर्तनालय में गर्दन के ऊपर के बाल ठीक प्रकार से काटे हैं क्या यह तुम्हें देखते आता हैं।

हम चंद्रमा का पानी में प्रतिबिंब किस प्रकार देखते हैं? चंद्रमा स्वयंप्रकाशित न होने के कारण सूर्य का प्रकाश चंद्रमा पर पड़ने से उसका परावर्तन होता है। उसके पश्चात पानी से परावर्तित प्रकाश का पुनः परावर्तन होता है और हमें चंद्रमा का प्रतिबिंब दिखाई देता है। इस प्रकार से परावर्तित प्रकाश का अनेक बार परावर्तन हो सकता है।

16.5 कॅलिडोस्कोप


- 1. तीन समान आकारवाले आयताकृति दर्पण लो.
- 2. परावर्तक पृष्ठभाग अंदर की ओर आए इस प्रकार से तीनों ही दर्पण को एक दूसरे से त्रिभुजाकार स्वरूप में चिकटपट्टी की सहायता से चिपकाओ । (आकृति 16.5) देखो ।
- 3. एक सफेद कागज लेकर उसे भी त्रिभुजाकार स्वरूप में चिकटपट्टी की सहायता से चिपकाओ तथा एक भाग बंद कर दो।
- 4. काँच के 4-5 भिन्न रंगवाले टुकड़े लेकर उन्हें दर्पणों की खाली जगह में डाल दो।
- 5. अब दूसरा भाग भी बंद कर उस कागज़ पर एक छिद्र करो।
- 6. उस छिद्र से उजाले में देखो, तुम्हें काँच के टुकड़ो से असंख्य प्रतिबिंब तैयार हुए दिखाई देंगे। ये प्रतिबिंब तीनों दर्पणों में हए परावर्तनों के कारण निर्मित होते हैं।

कॅलिडोस्कोप में देखने पर तुम्हें भिन्न-भिन्न तैयार हुई रचनाएँ (रंगीन आकृतियाँ) देखने को मिलेगी। कॅलिडोस्कोप की खास विशेषता अर्थात इसमें एक बार तैयार हुई रचना फिर से आसानी से तैयार नहीं होती हैं। प्रत्येक समय दिखाई देनेवाली रचना यह भिन्न होती हैं। कमरे की दिवारे सुशोभित करने के लिए उपयोग में लाया जानेवाला नक्शीदार कागज़ तैयार करने वाले और वस्त्रोदयोग व्यवसाय में अभिकल्पक कॅलिडोस्कोप का उपयोग भिन्न-भिन्न रचना की खोज करने के लिए करते हैं।

परिदर्शी (Periscope)

उपकरण: गत्ते का खोका, दो समतल दर्पण, चिकटपट्टी, कटर इत्यादि। कृति: 1. एक पुठ्ठे का खोका लो। खोके के ऊपर तथा नीचेवाले भाग में छेद कर उसमें खोके के बाजु में 45° का कोण बनानेवाले और एक-दूसरे को समांतर होनेवाले दो समतल दर्पण आकृति में दिखाए अनुसार लगाओ और उन्हें चिकटपट्टी की सहायता से सुव्यवस्थित चिपका लो। (आकृति 16.6 देखे)

- 2. ऊपर और नीचे के दर्पणों के पास एक दूसरे के विपरीत ओर लगभग 1-1 इंच की $^{45^\circ$ कोण दो खिड़िकयाँ बनाओ । अब नीचे की खिड़िकी में से देखो ।
- 3. तुम्हें क्या दिखाई देता हैं इसका निरीक्षण करो।

16.6 परिदर्शी

नीचे की खिड़की से तुम्हें ऊपरवाली खिड़की के सामने का दृश्य दिखाई देगा । इस तैयार हुए उपकरण को परिदर्शी कहते हैं । परिदर्शी का उपयोग पनडुब्बी में समुद्र के ऊपर की वस्तु देखने में और उसी प्रकार बंकर्स में भूपृष्ठ भाग के नीचे रहकर भूपृष्ठ के ऊपर की वस्तुओं पर निगरानी रखने के लिए किया जाता हैं । कॅलिडोस्कोप और परिदर्शी ये दोनों उपकरण परावर्तित प्रकाश का परावर्तन इस गुणधर्म पर कार्य करते हैं ।

16.7 पणडुब्बी पर परिदर्शी

हल किए गए उदाहरण

उदाहरण 1. यदि परावर्तित किरण अभिलंब से 60° का कोण बनाती हैं, तो आपितत किरण अभिलंब से कितने अंश का कोण बनाएगी ?

दिया गया है : परावर्तन कोण = $\angle r = 60^{\circ}$, आपतन कोण = $\angle i = ?$

प्रकाश के परावर्तन के नियमानुसार,

 $\angle i = \angle r$, परंतु $\angle r = 60^{\circ}$ \therefore $\angle i = 60^{\circ}$

 \therefore आपितत किरण अभिलंब से 60° का कोण बनाती हैं।

उदाहरण 2. आपतित किरण और परावर्तित किरण इनमें 90° का कोण हो तो आपतन कोण और परावर्तन कोण के माप ज्ञात करो।

दिया गया है : आपतित किरण और परावर्तित किरण इनमें 90° का कोण बनता हैं।

i.e $\angle i + \angle r = 90^{\circ} ---- (1)$

परंतु प्रकाश के परावर्तन के नियमानुसार

 $\angle i = \angle r ---- (2)$

 $\angle i + \angle i = 90^{\circ}$ समीकरण (1) व (2) से

 $2 \angle i = 90^{\circ}$ ∴ $\angle i = 45^{\circ}$ ∴ आपतन कोण और परावर्तन कोण यह 45° के हैं।

उदाहरण 3. समतल दर्पण और आपतित किरण इनमें बनने वाला कोण 35° हैं, तो परावर्तन कोण और आपतन कोण ज्ञात करो।

दिया गया है : आकृति 16.2 से ∠POA = 35°

रेखा PQ = दर्पण, किरण AO = आपतित किरण, रेखा

ON = अभिलंब, किरण OB = परावर्तित किरण

∠PON = 90° --- (अभिलंब)

 $\angle POA + \angle AON = \angle PON$

 $\therefore 35^{\circ} + \angle AON = 90^{\circ}$

 \therefore \angle AON = 90° - 35° = 55°

अर्थात आपतन कोण = $\angle AON$ = $\angle i$ = 55 $^{\circ}$

प्रकाश के परावर्तन के नियमानुसार, $\angle i$ = $\angle r$

 $\angle r = 55^{\circ}$ आपतन कोण और परावर्तन कोण का माप 55° होगा ।

उदाहरण 4. 40° आपतन कोणवाला प्रकाश किरण दर्पण से परावर्तित होते समय दर्पण से कितने अंश का कोण बनाएगा?

दिया गया है : आकृति 16.2 से, $\angle NOQ = 90^{\circ}$ ---- (अभिलंब), आपतन कोण = $\angle i = 40^{\circ}$

 \therefore \angle NOB = \angle r = 40° ----- (प्रकाश परावर्तन के नियमानुसार)

 \angle NOQ = \angle QOB + \angle BON

 $\therefore 40^{\circ} + \angle QOB = 90^{\circ}$

 $\therefore \angle QOB = 90^{\circ} - 40^{\circ} = 50^{\circ}$

∴परावर्तित किरण दर्पण से 50° का कोण बनाएगी।

स्वाध्याय

1. रिक्त स्थानों में उचित शब्द लिखो।

- अ. समतल दर्पण के आपतन बिन्दु पर लंब होने वाली रेखा को कहते हैं।
- आ. लकड़ी के पृष्ठभाग से होनेवाला प्रकाश का परावर्तन यह प्रकार परावर्तन होता हैं।
- इ. कॅलिडोस्कोप का कार्य गुणधर्म पर आधारित होता हैं।

2. आकृति बनाओ।

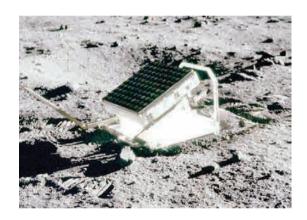
दो दर्पणों के परावर्तक पृष्ठभाग एक दूसरे से 90° का कोण बनाते हैं। एक दर्पण पर आपितत किरण 30° का आपतन कोण बनाती हो तो उसके दूसरे दर्पण से परावर्तित होनेवाली किरण बनाओ।

- 3. ''हम अंधेरे कमरे में वस्तु आसानी से देख नहीं सकते'' इस वाक्य का स्पष्टीकरण सकारण कैसे करोगे।
- 4. नियमित और अनियमित परावर्तन में अंतर लिखो।
- निम्नलिखित संकल्पनाएँ दर्शानेवाली आकृति निकालो और इन संकल्पनाओं को स्पष्ट करो।
 - आपतित किरण
- परावर्तन कोण
- अभिलंब
- आपतन बिन्दु
- आपतन कोण
- परावर्तित किरण

6. निम्नलिखित घटना का अध्ययन करो।

स्वरा और यश पानी से भरे बड़े बर्तन में देख रहे थे। स्थिर पानी में उनका प्रतिबिंब उन्हें स्पष्टरूप से दिखाई दे रहा था। इतने में यश ने पानी में पत्थर डाला जिसके कारण उनके प्रतिबिंब अस्पष्ट हो गए, स्वरा को प्रतिबिंब अस्पष्ट होने का कारण समझ में नहीं आ रहा था।

निम्न प्रश्नों के उत्तर से ऊपर्युक्त घटना में स्वरा को प्रतिबिंब अस्पष्ट होने का कारण समझाकर बताओ।

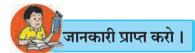

- अ. क्या प्रकाश का परावर्तन और प्रतिबिंब का अस्पष्ट होना, इनमें कुछ संबंध हैं ?
- आ. इस घटना द्वारा तुम्हें प्रकाश परावर्तन का कौन-सा प्रकार आपके ध्यान में आता हैं। स्पष्ट करो।
- इ. प्रकाश परावर्तन के प्रकारो में परावर्तन के नियम का पालन होता हैं क्या ?

7. उदहारण हल करो।

- अ. समतल दर्पण और परावर्तित किरण के बीच 40° का कोण बनता हैं, तो आपतन कोण और परावर्तन कोण का माप ज्ञात करो। (उत्तर 50°)
- आ. दर्पण और परावर्तित किरण इनमें 23° का कोण बनता हैं। आपतित किरण का आपतन कोण कितने अंश का होगा? (उत्तर 67°)

उपक्रम :

अपोलो से चंद्रमा पर उतरे हुए अंतरिक्ष यात्री ने चंद्रमा पर बड़े दर्पण रखे हैं। उसका उपयोग करके चंद्रमा की दूरी किस प्रकार मापी जा सकती है, इसके बारे में जानकारी प्राप्त करो।


17. मानवनिर्मित पदार्थ

तुम्हारे घर, विद्यालय तथा आसपास पाए जाने वाले बीस मानवनिर्मित पदार्थों की सूची बनाओ तथा चर्चा करो।

हम दैनिक व्यवहार में अनेक पदार्थों का उपयोग करते हैं, वे लकड़ी, काँच, प्लास्टिक, धागे, मिट्टी, धातु, रबर ऐसे अनेक पदार्थों से निर्मित होते हैं इनमें से लकड़ी, पत्थर, खनिज, पानी इस प्रकार के पदार्थ प्राकृतिक रूप में पाए जाते हैं, इस कारण उन्हें प्राकृतिक पदार्थ कहते हैं। मानव ने प्राकृतिक पदार्थों पर प्रयोगशाला में अनुसंधान किया। इसी अनुसंधान का उपयोग करके कारखानों में विभिन्न प्रकार के पदार्थों का उत्पादन किया गया। इस प्रकार से निर्मित पदार्थों को मानविनर्मित पदार्थ कहते हैं। उदाहरणार्थ, काँच, प्लास्टिक, कृत्रिम धागे, थर्माकोल इत्यादि। आओ अब हम कुछ मानविनर्मित पदार्थों की जानकारी प्राप्त करते हैं।

तुम्हारे घर की वस्तुओं में उपयोग में लाए गए पदार्थों का निम्नसारणी में वर्गीकरण करो तथा विभिन्न वस्तुओं का संदर्भ लेकर तालिका की वृद्धि करो।

वस्तु का नाम	उपयोग में लाए गए पदार्थ			
	मानवनिर्मित पदार्थ	प्राकृतिक पदार्थ		
लकड़ी की कुर्सी		लकड़ी		
कंघी	प्लास्टिक			

प्लास्टिक (Plastic)

सुघट्यता आकार्यता गुणधर्म तथा संश्लेषित बहुलक द्वारा बनाए गए मानव निर्मित पदार्थ को प्लास्टिक कहते हैं । सभी प्लास्टिक की रचना समान नहीं होती, कुछ की रचना रेखीय होती हैं तो कुछ की रचना चक्राकार होती हैं ।

