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Can you recall?

12.1 Introduction: 
So far, we have focussed our attention 

on the generation of electric fields by 
stationary charges and magnetic fields by 
moving charges. During the early decades of 
nineteenth century, Oersted, Ampere and a 
few others established the fact that electricity 
and magnetism are inter-related. A question 
was then naturally raised whether the converse 
effect of – the moving electric charges produce 
magnetic fields – was possible? That is, can we 
produce electric current by moving magnets? 

In 1831, Faraday in England performed 
a series of experiments in connection with 
the generation of electric current by means 
of magnetic flux. In the same year Joseph 
Henry (1799-1878) demonstrated that electric 
currents were indeed produced in closed 
circuits or coils when subjected to time-
varying magnetic fields. The outcome of these 
experiments led to a very basic and important 
law of electromagnetism known as Faraday's 
law of induction. An electromotive force (emf) 
and, therefore, a current can be induced in 
various processes that involve a change in 
magnetic flux. The experimental observations 
of Faraday are summarized as given below:
 i)  When a magnet approaches a closed 

circuit consisting of a coil (Fig. 12.1), it 
produces a current in it. This current is 
known as induced current.

 ii)  When the magnet is taken away from the 
closed circuit a current is again produced 
but in the opposite direction with respect 
to that in experiment (i).

 iii)  If instead of the magnet, the coil is moved 
towards the magnet or away from it, an 
induced current is produced in the coil 
(i.e., in the closed circuit).

 iv)  If the polarity of approaching or receding 
magnet is changed the direction of induced 
current in the coil is also changed.

 v)  The magnitude of induced current 
depends on the relative speed of the coil 
with respect to magnet. It also depends 
upon the number of turns in the coil.

 vi)  The induced current exists so long as there 
is a relative motion between the coil and 
magnet.

Fig. 12.1: A bar magnet approaching a closed 
circuit consisting of a coil and galvanometer (G).

Fig. 12.2: Two coils with their planes  
facing each other. 

 vii) Instead of a magnet and a closed circuit, 
two coils with their planes facing each 
other (Fig. 12.2) also produce similar 
effects as mentioned above in experiments 
from (i) to (vi). One coil is connected 

1. What is the force experienced by a moving 
charge in a magnetic field?

2. What is the torque experienced by a 
current carrying loop kept in a magnetic 
field?

3. What is the magnetic dipole moment of a 
current carrying coil?

4. What is the flux of a vector field through 
a given area?

12. Electromagnetic Induction
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in series with a battery, rheostat and 
key while the ends of the other coil are 
connected to a galvanometer (G). The 
coil which consists of a source of emf (a 
battery) is termed as primary coil while 
the other as secondary coil. With these 
two coils, following observations are 
made:

 (i)  When the circuit in the primary coil is 
closed or broken, a momentary deflection 
is produced in the galvanometer at 
the time of make or break. When the 
circuit is closed or broken the directions 
of deflection in the galvanometer are 
opposite to each other.

 (ii)  When there is a relative motion between 
the two coils (with their circuits closed), 
an induced current is produced in the 
secondary coil but it exists so long as there 
is a relative motion between the coils.

 (iii) Whenever the current in the primary coil 
is changed (either increased or decreased) 
by sliding the rheostat-jockey, a deflection 
is produced in the galvanometer. This 
indicates the presence of induced current. 
The induced current exists so long as there 
is a change of current in the primary coil. 
The above observations indicate that so 
long as there is a change of magnetic flux 
(produced either by means of a magnet or 
by a current carrying coil) inside a coil, 
an induced emf is produced. The direction 
of induced emf reverses if instead of 
increasing the flux, the flux is decreased 
or vice versa.

12.2 Faraday's Laws of Electromagnetic 
Induction:  On the basis of experimental 
evidences, Faraday enunciated following laws 
concerning electromagnetic induction.
First law: Whenever there is a change of 
magnetic flux in a closed circuit, an induced 
emf is produced in the circuit. Also, if a 
conductor cuts the lines of magnetic field, an 
e.mf. is induced between its ends. 