ऊष्मा के प्रभाव के आधारपर प्लास्टिक का दो प्रकारों में विभाजन कर सकते हैं। जिस प्लास्टिक को मनचाह आकार दे सकते हैं, उसे थर्मोप्लास्टिक (ऊष्मामृद) कहते हैं। उदाहरणार्थ, पॉलीथीन PVC इनका उपयोग खिलौने, कंघी, प्लास्टिक की थाली, कटोरी इत्यादि। दूसरे कुछ प्लास्टिक ऐसे हैं जिन्हें एक बार साँचे में ढाल कर एक विशिष्ट आकार प्राप्त होने पर इन्हें ऊष्मा देकर भी उनका आकार नहीं बदला जा सकता उसे थर्मोसेटिंग प्लास्टिक (ऊष्मादृढ) कहलाते हैं। इसका उपयोग घरमें उपयोगी बिजली के उपकरणों के स्विच, कुकर के हत्था का आवरण इत्यादि।

17.1 प्लास्टिक के पढार्थ

सूचना और संप्रेषण प्रौद्योगिकी के साथ

प्लास्टिक निर्मिती संबंधी विभिन्न व्हिड़ीओ इकट्ठा करो, तथा इसके आधार पर शिक्षकों की मदद लेकर उसे प्रस्तुतीकरण तैयार कर ई-मेंल तथा अन्य ॲप्लीकेशन सॉफ्टवेअर की मदद लेकर दसरो को भेजो।

17.2 थर्मोप्लॅस्टिक

17.3 थर्मोसेटिंग प्लॅस्टिक

प्लॅस्टिक के गुणधर्म:

प्लास्टिक पर जंग नहीं लगता हैं। प्लास्टिक का विघटन नहीं होता हैं। इस पर हवा में उपस्थित नमी, ऊष्मा, बारीश इनका प्रभाव सामान्यरूप से नहीं होता। इससे किसी भी रंग की वस्तु बनाई जा सकती हैं। आकार्यता (सुघट्यता) उस गुणधर्म के कारण हम मनचाह आकार दे सकते हैं, ऊष्मा तथा विद्युत का कुचालक हैं। भार में हलका होने के कारण परिवहन करना सुविधाजनक होता है।

प्लास्टिक के प्रकार और उपयोग

थर्मोप्लास्टिक				
1. पॉलीविनाईल क्लोराइड	बोतल, रेनकोट, पाईप, हैंडबैग, जूते, विद्युतवाहक तारों का आवरण, फर्निचर,			
(PVC)	रस्सी, खिलौने इत्यादि ।			
2. पॉलीस्टाइरीन (PS)	रेफ्रिजरेटर जैसे विद्युतीय उपकरणों का ऊष्मारोधी भाग, यंत्रो के गिअर, खिलौने,			
	पदार्थों का सुरक्षा आवरण, उदा. सीड़ी, डिव्हिड़ी के कव्हर इत्यादि।			
3. पॉलीइथिलीन (PE)	दुध की थैलियाँ, पैकींग की थैलियाँ, नरम गार्ड़न पाईप इत्यादि ।			
4. पॉलीप्रोपिलीन (PP)	लाऊड़ स्पिकर व गाड़ीयों के पुर्जे, रस्सी, चटाई, प्रयोगशाला के उपकरण इत्यादि।			

થર્મોસેટિંગ			
1. बॅकेलाईट	रेड़िओ, टीव्ही, टेलिफोन इनके कॅबिनेट, इलेक्ट्रीक के स्विच, खिलौने, गृहोपयोगी		
	वस्तुएँ, कुकर के हत्थे का आवरण इत्यादि।		
2. मेंलेमाईन	कप, प्लेट, ट्रे ऐसी घरेलु वस्तुएँ, हवाई जहाज़ के इंजिन के कुछ पुर्जे, विद्युत तथा		
	ध्विनरोधक आवरण इत्यादि ।		
3. पॉलीयुरेथेन	सर्फबोर्ड़, छोटी नाव, फर्निचर, गाड़ियों के आसन (सीट्स) इत्यादि।		
4. पॉलीइस्टर	तंतुकांच बनाने के लिए उपयोगी, लेझर प्रिंटर्स का टोनर, कपड़ा उद्योग, इत्यादि ।		

- 1. रासायनिक पदार्थों के भंड़ारण के लिए प्लास्टिक के टंकीयों का उपयोग क्यों किया जाता हैं?
- 2. घरेलु उपयोगी विविध वस्तुओं का स्थान प्लास्टिक ने कैसे प्राप्त कर लिया हैं ?

प्लास्टिक तथा पर्यावरण

- तुम्हारे घर में प्रतिदिन कितनी पॉलिथिन की कैरीबैग आती हैं? उसके बाद उनका क्या होता हैं?
- 2. उपयोग होनेपर फेंक गए कैरीबैग, पानी की बोतल, दुध की रिक्त थैलियाँ इनका आगे पुनः चक्रीकरण (Recycle) कैसे होता हैं?

कुछ पदार्थों का प्राकृतिक रूप से विघटन होता है, उन्हें विघटनशिल पदार्थ कहते हैं। तो कुछ पदार्थों का प्राकृतिक रूप से विघटन नहीं होता, उन्हें अविघटनशिल पदार्थ कहते है। निम्नतालिका से हमे ऐसा दिखाई देता है की, प्लास्टिक अविघटनशिल है और जिसके कारण वे पर्यावरणीय दृष्टि से प्रदूषक है। इस पर क्या उपाय किया जा सकता है?

क्या तुम जानते हो?

- प्लास्टिक का उपयोग स्वास्थ्य तथा चिकित्सा विज्ञान में किया जाता हैं, जैसे सिरिंज, दस्ताने इत्यादि ।
- 2. मायक्रोवेव्ह ओवन में भोजन पकाने हेतु विशिष्ट पात्र प्लास्टिक से बनाए जाते हैं।
- 3. गाड़ीयों का खरोचोंसे संरक्षण होने के लिए गाड़ियोंपर टेफ्लॉन कोटींग (Teflon coating) की जाती हैं। टेप्लॉन एक प्लास्टिक का ही प्रकार है।
- 4. प्लास्टिक के 2000 से अधिक प्रकार हैं।
- हवाईजहाज़ (वायुयानों) के कुछ भाग जोड़ने के लिए प्लास्टिक के कुछ प्रकारों का उपयोग किया जाता हैं।
- 6. लेन्स, कृत्रिम दाँत, बनाने के लिए पॉलीॲक्रेलिक प्लास्टिक का उपयोग किया जाता हैं।

पदार्थ	विघटन होने का समयावधी	पदार्थों का प्रकार	
 सब्जी	1 से 2 सप्ताह	विघटनशिल	
सुती कपड़ा	1 वर्ष	विघटनशिल	
लकड़ी	10 से 15 वर्ष	विघटनशिल	
प्लास्टिक	हजारो वर्ष	अविघटनशिल	

प्लास्टिक के स्थानपर हमें विघटनशील पदार्थों का उपयोग कर के तैयार किए वस्तुओं का उपयोग करना चाहिए। उदा. बैग, कपड़े से बनी थैली, कागज़ से बनी थैली, पटसन की थैली इत्यादि।

इसे सदैव ध्यान में रखो ।

प्रत्येक सभ्य नागरिकोने 4R सिध्दांतों का उपयोग करना आवश्यक है वे अर्थात

 Reduce
 कम से कम उपयोग

 Reuse
 प्नः उपयोग करना

Recycle - पुनर्चक्रीकरण

Recover - पुनः प्राप्त करना

तो ही पर्यावरण प्रदुषण से संरक्षण हो सकता है।

सूची बनाकर चर्चा करो

तुम्हारे घर तुम प्लास्टिक के स्थानपर अन्य विघटनशील पदार्थों से बने वस्तुएँ कहाँ – कहाँ उपयोग में ला सकते हो इसकी सूची बनाओ । इस संबंध में कक्षा में चर्चा करो ।

बताओ तो

काँच की नाज़ुक वस्तुएँ अथवा तत्सम वस्तुएँ एक स्थान से दूसरे स्थान तक ले जाते समय वह न फूटे इसके लिए तुम उसके आसपास किस पदार्थ का आवरण रखते हो?

थर्मोकोल (Thermocol):

तुम्हारे घर में लाई हुई कोई नई वस्तु जो आसानी से फूट सकती है वह जिस बक्से में बंद होती हैं उस बक्से का संभारण करते समय उस वस्तू को कोई हानी ना पहुँचे इसके लिए जो आवरण होता है वो आवरण अर्थात थर्माकोल। अनेक स्थानों पर खाना खाने के लिए जो थाली उपयोग में लाई जाती हैं वह थर्माकोल से बनी होती हैं.

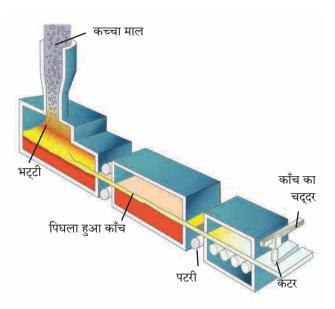
थर्माकोल अर्थात पॉलीस्टाइरीन इस संश्लेषित पदार्थ का एक रूप 100° C से अधिक तापमान पर जो द्रव अवस्था में तथा ठंड़ा करनेपर ठोस अवस्था में रूपांतरित होता है जिसके कारण हम उसे मनचाह आकार दे सकते हैं। वे आघातशोषक होने के कारण नाजुक वस्तुके सुरक्षित आवरण के रूप में उसका उपयोग किया जाता हैं।

तुम दैनिक जीवन में थर्माकोल का उपयोग कहाँ करते हो उसकी सूची बनाओ।

थर्माकोल के अत्यधिक उपयोग करने से पर्यावरण तथा मानवपर होनेवाला कुप्रभाव :

- 1. स्टाइरीन में कैंसर के घटक होने कारण थर्माकोल के निरंतर संपर्क में रहनेवाले व्यक्तियों को रक्त का (Leukemia) तथा लिम्फोमा (Lymphoma) इस प्रकार के कैंसर होने की संभावना होती हैं।
- 2. जैवअविघटनशिल: प्राकृतिक रूप से थर्माकोल का विघटन होने में बहुत अधिक समय लगता हैं इस कारण अधिकांश लोग उसे जलाकर नष्ट करना यही उपाय समझते हैं, परंतु यह तो पर्यावरणीय दृष्टिसे अत्याधिक घातक उपाय हैं। थर्माकोल के ज्वलन से विषैली गैसे हवा में मुक्त होती हैं।
- 3. समारोह मे भोजन, पानी, चाय इनके लिए लगनेवाली थालियाँ, कप/ग्लास बनाने के लिए थर्माकोल का उपयोग किया जाता हैं, परंतु इसका बुरा प्रभाव स्वास्थ्य पर होता हैं। यदि थर्माकोल में रखे पदार्थ को पुनः गर्म किए तो उस पदार्थ में स्टाइरीन के कुछ अंश (घटक) भोज्य पदार्थ में घुलने की संभावना रह सकती है जिसके कारण अपाय होने की संभावना रह सकती हैं।

17.4 थर्मोकोल का ज्वलन व उससे होनेवाला प्रदूषण


4. थर्माकोल बनाने वाली कंपनी में काम करनेवाले व्यक्ती के शरीर पर होनेवाला परिणाम: बहुत अधिक समय तक स्टाइरीन के संपर्क में आनेवाले व्यक्तीओं की आँखे, श्वसन संस्था, त्वचा, पचन संस्थाएँ संबंधी रोग होने की संभावना होती हैं। गर्भवती महिलाओं का गर्भपात होने के धोखे की संभावना होती हैं। द्रवस्वरूप स्टाइरीन के कारण त्वचा जलने की संभावना होती हैं।

सूची बनाकर चर्चा करो

काँच द्वारा बनाई जानेवाली नियमित घरेलु उपयोगी वस्तुओं (पदार्थों की) सूची बनाओं । उन पदार्थों में कौन-कौन से रंगों के काँचों का उपयोग किया गया हैं?

काँच (Glass): दैनिक जीवन में हम काँच का उपयोग बहुत बड़े पैमाने पर करते हैं । काँच की खोज़ मानव को अचानक हुई । कुछ फेनेशियन व्यापारी रेगिस्तान में रेतपर खाना बनाते समय खाने के बर्तन को उन्होंने चुने के पत्थर का आधार दिया था । खाने के बर्तन पत्थर से नीचे उतारने के बाद उन्हे एक पारदर्शक पदार्थ तैयार हुआ दिखाई दिया। उन्होंने ऐसा अनुमान लगाया की यह पारदर्शी पदार्थ रेत तथा चूने के पत्थर को एक साथ गरम करने के कारण हुआ होगा । इसी से आगे काँच तैयार करने की विधी विकसित हुई । काँच अर्थात सिलिका तथा सिलिकेट इनके मिश्रण से तैयार हुआ अकेलासीय, कठोर परंतु भंगुर ठोस पदार्थ सिलिका अर्थात SiO2 इसे ही हम रेत कहते हैं । काँच में उपस्थित सिलिका तथा अन्य घटकों के अनुपात से सोड़ालाईम काँच, बोरोसिलिकेट काँच, सिलिका काँच, अल्कली सिलिकेट काँच ऐसे प्रकार होते हैं।

17.5 काँच के चद्दर की निर्मिती प्रक्रिया

काँच की निर्मिती :

काँच बनाने के लिए रेत, सोड़ा, चूने का पत्थर तथा अल्प मात्रा में मैग्नीशियम आक्साइड़ इनका मिश्रण भट्टी में गर्म करते हैं। रेत अर्थात सिलिकान डाइक्साइड़ पिघलाने के लिए लगभग $1700~^{\circ}$ C तापमान की आवश्यकता होती हैं। कम तापमान पर मिश्रण पिघलाने के लिए मिश्रण में अनुपयोगी काँच के टुकड़े मिलाए जाते हैं। इसी कारण वह $850~^{\circ}$ C तापमान पर पिघलता हैं। मिश्रण के सभी घटक द्रवअवस्था में प्राप्त करनेपर उसे $1500~^{\circ}$ C तापमान तक गर्म कर उसे तुरंत ठंड़ा किया जाता हैं। तुरंत ठंड़ा करने के कारण मिश्रण केलासीय रूप प्राप्त नहीं करता हैं, तो समांगी अकेलासीय पारदर्शी रूप प्राप्त होता हैं। इसे ही सोड़ालाईम काँच कहते हैं।

इंटरनेट मेरा मित्र : चुड़ीयाँ कैसे बनाई जाती हैं इसका व्हीड़ीओ इंटरनेट पर देखो तथा उसकी जानकारी लिखकर कक्षा में पढ़कर सुनाओ ।

काँच के गुणधर्म :

- 1. काँच को गर्म करने पर वह नर्म (मुलायम) होता हैं तथा उसे मनचाह आकार दे सकते हैं।
- 2. काँच का घनत्व उसके घटक तत्त्वों पर निर्भर होता हैं।
- 3. काँच ऊष्मा का मंदचालक हैं। उसे शीघ्र ऊष्मा देनेपर अथवा गरम काँच तुरंत ठंड़ा करने पर वह चटक जाता हैं या टूट जाता हैं।
- 4. काँच विद्युत का कुचालक हैं, इसीलिए विद्युत उपकरणों में विद्युत कुचालक के रूप में काँच का उपयोग किया जाता हैं।
- 5. काँच पारदर्शी होने के कारण प्रकाश का बहुत सारा भाग काँच से प्रेषित होता हैं परंतु काँच में क्रोमियम, व्हेनेडियम या आयरन आक्साइड़ का समावेश होने के कारण ऐसे काँच में बड़ी मात्रा में प्रकाश अवशोषित किया जाता हैं।

काँच के प्रकार तथा उपयोग :

- 1. सिलिका काँच : सिलिका का उपयोग कर बनाई जाती हैं । सिलिका काँचद्वारा तैयार की गई वस्तु ऊष्मा के कारण अल्प मात्रा में प्रसारित होती हैं । अम्ल, क्षारक का उसपर कोई प्रभाव नहीं होता इसलिए प्रयोगशाला मे काँच की वस्तुएँ तैयार करने के लिए सिलिका काँच का उपयोग किया जाता हैं ।
- 2. बोरोसिलिकेट काँच : रेत, सोड़ा, बोरीक आक्साइड़ तथा एल्युमिनियम आक्साइड़ इनका मिश्रण पिघलाकर बोरोसिलिकेट काँच तैयार की जाती हैं। दवाईयों का इस काँच पर कोई प्रभाव नहीं होता हैं इसी कारण दवाईयों के कारखानों में दवाईयाँ रखने के लिए बोरोसिलिकेट काँच से बनाई गई बोतल का उपयोग किया जाता हैं।
- 3. अल्कली सिलिकेट काँच : रेत तथा सोड़े का मिश्रण गर्म करके अल्कली सिलिकेट काँच बनाई जाती हैं । अल्कली सिलिकेट काँच पानी में घुलनशील होने के कारण उसे जलकाँच या वाटरग्लास कहते हैं ।
- 4. सीसायुक्त काँच : रेत, सोड़ा, चुने का पत्थर तथा लेड़आक्साइड़ के मिश्रण को पिघलाकर सीसायुक्त काँच तैयार की जाती हैं । चमकदार होने के कारण इसका उपयोग बिजली के बल्ब, ट्युबलाईट बनाने के लिए किया जाता है ।
- 5. प्रकाशीय काँच : रेत, सोड़ा, चुने का पत्थर, बेरीयम आक्साइड़ तथा बोरान इनके मिश्रण से प्रकाशीय काँच तैयार की जाती हैं। चष्मा, दुर्बिण, सूक्ष्मदर्शी इनके लेन्स बनाने के लिए शुद्ध काँच की आवश्यकता होती हैं।
- 6. रंगीन काँच: सोड़ा, लाईम काँच रंगहीन होता हैं। उसे विशिष्ट रंग प्राप्त करने के लिए काँच तैयार करते समय मिश्रण में विशिष्ट धातुओं के आक्साइड़ मिलाए जाते हैं। उदा. नीलहरित काँच प्राप्त करने के लिए फेरस आक्साइड़, लाल रंग की काँच प्राप्त करने के लिए कापर आक्साइड़ इत्यादि।
- 7. संस्कारित काँच : काँच की उपयुक्तता तथा गुणवत्ता बढ़ाने के लिए उसपर विशेष प्रकार के संस्कार किए जाते हैं, उससे ही स्तरिय काँच, प्रबलित काँच (Reinforced galss), समतल काँच (Plain glass), तंतुमय काँच (Fiber glass), फेन काँच, अपारदर्शी काँच बनाई जाती हैं।

1. काँच का निर्माण करते समय मिश्रण को 1500 °C तक गर्म करना पड़ता हैं। इसलिए लगनेवाले इंधन के ज्वलन से सल्फर डायआक्साइड़, नाइट्रोजन डायआक्साइड़, कार्बन डायआक्साइड़ ऐसी ग्रीन हाऊस (हरितगृह) गैसे बाहर छोड़ी जाती हैं। उसका परिणाम पर्यावरण पर होता हैं। काँच का पुनचक्रिकरण अच्छी तरह से हो सकता हैं। ऐसा करने पर यह धोखा टाला जा सकता है।

काँच का पर्यावरण पर होनेवाला प्रभाव :

2. काँच अविघटनशील होने के कारण टुटे काँच के टुकड़े पानी के साथ यदि जलाशयों में बह गए तो वहाँ के अधिवास पर इसका प्रतिकुल परिणाम हो सकता हैं, उसी प्रकार इन टुकड़ों के कारण संदूषित पानी की नालियाँ (गटरे) जम कर समस्याएँ उत्पन्न होती है।

जानकारी प्राप्त करो ।

- 1. सूर्यप्रकाश के कारण विघटन न हो इसके लिए कुछ विशिष्ट पदार्थ को किस प्रकार के काँच की बोतल में रखी हैं।
- 2. रास्ते पर की दुर्घटना में चोट न पहुँचे इसलिए वाहनों में कौन से प्रकार के काँच का उपयोग किया जाता हैं ?

SANO.

🎙 करो और देखो ।

प्रयोगशाला में वक्रनलिका तैयार करने की कृति शिक्षक के निरीक्षण में करो।

17.6 विविध प्रकार के काँचो से तैयार की गई वस्तुएँ

स्वाध्याय

1. खोजो तो पाओगे।

- अ. प्लास्टिक मेंगुणधर्म होता हैं इसलिए उसे मनचाह आकार दे सकते हैं।
- आ. मोटर गाड़ियों को की कोटिंग की जाती हैं।
- इ. थर्माकोल तापमान पर द्रव अवस्था में परिवर्तित होता है ।
- ई. काँच पानी में घुलनशील हैं।

2. मेरे मित्र कौन ?

समूह 'अ'

समूह 'ब'

- 1. सीसायुक्त काँच अ. प्लेट्स
- 2. बैकेलाईट ब. चटाई
- 4. थर्माकोल
- क. विद्युत बल्ब
- 5. प्रकाशीय काँच
- ड. इलेक्ट्रीक स्विच
- 6. पॉलीप्रोपिलीन
- इ. दुर्बीण

3. नीचे दिए गए प्रश्नों के उत्तर लिखो।

- अ. थर्माकोल किस पदार्थ से बनाया जाता हैं?
- आ. PVC के उपयोग लिखो।
- इ. नीचे कुछ वस्तुंओं के नाम दिए गए हैं, उनमे से कौन से मानवनिर्मित तथा प्राकृतिक निर्मित पदार्थ से निर्मित होते हैं, वे लिखो। (चटाई, पानी का गिलास, चुड़ियाँ, कुर्सी, बोरी, खराटा, पेन, चाकू
- ई. काँच के प्रमुख घटक कौन-से हैं?
- उ. प्लास्टिक कैसे तैयार किया जाता हैं ?

4. अंतर स्पष्ट करो।

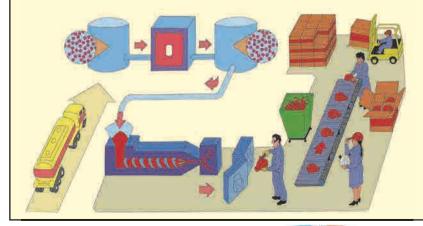
- अ. मानवनिर्मित पदार्थ तथा प्रााकृतिक निर्मित पदार्थ
- आ. ऊष्मामृदु प्लास्टिक तथा ऊष्मादृढ़ प्लास्टिक

5. निम्न प्रश्नों के उत्तर तुम्हारे शब्दों में लिखो।

- अ. पर्यावरण तथा मानव स्वास्थ्य पर निम्न पदार्थों का होनेवाला परिणाम व उपाय योजना स्पष्ट करो ।
 - 1. प्लास्टिक
 - 2. काँच
 - 3. थर्माकोल
- आ. प्लास्टिक अविघटनशील होने के कारण पर्यावरण में समस्याएँ उत्पन्न हो रही हैं, इन समस्याओं को कम करने के लिए तुम कौन-से उपाय करोगे ?

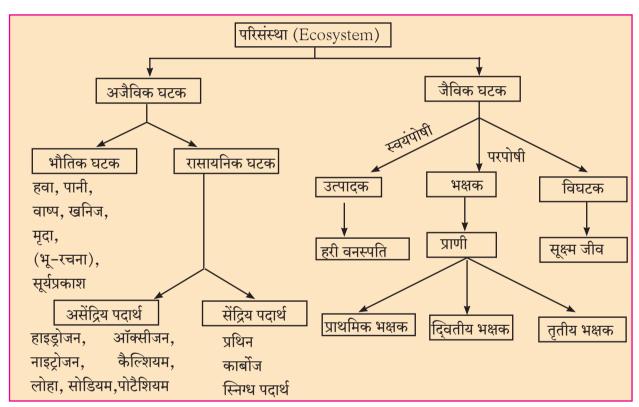
6. टिप्पणी लिखो।

- अ. काँच का निर्माण
- आ. प्रकाशीय काँच
- इ. प्लास्टिक के उपयोग


उपक्रम :

- 1. Micro wave Oven में उपयोग मे लाए जानेवाले बर्तन किस प्रकार के प्लास्टिक से बनाए जाते है उसकी जानकारी प्राप्त करो।
- 2. दाँतों का कृत्रिम ढ़ाँचा किससे बनाया जाता हैं इसकी जानकारी प्राप्त करो ।

क्षेत्रभेंट: तुम्हारे परिसर के प्लास्टिक / काँच निर्माण करने वाले कारखानों को भेट देकर निर्माण प्रक्रिया संबंधी जानकारी प्राप्त करो तथा उसका विवरण तैयार करो।


18. परिसंस्था

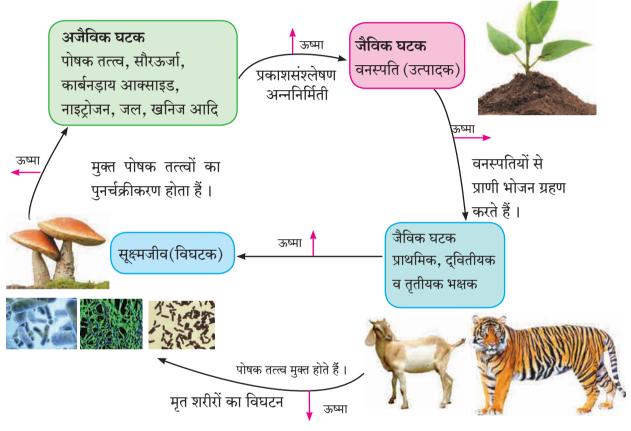
- 1. तुम्हारे आसपास कौन-कौन से घटक दिखाई देते हैं ?
- 2. क्या तुम्हारा इन घटकों से प्रत्यक्ष या अप्रत्यक्ष कोई संबंध हैं? विचार करो । प्रकृति में पाए जानेवाले कुछ घटक नीचे दिए हैं । उनका सजीव और निर्जीव में वर्गीकरण करो । सुर्यप्रकाश, सूरजमुखी, हाथी, कमल, शैवाल, पत्थर, घास, पानी, चींटी, मिट्टी, बिल्ली, पर्णांग, हवा, शेर ।

वर्गीकरण करो ।

परिसंस्था (Ecosystem): हमारे चारों ओर का विश्व दो प्रकार के घटकों से बना है। सजीव और निर्जीव। सजीवों को जैविक (Biotic) और निर्जीवों को अजैविक (Abiotic) घटक कहते हैं। इन सजीवों और निर्जीवों में निरंतर आंतरिक्रया चलती रहती हैं। सजीव और उनका अधिवास या पर्यावरणीय घटक इनमें परस्पर संबंध होता हैं। इस अन्योन्य संबंधों से ही जो विशेषतापूर्ण आकृतिबंध का निर्माण होता हैं उसे परिसंस्था कहते हैं। जैविक और अजैविक घटक और उनके बीच होनेवाली आंतरिक्रया इन सबको मिलाकर परिसंस्था बनती हैं।

18.1 परिसंस्था के घटक

क्या तुम जानते हो?