This law is a qualitative law as it only 
indicates the characteristics of induced emf.
Second law: The magnitude of induced emf 
produced in the circuit is directly proportional 
to the rate of change of magnetic flux 
linked with the circuit. This law is known as 
quantitative law as it gives the magnitude of 
induced emf. 

If f is the magnetic flux linked with the 
coil at any instant t, then the induced emf.
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�      --- (12.1)
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� , K is constant of proportionality.

If e, f , and t  are measured in the same 
system of units, K = 1.

� �e
t

d

d

�
     --- (12.2)

If we combine this expression with the 
Lenz's law (next article) , we get
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�      --- (12.3)

 If f ' is the flux associated with single 

turn, then the total magnetic flux f  for a coil 
consisting of n turns, is

f  = n f '
� � �

�
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�
    --- (12.4)

This is also known as 'flux rule' according 
to which the emf is equal to the rate at which 
the magnetic flux through a conducting circuit 
is changing. 

In SI units e is measured in volt and d

d

f
t

 
is measured in weber/s.

We have already learnt while studying the 
magnetic effect of current that the charges in 
motion (or current) can exert force/torque on a 
stationary magnet (compass meedle). Now we 
have observed in Faraday's experiments that 
a bar magnet in motion (or a time- varying 
magnetic field) can exert a force on the 
stationary charges inside the conductor and 
causes an induced emf across the ends of the 
conductor (open circuit)/or generates induced 
current in a closed circuit.
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clockwise direction as shown in Fig. 12.3.
If the magnet is pulled away from the 

loop, a current will again be induced in the 
loop in such a way that the loop will have a 
south pole facing the retreating north pole and 
will oppose the retreat by attracting it. The 
induced current in the loop will now flow in 
clockwise direction. 

12.3 Lenz's Law: 
H.F.E. Lenz (1804-1864) without 

knowledge of the work of Michael Faraday 
and Joseph Henry duplicated many of their 
discoveries independently almost at the same 
time.

For determining the direction of an 
induced current in a loop, Lenz devised a 
rule, which goes by his name as Lenz's Law. 
According to this rule, the direction of induced 
current in a circuit is such that the magnetic 
field produced by the induced current opposes 
the change in the magnetic flux that induces 
the current. The direction of induced emf is 
same as that of induced current. In short, the 
induced emf tends to set up a current the action 
of which opposes the change that causes it. 
Applications of  Lenz's law:
12.3.1 Motion of a Magnet Toward a Loop: 

In order to get a feel for Lenz's law, let 
us consider a north pole of a magnet moving 
toward a conducting loop as shown in the Fig. 
12.3.

Fig. 12.3: Magnet's motion creates a magnetic 
dipole in the coil.

As the magnet is moved toward the loop, 
a current is induced in the loop. The induced 
current in the loop produces a magnetic dipole. 
The dipole is oriented in such a way that it 
opposes the motion of the magnet. Thus the 
loop's north pole must face the approaching 
north pole of the magnet so as to repel it. 
The curled right-hand (RH) rule for magnetic 
dipole or magnetic field will provide the 
direction of induced current in the loop. The 
induced current in the loop will be in counter 

Jumping Ring Experiment: A coil is 
wound around an iron core which is held 
vertically upright. A metallic ring is placed 
on top of the iron core. A current is then 
switched on to pass through the coil. This 
will make the ring jump several meters in 
air. 
Explanation: Before the current in the coil 
is turned on, the magnetic flux through the 
ring is zero. Afterwards, the flux appears in 
the coil in upward direction. This change 
in flux causes an induced emf and induced 
current as well in the ring. The direction of 
induced current in the ring will be opposite 
to the direction of current in the coil, as 
dictated by Lenz’s law.  As the opposite 
currents repel, the ring flies off in air.