सूक्ष्मजीव मृत वनस्पतियों व प्राणियों के अवशेषों में उपस्थित सेंद्रिय पदार्थों का (प्रथिन, कार्बोज, वसा) पुनः असेंद्रिय (हाइड्रोजन, ऑक्सीजन, कैल्शियम, लोह, सोडियम, पोटैशियम) पोषक द्रव्यों में रूपांतिरत करते हैं, इसलिए उन्हें विघटक कहते हैं।

परिसंस्था की संरचना (Structure of Ecosystem): सजीवों को जीवित रहने के लिए अलग-अलग अजैविक घटकों की आवश्यकता होती हैं उसी प्रकार उन घटकों से जुड़े रहने की उनकी क्षमता भिन्न-भिन्न होती हैं। किसी सूक्ष्मजीव को ऑक्सीजन की आवश्यकता होती है, तो दूसरे को नहीं। कुछ वृक्षों को अधिक सूर्यप्रकाश की आवश्यकता होती हैं, तो कुछ वनस्पतियाँ कम सूर्यप्रकाश में अर्थात छाया में अच्छी बढ़ पाती हैं।

परिसंस्था के प्रत्येक अजैविक घटक का उदाहरणार्थ हवा, पानी, मिट्टी, सूर्यप्रकाश, तापमान, आर्द्रता इत्यादि का उसमें रहनेवाले सजीवों या जैविक घटकों पर परिणाम होता हैं। किसी परिसंस्था में कौन-से सजीव जीवित रह सकते हैं और उनकी संख्या कितनी होनी चाहिए ये उस परिसंस्था के अजैविक घटकों पर निर्भर होता हैं।

सजीव परिसंस्था के अजैविक घटकों का निरंतर उपयोग करते रहते हैं या उत्सर्जित करते रहते हैं इसलिए परिसंस्था के जैविक घटकों के कारण अजैविक घटकों का अनुपात कम अधिक होता रहता हैं। परिसंस्था के प्रत्येक सजीव घटक का आसपास के अजैविक घटकों पर परिणाम होता हैं। जिसका सीधा परिणाम परिसंस्था के अन्य सजीवों पर भी होता हैं।

परिसंस्था का प्रत्येक सजीव उस संस्था में रहते हुए, संचलन करते हुए, विशिष्ट भूमिका निभाता हैं। इस सजीव का परिसंस्था के अन्य सजीव के संदर्भ में स्थान और उसके द्वारा निभानेवाली भूमिका को 'निश' (Niche) कहते हैं। उदा. बगीचे में बढ़नेवाला सूरजमुखी का पौधा हवा में ऑक्सीजन उत्सर्जित करता है और मधुमक्खी, चींटी आदि कीटकों को भोजन तथा अधिवास प्रदान करता हैं।

18.2 परिसंस्था के घटकों की आंतरक्रिया

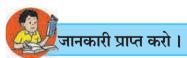
- 1. ऊपर्युक्त आंतरक्रियामें सूक्ष्मजीवों की क्या भूमिका है ?
- 2. अजैविक घटक उत्पादकों को कैसे प्राप्त होते हैं ?
- 3. भक्षक भोजन कहाँ से प्राप्त करते हैं?

अधिकांश परिसंस्थाएँ काफी क्लिष्ट होती हैं। जिसमें पाए जानेवाले विभिन्न सजीवों की प्रजातियों में संख्यात्मक एवं गुणात्मक विविधताएँ पाई जाती हैं। हमारे भारत जैसे देश में उष्ण किटबंधीय भागों की परिसंस्था में केवल कुछ गिनीचुनी प्रजातियों के सजीव ही बड़ी मात्रा में पाए जाते हैं। बचे हुए अधिकांश वनस्पित और प्राणियों के प्रजाति की संख्या बहुत ही कम होती हैं। कुछ प्रजातियों की संख्या तो नगण्य होती हैं। पृथ्वीपर विभिन्न प्रकार की परिसंस्थाएँ हैं। हर जगह की परिसंस्था अलग-अलग होती हैं। उदा. जंगल, तालाब, सागर, नदी आदि परिसंस्था का आकार, स्थान, हवा की स्थिति, वनस्पित और प्राणी के प्रकार इन विशेषताओं के अनुसार परिसंस्थाओं के कुछ प्रकार होते हैं।

जीवमंड़ल में अनेक परिसंस्थाएँ कार्यान्वित होती हैं। उनके आसपास के पर्यावरण के अनुसार उनके विशेषतापूर्ण कार्य चलते हैं। पृथ्वी पर ऐसी अनेक परिसंस्थाएँ निर्माण हुई हैं। पृथ्वी पर स्थित ये परिसंस्थाएँ यद्यपि मोटे तौर पर स्वतंत्र या भिन्न दिखाई देती हैं, फिर भी प्रत्यक्ष और अप्रत्यक्ष रूपसे वे एक दूसरे से जुड़ी होती हैं। इसलिए इन छोटी छोटी परिसंस्थाओं को हम पूरी तरह से एक-दूसरे से अलग नहीं कर सकते परंतु विशेषताओं के आधार पर, कार्यप्रणाली के आधार पर, उसी प्रकार वैज्ञानिक दृष्टिकोण के आधार पर परिसंस्थाओं के भिन्न-भिन्न प्रकार होते हैं।


पीछे मुड़कर देखने पर

विज्ञान के विकास के साथ ही नए नए शब्दों का निर्माण भी होते रहता हैं। Ecosystem शब्द का भी कुछ ऐसा ही हैं। परिसंस्था ऐसा हमने इस शब्द का हिंदी में अनुवाद किया हैं। सन 1930 की बात हैं, रॉय क्लॅफाम इस वैज्ञानिक को एक प्रश्न पूछा गया था की, ''पर्यावरण के भौतिक तथा जीव शास्त्रीय घटकों का परस्पर संबंध का सम्मिलीत रूप से विचार एक ही शब्द में कैसे व्यक्त करोगे?'' इस पर उन्होने उत्तर दिया था 'Ecosystem' इस शब्द को आगे चुनकर क्लॅफाम के सहकर्मी ए.जी. टान्सलेने 1935 में सर्वप्रथम प्रचार मे लाया। Ecosystem को जैविक समुदाय Biotic Community ऐसा भी कहा जाता हैं।


पृथ्वी के कुछ भागों में काफी बड़े क्षेत्र की जलवायु और अजैविक घटक सामान्यतः एक जैसे होते हैं । उस भाग में रहनेवाले सजीवों में समानता दिखाई देती हैं । इसलिए एक विशिष्ट स्वरूप की परिसंस्था एक बड़े क्षेत्र में तैयार होती हैं । ऐसी बड़ी परिसंस्थाओं को 'बायोम्स' (Biomes) कहते हैं । इन बायोम्स में कई छोटी परिसंस्थाओं का समावेश होता हैं । पृथ्वी स्वयं एक विशाल परिसंस्था हैं । पृथ्वीपर दो मुख्य प्रकार के बायोम्स पाए जाते हैं । 1. भू-परिसंस्था (Land Biomes) 2. जलीय - परिसंस्था (Aquatic Biomes)

भू-परिसंस्था: जो परिसंस्था केवल भूमीपर ही अर्थात जमीन पर ही होती हैं या अपना अस्तित्व बनाती हैं उन्हें भू-परिसंस्था कहते हैं। अजैविक घटकों का वितरण भू-तल पर असमान हैं। जिससे भिन्न-भिन्न प्रकार की परिसंस्थाओं का निर्माण हुआ हैं। उदा. घास वाले प्रदेश की परिसंस्था, सदाहरित जंगल की परिसंस्था, उष्ण रेगिस्तान की परिसंस्था, बर्फीले प्रदेश की परिसंस्था, टैगा प्रदेश की परिसंस्था, विष्वृत्तीय वर्षावनों की परिसंस्था आदि।

33. घासवाले प्रदेश की परिसंस्था (Grassland Ecosystem): जिस प्रदेश में वर्षा का अनुपात बड़े बड़े वृक्षों की वृद्धि के लिए अपर्याप्त होता हैं, उस जगह घास वाले प्रदेश तैयार होते हैं। इस प्रकार की परिसंस्था में घास की वृद्धि बड़ी मात्रा में होती हैं। बड़ा ग्रीष्म ऋतु और पर्याप्त वर्षा के कारण कम ऊँचाई वाली (बौनी) वनस्पतियों की वृद्धि होती हैं। बकरी, भेड़, जिराफ, झेब्रा, हाथी, हिरण, चीता, बाघ, शेर आदि प्राणी इन प्रदेशों में पाए जाते हैं। उसी प्रकार विभिन्न पक्षी, कीटक और सूक्ष्मजीव भी पाए जाते हैं।

18.3 घासवाला प्रदेश

- घासवाले प्रदेशों को किन कारणों से खतरे उत्पन्न होने की संभावना होती है ?
- 2. एशियाई चीते की प्रजाती पिछले शताब्दी में नष्ट क्यों हो गई ?
- 3. 'एशियाई चीता' इंटरनेट पर देखो तथा वर्णन लिखो ।

घास वाले प्रदेशों की परिसंस्था संबंधी निम्न तालिका पूर्ण करो।.

उत्पादक	प्राथमिक भक्षक	द्वितीयक भक्षक	तृतीयक भक्षक	विघटक
गाजरघास, तृणाग्र, दूब हरियाल	गाय, हिरण, गिलहरी, लेप्टोकॉर्सिया	साँप, पक्षी, लोमड़ी, सियार	शेर, तरस, गिद्ध, चील	फ्युजरियम, अस्परजिलस

क्या तुम जानते हो?

'दुधवा' यह जंगल पिछले डेढ़ सदी से एकसिंगी गेंड़ों का सबसे बड़ा आश्रयस्थान था। परंतु मुक्त और अंधाधुंद शिकार के कारण बीसवीं सदी में यह प्राणी वहाँ से लुप्त हो गया। 1 अप्रैल 1984 को गेंड़ो का यहाँ पुनर्वसन किया गया। पिंजड़ो में उनका प्रजनन कर बाद में ये गेंड़े प्रकृति में अधिवास के लिए छोड़ दिए गए। सबसे पहले सत्ताईस चौरस कि.मी. घास वाला प्रदेश या वन जिसमें बारह महीनों जल उपलब्ध हों ऐसे भूभाग को इस कार्य के लिए निश्चित किया गया। उसी प्रकार से दो निरीक्षण केंद्र स्थापित किए गए। इन प्रयत्नों को अच्छी सफलता मिली।

🎱 विचार करो ।

क्या वृक्ष यह स्वतंत्र परिसंस्था हैं?

ब. सदाबहार वनों की परिसंस्था (Forest Ecosystem)

यह प्रकृतिनिर्मित परिसंस्था है। जंगल में विविध प्रकार के प्राणी, वृक्ष, एक ही जगह होते हैं। अजैविक घटकों में जमीन में तथा हवा में रहनेवाले सेंद्रिय और असेंद्रिय घटक, जलवायु, तापमान, वर्षा ये घटक भिन्न-भिन्न अनुपात में पाए जाते हैं।

18.4 जंगल परिसंस्था

राष्ट्रीय उद्यान / अभयारण्य	राज्य
1. गीर	
2. दाचीगाम	
3. रणथंबोर	
4. दाजीपूर	
5. काजीरंगा	
6. सुंदरबन	
7. मेलघाट	
8. पेरियार	

तालिका पूर्ण करो।

जंगल परिसंस्था के विविध घटकों की जानकारी लिखो।

उत्पादक	प्राथमिक भक्षक	द्वितीय भक्षक	तृतीयक भक्षक	विघटक
डिप्टेरोकार्पस,	चींटी, टिड्डा, मकड़ी,	साँप, पक्षी, गिरगिट,	वाघ, बाज,	अस्परजिलस,
सागौन, देवदार,	तितली	लोमड़ी	चीता	पॉलिकॉर्पस,
चंदन				
•••••				

क्या तुम जानते हो?

- भारत में लगभग520 अभयारण्यों और राष्ट्रीय उदयानों में अनेक प्रकार की परिसंस्थाओं का संरक्षण होता हैं।
- सफेद तेंदूए जैसे अत्यंत दुर्लभ प्राणी की रक्षा करनेवाला सबसे बड़ा अभयारण्य दि ग्रेट हिमालयन नैशनल पार्क यह है।
- काझीरंगा राष्ट्रीय उद्यान (असम) यहाँ हाथी, जंगली भैसा, जंगली सूअर, अरना भैंसा (बिजोन), हिरन, बाघ, तेंदुए इनके जैसे अनेक प्राणियों का संरक्षण होता हैं।
- भरतपुर का अभयारण्य जलाशयों के किनारे रहनेवाले पक्षियों के लिए विश्वविख्यात है।
- रणथंबोर का अभयारण्य पट्टेवाले बाघों के लिए प्रसिद्ध है।
- गुजरात में स्थित गीर का जंगल अर्थात रौबदार एशियाई शेरों का विश्व में एक मात्र आश्रयस्थल है।

जलीय परिसंस्था (Aquatic Biomes): पृथ्वीपर 71% भूभाग पानी से व्याप्त हैं, केवल 29% भाग पर जमीन हैं। इसलिए जलीय परिसंस्था का अध्ययन अत्याधिक महत्वपूर्ण हैं। प्राकृतिक परिसंस्था में जलीय परिसंस्था अभिक्षेत्रीय दृष्टिसे अधिक व्यापक हैं। जल परिसंस्था में निम्न प्रकार महत्वपूर्ण माने जाते हैं। उदा. मीठे पानी की परिसंस्था, खारे पानी की परिसंस्था, खाडी परिसंस्था।

18.5 जलीय परिसंस्थ

मीठे पानी की परिसंस्था: इस परिसंस्था में नदी, तालाब, झील, सरोवर इनका समावेश होता हैं। इस परिसंस्था में नदीद्वारा और पानी के प्रवाहद्वारा ऊर्जा संक्रमित होती हैं। जलभाग की तली में असंख्य विघटक होते हैं। वे वनस्पतियों और प्रााणियों के मृत शरीर पर विघटन का कार्य करके उसका अजैविक घटको में रूपांतरण करते हैं। तुम्हारे आसपास की ऐसी परिसंस्था का निरीक्षण करो और उस आधार पर नीचे दी गई तालिका पूर्ण करो।

उत्पादक	प्राथमिक	द्वितीय	तृतीयक भक्षक	विघटक
	भक्षक	भक्षक		
जलीय वनस्पति, अल्गी,	जलीय कीटक,	छोटी	बड़ी मछलियाँ,	जीवाणु, फफूँदी
युलोथ्रिक्स, हायड्रिला, अझोला,	घोंघा,	मछलियाँ,	मगरमच्छ,	
निटेला, टायफा, पिस्टीया,	ॲनेलिड्स,	मेंढ़क	बगुला	
इकॉर्निया,				
			•••••	

चर्चा करो।

हमारे परिवेश की नदी, तालाब, झील ये परिसंस्थाएँ सुरक्षित हैं क्या?

ब. खारे पानी की सागरीय परिसंस्था : (Marine Ecosystem) : इस परिसंस्था में सागरीय वनस्पितयों की वृद्धि होती हैं। शैवाल पर उपजीविका चलाने वाली छोटी मछिलयाँ, झिंगे बड़े पैमाने पर उथले भाग में दिखाई देते हैं। सागर के मध्य भाग में कम संख्या में जलचर दिखाई देते हैं। बड़ी मछिलयाँ ये दिवतीय भक्षक होती हैं। समुद्र में पोषक तत्त्व बड़े पैमाने पर प्राप्त होते हैं। सागर की तली में विघटकों की संख्या अधिक होती हैं। मृत वनस्पित, मृत प्राणी और अनुपयोगी पदार्थ सागर की तली में जाकर जमा हो जाती हैं। उन पर सूक्ष्म जीवाणु विघटन का कार्य करते रहते हैं।

इंटरनेट मेरा मित्र 1. समुद्री परिसंस्था में मनुष्य के हस्तक्षेप के कारण घटित हुई दुर्घटनाओं की जानकारी प्राप्त करो। 2. खाड़ी परिसंस्था यह सागरीय परिसंस्था से अलग कैसे हैं। इसकी जानकारी प्राप्त करो।

ि विचार करो ।

दिवीजा आज पहाड़ी पर टहलने गई । वहाँ फूलों पर मधुमिक्खियाँ मंडरा रही थीं । उसमें से एक मधुमिक्खी दिवीजा के पास आई और उसके हाथ पर डंक मारा । उस डंक के दर्द से दिवीजा तिलिमिलाई और गुस्से से बोली, ''विश्व की सभी मधुमिक्खियाँ नष्ट हो जाएँ ।'' फिर उसने विचार किया, 'वास्तव में मधुमिक्खीयाँ नष्ट हो गईं तो? तो क्या होगा ज्यादा से ज्यादा शहद खाने नहीं मिलेगा, इतना ही ना? तुम दिवीजा को क्या कहोगे ?

मनुष्य के हस्तक्षेप के कारण होनेवाला परिसंस्थाओं का विनाश

: मनुष्य की विभिन्न कृतियों का परिसंस्था के कार्य पर घातक परिणाम होता हैं, जिससे परिसंस्था का विनाश होता हैं। उदा. खदान कार्य, और बड़ी मात्रा में वृक्षों की कटाई से जमीन का उपयोग बदल सकता हैं। उसके साथ साथ सजीव और निर्जीव घटकों के आपसी तालमेल पर भी इसका दृष्प्रभाव पड़ता हैं।

विभिन्न मानवी प्रक्रियाएँ एवं कृतियाँ, परिसंस्था पर अलग अलग प्रकार से प्रभाव डालती हैं। किसी विशिष्ट प्रकार की परिसंस्था का दूसरी परिसंस्था में रूपांतरण होने से लेकर तो किसी प्रजाति के नष्ट होने तक ऐसे दुष्प्रभाव दिखाई देते हैं।

परिसंस्था के विनाश का कारण बननेवाली कुछ मनुष्य द्वारा की जानेवाली कुछ प्रक्रियाएँ एवं कृतियाँ :

जनसंख्या वृद्धि एवं संसाधनों का अत्याधिक उपयोग: परिसंस्था में मनुष्य प्राणी 'भक्षक' इस समूह में आता हैं। सामान्य परिस्थिति में परिसंस्था मनुष्य को उसके जरूरत जितनी चीजें आसानी से पूर्ण कर सकती हैं, परंतु जनसंख्या में हुई वृद्धि के कारण मनुष्य अपनी आवश्यकता की पूर्ति के लिए बेशुमार साधनसंपत्ती का उपयोग करता रहा। जीवनशैली में आए नए बदलावों के कारण मनुष्य को जीने के लिए आवश्यक न्यूनतम जरूरत की चीजों की तुलना में अनावश्यक चीजों की माँग बढ़ने लगी है जिससे परिसंस्था पर तनाव बढ़ गया और वर्ज्य पदार्थों का अनुपात भी बड़ी मात्रा में बढ़ गया।

18.6 परिसंस्था का विनाश

शहरीकरण : बढ़ते हुए शहरीकरण की निरंतर चल रही प्रक्रिया के कारण अतिरिक्त घरों का निर्माण और अन्य मूलभूत सुविधाओं के लिए ज्यादा से ज्यादा खेती की जमीन, दलदल वाला भाग, जलाशयों का क्षेत्र, जंगल, घासवाले प्रदेशों का उपयोग हो रहा हैं। इसलिए पिरसंस्था में होनेवाले मनुष्य के हस्तक्षेप के कारण पिरसंस्था पूर्णरूपसे बदलती हैं या नष्ट हो जाती हैं।

औद्योगिकीकरण और यातायात: बढ़ते हुए औद्योगिकीकरण के लिए लगनेवाला कच्चा माल प्राकृतिक वनों को तोड़कर प्राप्त किया जाता हैं। जिससे जंगलों का नाश होता है। यातायात में वृद्धि होने से उसकी सुविधाओं को बढ़ाते समय कई बार जंगलों से या जलाशय की जगहों पर रास्तों का या रेलमार्ग का जाल फैलाया जाता हैं।

पर्यटन : प्रकृति का निरीक्षण, मनोरंजन और धार्मिक दर्शनों के लिए बड़ी मात्रा में पर्यटक प्राकृतिक सुंदरता देखने के लिए आते हैं । इन पर्यटकों के लिए ऐसी जगहों के परिसर में बड़े पैमाने पर मूलभूत सुविधाओं का निर्माण किया जाता हैं । जिससे स्थानिक परिसंस्था पर अतिरिक्त तनाव आकर उनका बड़ी मात्रा में नाश होता हैं ।

तुम्हारे परिसर के किसी पर्यटन केंद्र में जाकर वहाँ की परिसंस्था की जानकारी प्राप्त करो । उसपर पर्यटन के कारण होनेवाले परिणामों को खोजो ।

बड़े बाँध: बाँधों के कारण बड़े पैमाने में जमीन पानी के नीचे चली जाती है। जिससे उस भाग के जंगल और घासवाले प्रदेशों का जलीय परिसंस्था में रूपांतरण हो जाता है। बाँधों के कारण नदी के निचले भाग के पानी का प्रवाह कम हो जाता है इसके परिणामस्वरूप पहले बहते हुए पानी में तैयार हुई परिसंस्थाएँ नष्ट हो जाती हैं।

- 1. बाँधों के कारण कौन-से जैविक घटकों पर परिणाम हुआ?
- 2. नदी के बहते पानी के जैविक घटकों पर क्या परिणाम होता है ?

युद्ध : जमीन, पानी, खनिज संपत्ति या किसी आर्थिक और राजकीय कारणों से मानवी समूहों में स्पर्धा और मतभेदों से युद्ध होता है। युद्ध में बड़े पैमाने पर बम वर्षा, सुरंग विस्फोट किए जाते हैं। इससे केवल जीव हानि ही होती हैं ऐसा नहीं हैं तो प्राकृतिक परिसंस्थाओं में बड़े बदलाव होते हैं या वे नष्ट भी हो जाती है।

इस प्रकार भूकंप, ज्वालामुखी, बाढ़, अकाल जैसी प्राकृतिक आपदाओं के कारण और मनुष्य के हस्तक्षेप के कारण कुछ प्राकृतिक परिसंस्थाओं का अलग प्रकार की परिसंस्थाओं में रूपांतरण होता हैं, कुछ परिसंस्थाओं का विनाश होता है, तो कुछ परिसंस्था पूर्ण रूप से नष्ट हो जाती हैं।

प्राकृतिक परिसंस्था जीवमंडल का संतुलन बनाए रखने में महत्वपूर्ण भूमिका निभाती हैं । इसलिए उनका संरक्षण करना महत्त्वपूर्ण होता हैं।

स्वाध्याय

1. नीचे दिए गए विकल्पों में से उचित विकल्प चुनकर रिक्त स्थानों की पूर्ति करो।

अ. हवा, पानी, खनिज, मृदा ये परिसंस्था के घटक हैं।

(भौतिक, सेंद्रिय, असेंद्रिय)

आ. परिसंस्था नदी, तालाब, समुद्र ये परिसंस्था के उदाहरण हैं।

(भूतल, जलीय, कृत्रिम)

इ. परिसंस्था में 'मनुष्य' प्राणी समूह में समाविष्ट होता है।

(उत्पादक, भक्षक, विघटक)

2. उचित जोड़ियाँ मिलाओ।

उत्पादक

परिसंस्था

- अ. कॅक्टस
- a) जंगल
- आ. जलीय वनस्पति b) सागर
- इ. क्लोरो फायसी
- c) जलीय
- ई. पाईन
- c) मरूस्थलीय

3. मेरे विषय में जानकारी लिखो।

- अ. परिसंस्था
- आ. बायोम्स
- इ. भोजन जाल

4. वैज्ञानिक कारण लिखो।

- अ. परिसंस्था में वनस्पति को उत्पादक कहते हैं।
- आ.बड़े बाँधों के कारण परिसंस्था का विनाश होता हैं।
- इ. दुधवा जंगल में गेंडों का पुनर्वसन किया गया।
- 5. निम्नलिखित प्रश्नों के उत्तर लिखो।
- अ. जनसंख्या वृद्धि के कारण परिसंस्था पर क्या परिणाम हआ हैं ?
- आ.परिसंस्था नष्ट होने में शहरीकरण कैसे जिम्मेदार है?
- इ. प्राकृतिक परिसंस्था में बड़े बदलाव लानेवाले युद्ध क्यों होते हैं?

- परिसंस्था के घटकों के बीच होनेवाली आंतरक्रिया स्पष्ट करो ।
- सदाबहार वन (जंगल) और घासवाले प्रदेश इन परिसंस्थाओं में प्रमुख अंतर बताओ।

नीच दिए गए चित्र का वर्णन करो।

- अपने परिसर के किसी परिसंस्था में जाकर उसके जैविक-अजैविक घटकों का प्रेक्षण करो और वे एकदसरे पर कैसे निर्भर हैं उसे प्रस्तुत करो।
- आ. युद्ध या परमाणु विस्फोट के कारण हुई परिसंस्था की हानि इंटरनेट के माध्यम से खोजो और तुम्हारे शब्दो में लिखो।

19. तारों की जीवनयात्रा

थोड़ा याद करो।

- 1. निहारिका (galaxy) अर्थात क्या हैं?
- 2. हमारे सौरमंडल में कौन-कौन से घटक हैं?
- 3. तारे और ग्रह में प्रमुख अंतर कौन-से हैं?
- 4. उपग्रह अर्थात क्या हैं?
- 5. हमारे सबसे नजदीक का तारा कौन-सा हैं ?