12.3.2 Energy Conservation in Lenz's Law: 

We have learnt that the cause of the 
induced current may be either (i) the motion 
of a conductor (wire) in a magnetic field or 
(ii) the change of magnetic flux through a 
stationary circuit.

In the first case, the direction of induced 
current in the moving conductor (wire) is 
such that the direction of the thrust exerted on 
the conductor (wire) by the magnetic field is 
opposite to the direction of its motion and thus 
opposes the motion of the conductor.

In the second case, the current sets up a 
magnetic field of its own which within the area 
bounded by the circuit is 
 (a)  opposite to the original magnetic field if 

this field is increasing; but 
 (b)  in the same direction as the original field, 

if the field is decreasing.
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Thus it is the 'change in flux' through the 
circuit (not the flux itself), which is opposed by 
the induced current.

Lenz's law follows directly from the 
conservation of energy. If an induced current 
flows in a circuit in such a direction that it 
helps the cause that produces it, then we will 
soon find that the induced current and the 
magnetic flux penetrating the loop would lead 
to an infinite growth. The induced current 
once started flowing in the loop would keep 
increasing indefinitely producing joule heating 
at no extra cost and thus be self-sustaining 
(perpetual motion machine). This will violate 
the law of conservation of energy. We thus see 
that Lenz's law is a necessary consequence of 
the law of conservation of energy.

The opposing sense of the induced current 
is one manifestation of a general statement of 
Lenz's law: "Every effect of induction acts in 
opposition to the cause that produces it"

In order to have an induced current, we 
must have a closed circuit. If a conductor is not 
forming a closed circuit we mentally construct 
a circuit between the two ends of the conductor/
wire and use Lenz's law to determine the 
direction of induced current. Then the polarity 
of the ends of the open-circuited conductor can 
be found easily.
12.3.3 Lenz's Law and Faraday's Law:

Consider Faraday's law with special 
attention to the negative (-ve) sign.

e
d

dt
� �

� .

Consider that area vector A
��

 of the loop 
perpendicular to the plane of the loop is fixed 
and oriented parallel (θ  = 0) to magnetic field 
B
��

. The magnetic field B
��

 increases with time. 
Using the definition of flux, the Faraday' 

law can be written as

e
d

dt
B A A

d B

dt
� � � � �( ) | |

�� �� ��
��

      --- (12.5)

∴ RHS = -ve quantity as | A
��

| is positive 

and 
dB

dt
 is positive (+ve) as B is increasing 

with time.

The screw driver rule fixes the positive 
sense of circulation around the loop as the 
clockwise direction.

As the sense of the induced current in the 
loop is counter clockwise (negative), the sense 
of induced emf also is negative (-ve). That 
is, the LHS of Eq. (12.5) is indeed a negative 
(-ve) quantity in order to be equal to the RHS.

Thus the negative (-ve) sign in the 

equation e
d

dt
� �

�
 incorporates Lenz's law 

into Faraday's law.
12.4 Flux of the Field:

The concept of flux of the magnetic field 
is vital to our understanding of Faraday's law.

As shown in Fig. 12.4 (a), consider a 
small element of area da

� ��
. A direction is 

assigned to this element of area such that if 
the curve bounding the area is traversed in the 
direction of the arrow then the normal comes 
out of the plane of paper towards the reader. 
In other words it is the direction in which right 
handed screw will move if rotated in the sense 
of the arrow on the curve.