पिछली कक्षा में हमने विश्व के अंतरंग के बारे में पढ़ा हैं। हमारी सूर्यमाला एक निहारिका में अर्थात आकाशगंगा में समाविष्ट हैं। निहारिका में अरबों तारे, उनकी ग्रहमालिका व तारों के मध्य खाली जगह में आंतरतारकीय बादलों का (interstellar clouds) समह होता हैं। विश्व इन असंख्य निहारिकाओं से मिलाकर बना हैं। इन निहारिकाओं के आकार तथा बनावट अलग-अलग होते हैं। उन्हें हम मुख्य तीन प्रकार में बाँट सकते हैं। चक्रकार (spiral), दीर्घवृत्ताकार (elliptical) तथा अनियमित आकार की (irregular) निहारिका । हमारी निहारिका चक्राकार है उसे मंदािकनी नाम दिया गया है। आकृति 19.1 में एक चक्राकार निहारिका दिखाई है।

19.1 एक चक्राकार निहारिका : हमारा सौरमंडल ऐसी ही एक निहारिका मे स्थित है।

क्या तुम जानते हो?

हमारे आकाशगंगा में 1011 तारे हैं आकाशगंगा बीच में फूली हुई तश्तरी जैसा होकर उसका व्यास लगभग 10¹⁸ km है। सूर्यमाला उसके केन्द्र से लगभग $2.7 \times 10^{17} \, \mathrm{km}$ द्री पर स्थित हैं। तश्तरी के लंबवत व उसके केन्द्र से जाने वाले अक्ष पर आकाशगंगा परिवलन कर रही हैं व उसे एक परिवलन के लिए 2 x 108 वर्ष लगते हैं।

रात के समय आसमान की तरफ देखने पर हमें केवल ग्रह और तारे दिखाई देते हैं। फिर अन्य घटकों के बारे में जानकारी कहाँ से मिली इस प्रश्न का उत्तर दरबीन हैं। इनमें से अनेक दरबीनें पृथ्वी के पृष्ठभाग पर रखी होती है तो कुछ द्रबीनें मानवनिर्मित कृत्रिम उपग्रह पर रखी हैं और पृथ्वी के चारो ओर विशिष्ट कक्षा में परिभ्रमण करती हैं। पृथ्वी पर वायुमंड्ल होने के कारण ये दरबीनें खगोलीय वस्तुओं का अधिक प्रभावी रूप से निरीक्षण करती हैं। दुरबीन द्वारा किए गए निरीक्षणों का अध्ययन कर खगोलवैज्ञानिक विश्व के बारे में विस्तृत जानकारी प्राप्त करते हैं। इस पाठ में हम तारों के गुणधर्म और उनकी जीवनयात्रा के बारे में थोड़ी जानकारी लेगें।

तारों के गुणधर्म (Properties of stars): रात्रि के समय हम आकाश में लगभग 4000 तारे अपनी आँखों से देख सकते हैं। सूर्य उनमें से एक सामान्य तारा हैं। सामान्य कहने का अर्थ ऐसा है कि वह हमसे सबसे निकट होता है। यद्यपि वह आकाश में अन्य तारों से बहुत बड़ा दिखाई देता है, तो भी वस्तुतः उसकी अपेक्षा कम अथवा अधिक द्रव्यमान, आकार तथा तापमान वाले अरबों तारे आकाश में हैं। तारे तप्त गैस के प्रचंड गोले होते हैं। सूर्य के कुछ गुणधर्म नीचे तालिका में दिए हैं। सूर्य के द्रव्यमान का 72% भाग हाइड्रोजन है, तो 26% भाग हीलिअम है, शेष बचा हुआ 2% द्रव्यमान हीलिअम की अपेक्षा अधिक परमाणुक्रमांक वाले तत्त्वों के परमाणुओं के रूप में है।

सूर्य के ग्णधर्म :

द्रव्यमान	$2 \times 10^{30} \text{ kg}$
त्रिज्या	695700 km
पृष्ठभाग का तापमान	5800 K
केन्द्र का तापमान	1.5 x 10 ⁷ K
उम्र/आयू	4.5 अरब वर्ष

सूर्य का द्रव्यमान पृथ्वी के द्रव्यमान का लगभग 3.3 लाख गुना है और उसकी त्रिज्या पृथ्वी की त्रिज्या की 100 गुना है। अन्य तारों का द्रव्यमान सूर्य के द्रव्यमान का $\frac{1}{10}$ $(\frac{M_{\text{Sun}}}{10})$ से 100 गुना (100 M_{Sun}) तक हो सकता है और त्रिज्या सूर्य की त्रिज्या के $\frac{1}{10}$ से 1000 गुना तक हो सकती है। (आकृती 19.2)

19.2 विविध तारों के आकारों की तुलना

तारों की निर्मिति (Birth of stars) :

निहारिका के तारों के बीच की खाली जगहों में अनेक स्थानों में गैसों और धूल के प्रचंड बादल मिलते हैं। जिन्हें आंतरतारकीय बादल कहते हैं। आकृति 19.3 में हबल दुरबीन से खीचें गए ऐसे बादलों का एक प्रकाश चित्र दिखाया गया हैं। बहुत अधिक दरी को मापने के लिए वैज्ञानिक प्रकाश वर्ष (light year) इस इकाई का उपयोग करते हैं। एक प्रकाश वर्ष याने प्रकाश द्वारा एक वर्ष में तय की गई दरी। प्रकाश का वेग 3,00,000 km/s होने के कारण एक प्रकाशवर्ष यह द्री 9.5 x $10^{12}~\mathrm{km}$ होती हैं। आंतरतारकीय बादलों का आकार कुछ प्रकाश वर्ष के बराबर होता है। इसलिए प्रकाश को इन बादलों के एक सिरे से दूसरे सिरे तक जाने के लिए कई वर्ष लगते हैं। इससे तुम इन बादलों के प्रचंड़ आकार की किसी विक्षोभ (disturbance) के कारण यह

कल्पना कर सकते हो ।

19.3 हबल दुरबीन से लिया हुआ विशाल आंतरतारकीय मेंघों का प्रकाशचित्र

क्या तुम जानते हो?

प्रकाश को चंद्रमा से हमारे पास आने के लिए एक सेकंड लगता है, सूर्य से प्रकाश हम तक पहुँचने में 8 मिनिट लगते हैं तो सूर्य से सबसे नजदीक वाले अल्फा सेटारी तारों से प्रकाश हमारे पास पहुँचने के लिए 4.2 वर्ष लगते हैं।

क्या तुम जानते हो?

अन्य तारों का द्रव्यमान मापते समय सूर्य के सापेक्ष मापा जाता है । अर्थात सूर्य का द्रव्यमान इकाई माना जाता है। इसे M Sun कहते हैं।

सूर्य तथा अन्य तारों की उम्र अर्थात उनके निर्माण के बाद का समय यह कुछ दस लाख से अरबो वर्ष इतना विशाल हैं। इस अवधि में यदि सूर्य के गुणधर्म में परिवर्तन हुआ तो उसके कारण पृथ्वी के गुणधर्म में और सजीवसृष्टि में परिवर्तन हुआ होता इसलिए पृथ्वी के गुणधर्म का गहन अध्ययन करके वैज्ञानिको ने निष्कर्ष निकाला हैं की सूर्य के गुणधर्म उसके जीवनकाल में याने गए 4.5 अरब वर्ष में बदले नहीं हैं। खगोल वैज्ञानिकों के विश्लेषण के अनुसार ये गुणधर्म भविष्य में भी 4.5 अरब वर्ष में धिरे-धिरे बदलेंगे।

आंतरतारकीय बादल आकंचित होने लगते है व इस आकंचन के कारण उसका घनत्व बढ़ता हैं उसी प्रकार उनका तापमान भी बढ़ने लगता हैं और उसमें से एक तप्त गैसों का गोला तैयार होता हैं । इस गोले के केन्द्र का तापमान और घनत्व बहत अधिक बढ़कर वहाँ परमाणु ऊर्जा (परमाणु नाभिकों के एकत्रित होने से निर्माण हुई ऊर्जा) का निर्माण होता है इस ऊर्जा के निर्माण के कारण यह गैसों का गोला स्वयंप्रकाशित हो जाता है। अर्थात इस प्रक्रिया के दौरान एक तारे का निर्माण होता है या एक तारे का जन्म होता है ऐसा हम कह सकते हैं। सूर्य में

यह ऊर्जा हाइड्रोजन के नाभिकों का संलयन होकर हिलीयम का

नाभिक तैयार होने से उत्पन्न होती है इसलिए सूर्य के केन्द्रभाग में

उपस्थित हाइड्रोजन यह ईंधन का कार्य करता है।

क्या तुम जानते हो?

गैसों का गोला आंकुचित होने पर गैसों का तापमान बढ़ता हैं, गुरूत्वीय स्थितिज उर्जा का रूपांतर ऊष्मा में होने के कारण यह होता हैं।

किसी विशाल आंतरतारकीय बादलों के आकुंचन से एक ही समय में अनेक तारों का निर्माण हो सकता है, हजारों तारों के एक समूह का चित्र आकृति 19.4 में दिखाया गया हैं। इनमें से अधिकांश तारे एक ही प्रचंड़ आंतरतारकीय बादल

से निर्मित हुए हैं।

थोडा याद करो।

संतुलित व असंतुलित बल का क्या अर्थ हैं ? तारों की स्थिरता : किसी कमरे के एक कोने में अगरबत्ती जलाई तो उसकी सुगंध कुछ ही क्षणों में कमरे में फैलती हैं । उसी प्रकार उबलते हुए पानी के बर्तन का ढक्कन निकालने पर उसकी भाप सब तरफ फैलती है अर्थात तप्त वायु सर्वत्र फैलती हैं फिर तारों की तप्त वायु अंतरिक्ष में क्यों नहीं फैलती ? उसी प्रकार सूर्य के गुणधर्म पिछले 4.5 अरब वर्षों से स्थिर कैसे रहे हैं?

19.4 एक विशाल तारों का समूह । इनमें से अधिकांश तारे एक ही आंतरतारकीय बादल से निर्मित हुए है ।

इन प्रश्नों का उत्तर गुरूत्वीय बल है। तारों के गैसों के कणों में गुरूत्वीय बल होता है यह कणों को एकत्रित बांध कर रखता है। गैसों के कणों को एकत्रित लाने के लिए हमेशा प्रयत्नशील गुरूत्वीय बल और उसके विपरीत कार्यरत रहनेवाला तथा तारों के पदार्थ को सभी तरफ फैलाने के लिए हमेशा प्रयत्नशील तारों के तप्त गैसों का दाब, इन दोनों में संतुलन होनेपर तारा स्थिर रहता हैं। गुरूत्वीय बल तारों के आंतरिक भाग में अर्थात केन्द्र के दिशा में निर्देशित होता है तो गैस का दाब तारे के बाहरी भाग अर्थात केन्द्र के विरूद्ध दिशा में निर्देशित होता है। (आकृति 19.5 देखो)

विचार करो।

तुमने रस्सीखेंच खेल खेला ही होगा रस्सी के दोनों सिरे, दो अलग-अलग समूह अपने तरफ खींचते हैं। दोनों बाजूओं में लगाया बल यदि समान हो तो वह बल संतुलित होता है व रस्सी मध्य में स्थिर रहती हैं जब एक बाजू का बल दूसरे बाजू के बल की अपेक्षा अधिक हो तब रस्सी का मध्य उस बाजू की तरफ सरकता है ऐसा ही कुछ तारों के संबंध में होता है। गुरूत्वीय बल और गैसों का दाब संतुलित हो तो तारा स्थिर होगा परंतु एक बल दूसरे बल की अपेक्षा ज्यादा हुआ तो तारों का आंकुंचन अथवा प्रसरण होता है।

क्या तुम जानते हो?

- 1. यदि सूर्य में वायु का दाब न हो तो गुरूत्वीय बल के कारण वह 1 से 2 घंटो में पूर्णतः आकुंचित होकर बिन्दुरूप में हो जाएगा।
- 2. गैस का दाब उसके घनत्व और उसके तापमान पर निर्भर होता है, इन दोनों का मान जितना अधिक होगा उतना दाब अधिक होगा।

तारों की उत्क्रांति (Evolution of stars)

तारों की उत्क्रांति का मतलब समय के साथ तारों के गुणधर्म में परिवर्तन होकर उसके भिन्न-भिन्न अवस्था में रूपांतर होने की क्रिया। हमने देखा कि सूर्य के गुणधर्म में पिछले 4.5 अरब वर्ष से कोई बदल (परिवर्तन) नहीं हुआ। तारों के जीवन के अधिकांश समय में तारों की उत्क्रान्ति अत्यंत धीमी गित से होती रहती है। तारों से लगातार ऊर्जा उत्सर्जित होने के कारण उसकी ऊर्जा लगातार घटती जाती हैं।

तारों की स्थिरता हमेशा बने रहने के लिए अर्थात वायु का दाब और गुरूत्वीय बल इनमें समतौल रहने के लिए तारों का तापमान स्थिर रहना जरूरी है और तापमान स्थिर रहने के लिए तारों में ऊर्जा की निर्मित होना अंत्यत आवश्यक है। तारों के केन्द्र में ईंधन के जलने से यह ऊर्जा निर्मित होती रहती हैं। तारों के उत्क्रान्ति का कारण उसके केन्द्र का ईंधन जलना और उसकी मात्रा का कम होना होता हैं । ईंधन समाप्त होने पर ऊर्जा की निर्मित भी समाप्त हो जाती है और तारे का तापमान कम हो जाता है। तापमान कम होने से वायू का दाब भी कम हो जाता है और वह गुरूत्वीय बल से संतुलन नहीं रख पाता । गुरूत्वीय बल अब वायुदाब की अपेक्षा अधिक होने के कारण तारा आकंचित हो जाता है। इस कारण दसरे ईंधन का उपयोग होता हैं उदाहरणार्थ केन्द्र के हाइडोजन समाप्त हो जाने पर हिलीयम का विलीनीकरण हो जाता है तथा ऊर्जा की निर्मिती पुनः शुरू हो जाती हैं। ऐसे एक

तारों की जीवन यात्रा

कम द्रव्यमानमान वाला तारा

लाल राक्षसी तारा

अंतरतारकीय बादल

अधिक द्रव्यमान महाराक्षसी तारा

महाराक्षसी तारा

महाराक्षसी तारा

महाराक्षसी तारा

महावस्फोट

कृष्ण विवर

19.6 द्रव्यमान के अनुसार तारों की उत्क्रांति

के बाद एक कितने इंधनों का उपयोग होगा यह तारे के द्रव्यमान पर निर्भर करता हैं।

किसी तारे का द्रव्यमान जितना अधिक, उतना ही अधिक ईंधनों का उपयोग होता हैं। इस दरम्यान होनेवाले विभिन्न प्रक्रियाओं के कारण तारों का आकुंचन तो कभी उनका प्रसरण होता हैं तथा तारा विभिन्न अवस्थाओं से गुजरता हैं। संभावित सभी ईंधन समाप्त होने पर ऊर्जा निर्मित पूर्ण रूप से बंद हो जाती है और तारे का तापमान कम हो जाता हैं इसलिए गैस का दाब और गुरूत्वीय बल संतुलित नहीं रह सकता। तारों की उत्क्रान्ति कब रूकती है व उसकी अंतिम अवस्था क्या होती है यह हम अब देखेगे। तारों की अंतिम स्थित (End stages of stars): तारे का द्रव्यमान जितना अधिक उतने ही तीव्र गित से उसकी उत्क्रंति होती है। तारों की उत्क्रान्ति का मार्ग यह भी तारे के द्रव्यमान पर निर्भर करता हैं। यह उत्क्रान्ति केसे रूकती हैं?

हमने देखा कि तारों से उत्सर्जित होने वाली ऊर्जा की निर्मित बंद होने पर तापमान कम हो जाता है। जिससे वायु का दाब भी कम हो जाता है। तारा आकुंचित होकर उसका घनत्व बढता जाता है। वायु का घनत्व बहुत अधिक होने पर उसमें कुछ ऐसा दाब निर्मित होता है जो तापमान पर निर्भर नहीं रहता। ऐसी परिस्थिति में ऊर्जा की निर्मिति संपूर्ण रूप से रूकने पर भी तथा तारेका तापमान कम होते जाने पर भी दाब स्थिर रहता हैं। इसकेकारण तारे की स्थिरता कायम रह सकती हैं व यही तारे की अंतिम

अवस्था होती है।

तारों के मूल द्रव्यमानके अनुसार उसके उत्क्रान्ति के तीन मार्ग हैं। इस अनुसार हम तारों को तीन समूहों में बाँट सकते हैं। एक समूह के सभी तारों का उत्क्रान्ति का मार्ग व उनकी अंतिम स्थिति एक समान होती हैं। इस बारे में हम अधिक जानकारी लेंगे।

1. सूर्य के द्रव्यमान से 8 गुना कम मूल द्रव्यमान वाले तारों की $(M_{\rm star} < 8 \ M_{\rm Sun})$ अंतिम अवस्था : इन तारों की उत्क्रान्ति के समय उनका बड़े पैमाने पर प्रसरण होता है तथा उनका आकार 100 से 200 गुना बढ़ता है इस अवस्था में उन्हें 'लाल राक्षसी तारा' कहते है । यह नाम उनके बड़े आकार के कारण तथा उनका तापमान कम होने से वे लालछौंह दिखने के कारण दिया गया है । अन्य प्रकार के तारों की अपेक्षा लाल राक्षसी तारे का आकार आकृति 19.2 में दिखाया गया है । उत्क्रान्ति के अंत में तारों का विस्फोट होता है । तारों का बाहरी आवरण दूर फेंक दिया जाता है व अंदर का भाग

आकुंचित हो जाता हैं । इस अंदर के भाग का आकार साधारण रूप से पृथ्वी के आकार जितना ही होता है । तारों का द्रव्यमान पृथ्वी की अपेक्षा बहुत अधिक होने के कारण तथा आकार पृथ्वी के बराबर होने से तारों का घनत्व अधिक बढ़ता है । ऐसी स्थिति में उनके इलेक्ट्रॉनों के कारण निर्माण हुआ दाब तापमान पर निर्भर नहीं रहता और वह तारों के गुरूत्वीय बल को अनंत समय तक संतुलित करने के लिए पर्याप्त होता है । इस अवस्था में तारे सफेद दिखते हैं तथा उनके आकार छोटे होने के कारण वे श्वेतबटु (White dwarfs) के नाम से पहचाने जाते हैं । इसके बाद उनका तापमान कम होते जाता है, परंतु आकार व द्रव्यमान अनंत समय तक स्थिर रहता है । इसलिए यह बटू अवस्था ही इन तारों की अंतिम अवस्था होती है ।

19.7 श्वेतबटू की निर्मिति के समय बाहर फेंका गया गैसों का आवरण । मध्यभाग में श्वेतबटू है ।

क्या तुम जानते हो?

जब सूर्य लाल राक्षसी तारे की अवस्था में जाएगा तब उसका व्यास इतना बढ़ जाएगा कि वह बुध तथा शुक्र ग्रहों को निगल लेगा। पृथ्वी भी उसमें समाविष्ट होने की संभावना है। सूर्य को इस स्थिति में आने के लिए और लगभग 4 से 5 अब्ज वर्ष लगेगें।

2. सूर्य के द्रव्यमान से 8 से 25 गुना द्रव्यमान (8 M $_{Sun}$ < M_{star} < 25 M $_{Sun}$) वाले तारों की अंतिम अवस्था : ये तारे भी ऊपरी तारों के समान लाल राक्षसी तारा व बाद में महाराक्षसी तारा इस अवस्था में से जाते हैं । महाराक्षसी अवस्था में उनका आकार 1000 गुना बढ़ सकता हैं । उसमें अंत में होने वाला महाविस्फोट (supernova explosion) बहुत ही शक्तिशाली होता हैं तथा उससे प्रचंड़ मात्रा में ऊर्जा निकलने के कारण ये तारे दिन में भी दिखाई दे सकते हैं ।

महाविस्फोट से बचा हुआ केन्द्र का भाग आकुंचित होकर उसका आकार लगभग 10 km हो जाता हैं । इस अवस्था में वह संपूर्ण रूप से न्यूट्रॉन का बना होता है । इसलिए इसे न्यूट्रॉन तारा कहा जाता है । तारे का न्यूट्रॉन के कारण निर्माण हुआ दाब, तापमान पर निर्भर नहीं करता तथा वह अनंत समय तक गुरूत्वीय बल को संतुलित करने में सक्षम होता हैं । न्यूट्रॉन तारे, यही इन तारों की अंतिम अवस्था होती है ।

19.8 सन 1054 में आँख के द्वारा देखे गए महाविस्फोट के स्थान का अभी लिया गया प्रकाशचित्र

क्या तुम जानते हो?

- 1. श्वेतबटु तारों का आकार पृथ्वी जितना छोटा होता है व उसका घनत्व बहुत अधिक होता है। उसके एक चम्मच पदार्थ का वजन लगभग कुछ टन होगा। न्यूट्रॉन तारों का आकार श्वेतबटु तारों की अपेक्षा बहुत ही छोटा होने के कारण उसका घनत्व उससे अधिक होता हैं। उसके एक चम्मच पदार्थ का वजन पृथ्वी पर स्थित सभी प्राणीमात्र के वजन के बराबर होगा।
- 2. हमारे आकाशगंगा के एक तारे पर लगभग 7500 वर्षपूर्व महाविस्फोट हुआ था। वह तारा हम से लगभग 6500 प्रकाश वर्ष दूर होने के कारण उस विस्फोट से बाहर निकलने वाले प्रकाश को हम तक पहुँचने के लिए 6500 वर्ष लगे तथा पृथ्वी पर यह विस्फोट चीनी लोगों ने सन 1054 में प्रथम देखा। वह इतना तेजस्वी था कि दिन में सूर्य के प्रकाश में भी वह निरंतर दो वर्ष तक दिखाई दिया। विस्फोट के बाद लगभग 1000 वर्ष बीतने के पश्चात भी वहाँ की गैसे 1000 km/s से अधिक वेग से प्रसरित हो रही हैं।

3. सूर्य के द्रव्यमान से 25 गुना अधिक द्रव्यमान वाले तारों की (M star > 25 M sun) अंतिम अवस्था : इन तारों की उत्क्रान्ति ऊपर दिए गए दूसरे समूह के तारों के जैसे होती है । परंतु महाविस्फोट के बाद कोई भी दाब उसके प्रचंड़ गुरूत्वीय बल को संतुलित नहीं रख सकता और वे तारे हमेशा के लिए आकुंचित होते रहते हैं । उनका आकार धीरे धीरे छोटा होने के कारण उनका घनत्व व उनका गुरूत्वीय बल बहुत अधिक बढ़ता है । इसलिए तारों के पास की सभी वस्तुएँ तारों की ओर आकर्षित होती हैं तथा इस प्रकार के तारे से बाहर कुछ भी नहीं निकल सकता। यहाँ तक की प्रकाश भी बाहर निकल नहीं सकता। उसी प्रकार तारे पर पडने वाला प्रकाश परावर्तित न होकर

तारे के अंदर ही अवशोषित होता हैं इसलिए हम इन तारों को देख नहीं सकते और उनके स्थान पर हमें केवल एक अतिसूक्ष्म काला छिद्र दिखाई देगा । इसलिए इस अंतिम स्थिती को ''कृष्णविवर'' (black hole) यह नाम दिया है इस तरह से हमने देखा कि मूल द्रव्यमान के अनुसार तारों के उत्क्रान्ति के तीन मार्ग होते हैं व उनकी तीन अंतिम अवस्थाएँ होती हैं । वह नीचे तालिका में दी हैं ।

तारो के मूल द्रव्यमान	तारों की अंतिम अवस्था
< 8 M _{Sun}	श्वेतबटू
8 से 25 M _{Sun}	न्युट्रॉन तारा
> 25 M _{Sun}	कृष्ण विवर

स्वाध्याय

1. खोजोगे तो पाओगे

- अ. हमारे निहारिका का नाम है। आ. प्रचंड दूरी मापने के लिए इकाई का उपयोग होता हैं।
- इ. प्रकाश का वेगkm/s हैं।
- ई. हमारे आकाशगंगा में लगभगतारे हैं।
- उ. सूर्य की अंतिम अवस्था होगी।
- ऊ. तारों का जन्मबादलों से होता हैं।
- ए. आकाशगंगा ये एक निहारिका हैं।
- ऐ. तारा यहगैसों का गोला होता हैं।
- ओ. तारों का द्रव्यमानद्रव्यमान के सापेक्ष मापा जाता हैं।
- औ. सूर्य से पृथ्वी तक प्रकाश पहुँचने के लिएसमय लगता है तो चंद्रमा से पृथ्वी तक प्रकाश पहुँचने के लिएसमय लगेगा।
- अं. तारे का द्रव्यमान जितना अधिक उतना ही उसका.....जलद गति से होता हैं।
- अ:. तारों के जीवनकाल में कितने प्रकार के ईंधनों का उपयोग होता है यह उसकेपर निर्भर होता है।

2. कौन सच कहता है?