Fig. 12.4: (a) Small element of area da
� ��

 bounded 
by a curve considered in anticlockwise direction. 
(Right-handed screw Rule), (b) Finite surface 

area S
��

.
Suppose the element of area da

� ��
 is situated 

in a magnetic field B
��

. Then the scalar quantity
dφ 	= B

��
. da
� ��

 = | B
��

|. | da
� ��

| cosθ  --- (12.6)
is called the flux of B

��
 through the area da

� ��
 

where θ  is the angle between the direction of 
magnetic field B

��
 and the direction assigned to 

the area da
� ��

.
This can be generalised to define the flux 

over a finite area S
��

. It should be remembered 
that the magnetic field B

��
 will not be the 

(a) (b)
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same at different points within the finite 
area. Therefore the area is divided into small 
sections of area da

� ��
 so as to calculate the flux 

over each section and then to integrate over the 
entire area (Fig. 12.3 (b))

Thus, the flux passing through S is
� � �� B a

S

�� � ��
d     --- (12.7)

We can not take B
��

 out of the integral in 
Eq. (12.6) unless B

��
 is the same everywhere in 

S
��

.
If the magnetic field at every point 

changes with time as well, then the flux f will 
also change with time. 

� �� � ��( ) ( )t tB a
S

�� � ��
d    --- (12.8)

Faraday's discovery was that the rate of 

change of flux d

d

�
t

�
�
�

�
�
�  is related to the work 

done to take a unit positive charge around 
the contour C [Fig. 12.4 (b)] in the 'reverse' 
direction. This work done is just the emf. 

Accordingly, Faraday's law states that the 
induced emf can be written as

e
t t

B a
S
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d

d

d

d
d

� �� � ��
( )t   --- (12.9)

In S.I. units the emf, e will be in volt, the 
flux f in weber and time t in second.

From  Eq. (12.9) we can see that even if 
B
��

 does not change with time, flux may still 
vary if the area S changes with time.
12.5 Motional Electromotive Force:
a) Translational motion of a conductor: 

As shown in Fig. 12.5, a C shaped frame 
of wires ABCD of area (l x) is situated in a 
constant magnetic field ( B

��
) BC is conducting 

wire that slides on the frame parallel to AD. 
As the wire BC of length l is moved out with 
velocity v



  to increase x the area of the loop 
ABCD increases. Thus the flux of B

��
 through 

the loop increases with time. According to the 
'Flux Rule' the induced emf will be equal to 
the rate at which the magnetic flux through a  
conducting circuit is changing as stated in Eq. 
(12.9). The induced emf will cause a current 
in the loop. It is assumed that there is enough 

resistance in the wire so that the induced 
currents are very small producing negligible 
magnetic field. 

As the flux f  through the frame ABCD 
is Blx, magnitude of the induced emf can be 
written as 

Fig. 12.5: A frame of wire ABCD in magnetic 
field B

��
. Wire BC is moving with velocity v 

along x- axis.

| | ( )e
t t

Bl
x

t
Bl� � � �

d

d

d

d

d

d
v

�
Blx ,--- (12.10)

where v is the velocity of wire BC 
increasing the length x of wires AB and CD.

Now we can understand the above result 
from the magnetic forces on the charges in the 
moving wire BC. 

A charge q which is carried along by the 
moving wire BC, experiences Lorentz force 
F q B
�� � ��
� �( )v ; which is perpendicular to both 

v and 
� ��

B  and hence is parallel to wire BC. The 
force F

��
 is constant along the length l of the 

wire BC (as v and B are constant) and zero 
elsewhere (... v = 0 for stationary part CDAB 
of wire frame). When the charge q moves a 
distance l along the wire, the work done by the 
Lorentz force is W = F.l= qvBsinθ .l, where 
θ  is the angle between B

��
 and v



. The emf 
generated is work/ charge i.e.,

e
W

q
B l� � �v sin�             --- (12.11)

For maximum induced emf, sinθ  = 1
e

max
 = Blv             --- (12.12)

which is the same result as obtained in  
Eq. (12.10) derived from the rate of change of 
flux.
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In general, it can be proved that for any 
circuit whose parts move in a fixed magnetic 
field, the induced emf is the time derivative of 
flux (φ ) regardless of the shape of the circuit. 