- अ. प्रकाशवर्ष यह इकाई समय के मापन के लिए उपयोग में लाई जाती हैं।
- आ. तारों की अंतिम अवस्था उनके मूल द्रव्यमान पर निर्भर होती है।

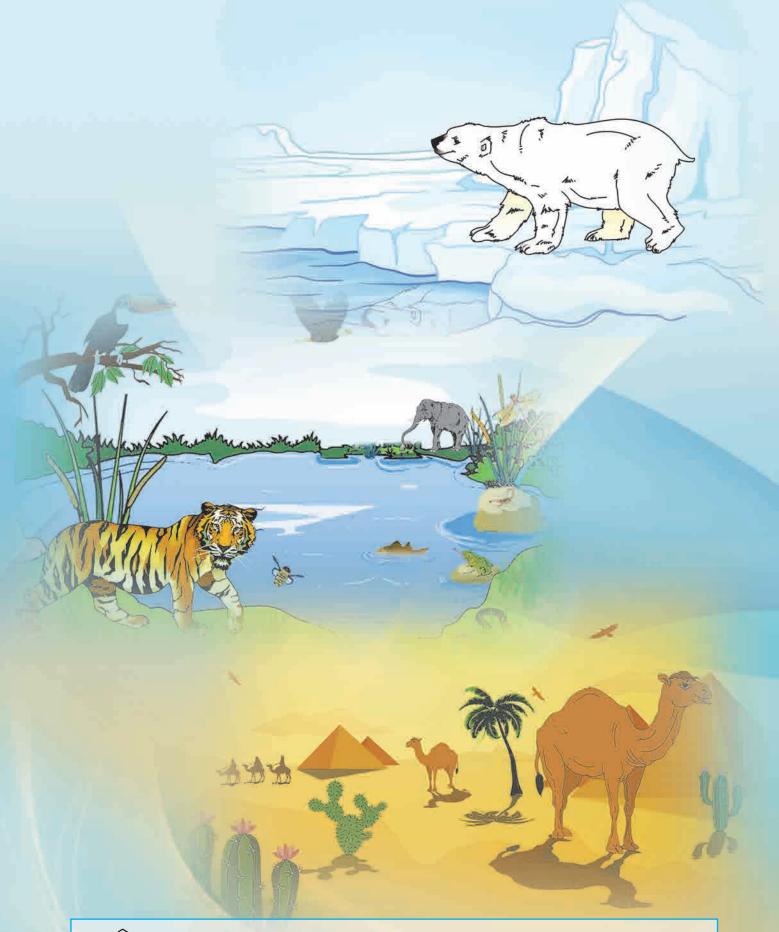
- इ. तारों का गुरुत्वीय बल उसके इलेक्ट्रॉन के दाब से संतुलित होने पर तारा, न्यूट्रॉन तारा बन जाता हैं।
- ई. कृष्ण विवर से केवल प्रकाश ही बाहर निकलता है।
- सूर्य के उत्क्रान्ति के दौरान सूर्य महाराक्षसी अवस्था से जाएगा।
- ऊ. सूर्य की अंतिम अवस्था श्वेत बटु होगी।

3. नीचे दिए गए प्रश्नों के उत्तर लिखो।

- अ. तारों का निर्माण कैसे होता हैं?
- आ. तारों की उत्क्रान्ति किस कारण होती हैं?
- इ. तारों की तीन अंतिम अवस्था कौनसी हैं?
- ई. कृष्ण विवर यह नाम किस कारण पड़ा?
- न्युट्रॉन तारा यह किस प्रकार के तारों की अंतिम स्थिति होती हैं?
- 4. अ. यदि तुम सुर्य हो तो तुम्हारे गुणधर्म अपने शब्दों में लिखो ।
 - ब. श्वेतबट्ट संबंधी जानकारी दो।.

उपक्रम:

- कल्पना के आधार पर मंदािकनी निहारिका और उसमें स्थित हमारे सौरमंडल की प्रतिकृति तैयार करो।
- 2. परिणाम लिखो : यदि सूर्य नष्ट हो गया तो


इयत्ता आठवी सामान्य विज्ञान शब्दसूची

अंतरआण्विक - intermolecular - इन्टर म'लेक्यल (र्) द्रवणांक - melting point - मेल्टींग पॉइन्ट् अणुसूत्र - molecular formula - म'लेक्यल (र्) फॉऽम्यल दिवनाम - binomial - बा'इनउमीअल अधात् - non-metal - नॉन् मेटल् धमनी - artery - 'आटरी आनुवंशिकता - heredity - ह रेडिट्री धातु – metal – मेटल् आघातवर्ध्यता - malleability - मॅलीअ'बिलटी नाभिक - nucleus - 'न्यूक्लीअस् आदिजीव - protozoa - प्रउट'झउअ नियंत्रक - controller - क्न'ट्उल्ल आपतन बिन्द – incident point – इन्सिडन्ट पॉइन्ट् नियमित परावर्तन - regular reflection - रेग्युल (र्) आपतित किरण - incident ray - इन्सिडन्ट रेइ रिफ्लेक्शन उच्च रक्तदाब - hypertesion - 'हाइप (र) टेन्ऽन्शन निर्देशांक - index - 'इन्डेक्स उत्क्रांती – evolution – ईव्ह'लूश्न निलंबन - suspension - स'स्पेन्श्न उदासिनीकरण - neutrilisation - न्यूट्लाइझ्रेशन परमाणु प्रतिकृति – atomic model – अटॉमिक् मॉड्ल् उप्लावक बल - upthrust force - अप्श्रस्ट फॉऽस् परमाणुक्रमांक - atomic number - अ'टॉमिक् नेम्ब(र्) कलिल - colloid - क'लाइड् परावर्तन कोण - angle of reflection - ॲङ्ग्ल अव्ह कवक - fungi - फङ्गी रिफ्लेक्शन कवच - shell - शेल् परावर्तित किरण - reflected ray - रिफ्लेक्टेड रेइ किरणोपचार - radiotherapy - रेइडीअउ'थेरपी परासरण - osmosis - ऑझ'मउसिस् परिदर्शी - periscope - 'पेरीस्कउप केलासीय - crystalline - क्रिसट्लाइन् कोशिका श्वसन - cell respiration - सेल् रेसप् रेइश्न परिपथ - circuit - 'सऽकिट कोशिकांग - organelles - ऑऽगनली परिसंस्था - ecosystem - 'ईकउसिस्टम् परिस्थिति विज्ञान शास्त्री - ecologist - इ'कॉलजिस्ट् क्षय - tuberculosis - ट्यूब (र्) क्य्'लउसिस् क्षरण - corrosion - क्'रउइन प्रकाशीय काँच - optical glass - 'ऑप्टिक्ल् ग्लास् गुरूत्वीय बल - gravitational force - ग्रॅव्हि'टेशन्ल् फॉऽस् प्रतिजैविक - antibiotics - ॲन्टीबाइ'ऑटिक प्रतिबंधात्मक - preventive - प्रि'व्हेन्टिव्ह चमक - lusture - लस्ट् (र्) चुंबकीय बल - magnetic force - मॅग् नेटिक् फॉरस् प्रसरण - expansion - इक् 'स्पॅन्श्न् भूकंप विज्ञान - seismology - साइझ्'मॉलजी जटिलता - complexity - कम्'प्लेक्सटी जडत्व - inertia - इ'नऽस भूस्खलन - landslide - 'लॅन्ड्स्लाइड् मिश्रण - mixture - 'मिक्सच(र्) जीवनशैली - lifestyle - लाइफ् स्टाइल् जीवाणु - bacterai - बॅक्'टिअरीअ मिश्रधातु - alloy - ॲलॉइ जैव वैद्यकीय - biomedical - बाइअ' मेडिक्ल् मोटापा - obesity - अउ'बीस्टी जैवविघटनशील - bio degradable - बाइअउडि'ग्रेइडब्ल् यौगिक - compound - कॉमपाउन्ड् जैवविविधता - biodiversity - बाइ.अउडाइ'व्ह ऽसटी रक्त-आधान - blood transfusion - ब्लड् ट्रॅन्स्'फ्यूइन् टीकाकरण - vaccination - 'व्हॅक्सि'नेइशन् रक्तदाब – blood pressure – ब्लेड्'प्रेश(र्) तत्त्व - elements - 'अेलिमन्ट् रक्तद्रव - plasma - 'प्लॅइम तन्यता - ductility - डक्टिलिटी रक्तपट्टिका - platelates - 'प्लेइट्लट् तापमापी - thermometer - थ'मॉमिट (र्) रक्तबँक - blood bank - ब्लेड् बॅङ्क तारकासमूह - constellation - कॉन्स्ट'लेइशन् रक्तवाहिनियाँ - blood vessels - ब्लड् व्हेइसऽल् तीव्रता - frequency - फ्रीक्वन्सी रक्तविज्ञान - hematology - हिमॅटॉलॉजी दर्शक - indicator - 'इन्डिकेइट (र्) रचना - structure - 'स्ट्रेक्च (र्)

रसायनोपचार - chemotherapy - कीमउ'थेरपी संक्रामक - infectious - इन्'फेक्शस राजधात - nobel metal - 'नउब्ल् 'मेट्ल् संचरण - propagation - प्रॉप'गेइश्न् संचलक - moderator - 'मॉडरेइट वर्गीकरण - classification - क्लॅसिफिकऽशन वहन - conduction - कर्'डक्श्न संयोजकता- valency - 'व्हेइलन्सी विघटक - decomposer - डीकम्'पउझ् (र्) संलक्षण - syndrome - 'सिन्ड्उम् विद्युत अग्र – electrode – इ'लेक्कउड् संस्कारित काच - processed glass - प्रउसेस्ड ग्लास् विशिष्ट - specific - स्प'सिफिक् समस्थानिक - isotopes - सऽिकट विशिष्ट गुरूत्व - specific gravity - स्प'सिफिक् ग्रॅव्हरी समांगी - homogenous - हॉम'जीनीअस् विषमांगी - heterogenous - हेटर'जीनीअस् समुद्री - marine - म'रीन् विषाणु - virus - व्हाइरस सांद्र - concentrated - कॉन्-सन-ट्रेइटिड् सापेक्ष घनत्व - Relative density - रिलेटिव्ह डेन्सटी विसरण - diffusion - डि'फ्यूझन् सेंद्रिय - organic - ऑऽगॅनिक विस्फोट - explosion - इक्'स्प्लउइन् वैश्विक - universal - युनि'व्हऽस्ल् स्थिरता - stability - स्टॅ बिलीटी शिरा - veins - व्हेइन्स् स्नायू बल - muscular force - मसक्यल (र्) फॉऽस् शुद्धता - purity - 'प्युअरटी स्वयंपोषी - autotrophic - 'ऑऽटट्उफिक् शैवाल - algae - ॲल्गी श्वसननलिका - trachea - ट्र'कीअ

कक्षा आठवीं प्राथमिक स्तर की अंतिम कक्षा है। अगले शैक्षणिक वर्ष के लिए माध्यमिक स्तर पर आंतरिक मूल्यमापन में लिए जानेवाले प्रात्यक्षिक कार्यों की पूर्वतयारी हो साथ ही विद्यार्थी में प्रयोग कौशल विकसित होने के दृष्टिकोण से कदम बढ़े इसलिए नमूने के तौर पर प्रयोग की सूची दी गई है। शालेय स्तर पर सूची के अनुसार प्रयोग करवाना अपेक्षित है।

अ.क्र.	प्रयोग का शीर्षक
1	दही / छाछ के लॅक्टोबॅसिलाय जीवाणुओं का निरीक्षण करना ।
2	ब्रेड पर उगी कवक का निरीक्षण करना।
3	दैनिक जीवन में उपलब्ध सामग्री का उपयोग कर संतुलित व असंतुलित बल का अध्ययन करना ।
4	जड़त्व के प्रकारों का का अध्ययन करना।
5	आर्कमिडीज के सिद्धांत का अध्ययन करना।
6	धारा विद्युत के चुंबकीय परिणाम का परिक्षण करना ।
7	प्रयोगशाला में आयर्न ऑक्साइड यह यौगिक बनाकर गुणधर्मों का अध्ययन करना ।
8	धातु व अधातुओं के भौतिक गुणधर्मों और रासायनिक गुणधर्मों का तुलनात्मक अध्ययन करना ।
9	परिसर के अप्रदूषित और प्रदूषित जलाशयों का तुलनात्मक अध्ययन करना ।
10	मानवी श्वसन संस्थान की प्रतिकृति के आधार पर अध्ययन करना।
11	मानवी हृदय की रचना का प्रतिकृति के आधार पर अध्ययन करना ।
12	सूचकों का उपयोग करके अम्ल व क्षारक पहचानना ।
13	ध्वनि के प्रसारण के लिए माध्यम की आवश्यकता होती है यह सिद्ध करना ।
14	समतल दर्पण से होनेवाले प्रकाश के परावर्तन और परावर्तन के नियमों का अध्ययन करना।
15	परिसर की परिसंस्था में पाए जानेवाले जैविक व अजैविक घटकों का अध्ययन करना।

महाराष्ट्र राज्य पाठ्यपुस्तक निर्मिती व अभ्यासक्रम संशोधन मंडळ, पुणे.

सामान्य विज्ञान इयत्ता आठवी (हिंदी माध्यम)

₹ 60.00