The flux rule is also applicable in case 
of a wire loop that is kept stationary and 
the magnetic field is changed. The Lorentz 
force on the electrical charges is given by  
F
��

 = q ( )E B
�� � ��
� �v . There are no new special 

forces due to changing magnetic fields. 
Any force on charges at rest in a stationary 
wire comes from the E

��
-term. Faraday's 

observations led to the discovery that electric 
and magnetic fields are related by a new law: 
In a region where magnetic field is changing 
with time, electric fields are generated. It is 
this electric field which drives the electrons 
around the conductor circuit and as such is 
responsible for the induced emf in a stationary 
circuit whenever there is a changing magnetic 
flux.

The flux rule holds good so long as the 
change in the magnetic flux is due to the 
changes in magnetic field or due to the motion 
of the circuit or both.
b) Motional emf in a rotating bar:

A rotating bar is different in nature from 
the sliding bar. As shown in Fig. 12.6, consider 
a small segment dr of the bar at a distance r 
from the pivot. It is a short length dr of the 
conductor which is moving with velocity v



 
in magnetic field B

��
 and has an induced emf 

generated in it like a sliding bar. 

Fig. 12.6: A conducting bar rotating around 
a pivot at one end in a uniform magnetic field 
that is perpendicular to the plane of rotation. A 
rotational emf is induced between the ends of 
the bar.

By imagining all such segments as a 
source of emf, we can find that all these 
segments are in series and, therefore, the emfs 
of individual segments will be added.

Now we know that the induced emf de in 
the small segment dr of the rotating conductor.

de =  B v dr
Total induced emf in rotating rod
e de B dr

e B rdr B rdr

B
l

e B l

l

� �

� �

�

�

� �

� �

v

   

� �

�

�

0

2

2

2
1

2             --- (12.13)

Compare the above result with the induced 
emf in sliding bar, e = Blv.
12.6 Induced emf in a Stationary Coil in a 
Changing Magnetic Field: 

As shown in Fig. 12.7 (a) in a magnet-coil 
system, a permanent bar magnet is mounted 
on an arc of a semicircle of radius 50 cm. The 
arc is a part of a rigid frame of aluminium and 
is suspended at the centre of arc so that whole 
system can oscillate freely in its plane. A coil  
of about 10,000 turns of copper wire loop the 
arc so that the bar magnet can pass through the 
coil freely. 

When the magnet moves through the coil, 
the magnetic flux through the coil changes.

In order to measure the induced emf, a 
capacitor (C) and diode (D) are connected 
across the coil (Fig. 12.7 (b)) The induced 
emf produced in the coil is used for charging 
a capacitor through a diode. Then the voltage 
developed across the capacitor is measured. 
The capacitor may not get charged upto the 
peak value in a single swing as the time-
constant (RC) may be larger than the time 
during which the emf in the coil is generated. 
This may take about a few oscillations to 
charge the capacitor to the peak value and is 
indicated by the ammeter (mA) which will tell 
us when the charging current ceases to flow.
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Fig. 12.7: (c) Variation of B
��

 with time t, (d) 
variation of e with time t.

As the magnet, kept in the middle of the 
arc (Fig. 12.7 (a)), starts far away from the coil 
moves through it and recedes, the magnetic 
field /flux through the coil changes from a 
small value, increases to its maximum and 
becomes small again thus inducing an emf. 
Actually, there is substantial magnetic field at 
the coil only when it is very near the magnet. 
The speed of the magnet is largest when 
it approaches the coil (placed at the mean 
position of the oscillation). Thus the magnetic 
field changes quite slowly with time when 
the magnet is far away and changes rapidly 
when it approaches the coil. The variation of 
magnetic field B

��
 (at the coil in mean position) 

with time is shown in Fig. 12.7 (c).

The centre of the hump 'bcde' refers to the 
time when the magnet is inside the coil. The 
flat portion (cd) at the top corresponds to the 
finite length of the magnet. The magnetic flux 
(φ ) is related to magnetic field (B) through a 
constant (effective area = No. of turns × area 
of coil).

Now, the induced emf is proportional to  
dφ /dt, that is to the slope of the curve in  Fig. 
12.7 (c). As the slope of the curve is largest at 
times t

1
 and t

2
, the magnitude of induced emf 

will be largest at these times. But Lenz's law 
gives minus sign (-) in Eq. 12.3 

e
d

dt
� ��

�
�

�
�
�

� , which means that emf (e)  

is 'negative' when φ  is increasing at t
1
 and 

'positive' when φ  is decreasing at time t
2
. This 

is shown in Fig. 12.7 (d) relating induced emf 
(e) with time (t).

Remember the sequence of two pulses; 
one 'negative' and one 'positive' occurs during 
just half a cycle of motion of the magnet. On 
the return swing of the magnet, they will be 
repeated (which one will be repeated first, the 
'negative' or 'positive' pulse?).

Now we consider the effect of these pulses 
on the charging circuit (Fig. 12.7 (b)) The diode 
will conduct only during the 'positive' pulse. At 
the first half swing, the capacitor will charge 
up to a potential, say e

1
. During the next half 

swing, the diode will be cut off until 'positive' 
pulse is produced and then the capacitor will 
charge upto a slightly higher potential, say e

2
. 

This will continue for a few oscillations till the 
capacitor charges upto its peak value e

o
 by the 

voltage/ emf pulse. At this stage ammeter will 
show no kick (further increase) in the current 
of the circuit.

In order to have an estimate of e
o
, the 

equation for induced emf can be written as

e
d

dt

d

d

d

dt
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� �
�

�
            --- (12.14)

The first term depends on the geometry of 
the magnet and the coil. At θ  = 0, the mean 
position, we have maximum φ . But we are 

Fig. 12.7 (a): Magnet-coil system.

Fig. 12.7 (b): Measurement of induced emf.

(c)

(d)
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∴e= N⋅ d(BA)/dt

=N⋅A⋅(dB/dt) (as A is constant and B is 
changing with time)

    =N⋅A⋅(∆B / ∆t) = N⋅A⋅ (B
final

−B
initial

 / ∆t)

Inserting the given values of N=400, A =  
(20 cm)2 = (0.2 m)2, B

final
 = 0.5 T, B

initial
 = 0, 

∆t = 0.8 s

 we find the induced emf

e= 400⋅(0.20 m)2 (0.5 T)/0.8 s 

= 10 Volt

Example 12.2 : A long solenoid S,  as 
shown in the figure has 200 turns/cm and 
carries a current i of 1.4 A. The diameter D 
of the solenoid is 3 cm. A coil C, having 100 
turns and diameter d of 2 cm is kept coaxial 
to the solenoid. The current in the solenoid 
is decreased steadily to zero in 20 ms. 
Calculate the  magnitude of emf induced in 
the coil C when the current in the solenoid is 
changing.

Solution: Part of magnetic flux (per turn) of 
the solenoid S that links with the coil C is 

φ
c
= µ

0
 n

s
i 
π	d2

c 

4
This flux reduces to zero in dt =20ms. Thus, 
the emf induced in coil C of N

c
 turns is

e
s
 = −N

c 
 
dφ

c

dt
 = 

−(0-φ
c
)

dt
 = 

µ
0
N

c
n

s
iπ	d2

c 

4dt
 

= 
4π×10−7×100×2×104	×1.4

 
×3.14×10−4

4×20×10−3	  

= 55.24	mV

interested in d

d

�
�

�
�
�

�
�
� , which is actually zero at  

θ  = 0. The second term d

d

θ
t

 can be deduced 

from the oscillation equation. 
θ  = θ0 sin 2πvt, θ0  

being the amplitude of 
oscillating magnet.

frequency 
time period 

v
T

� � � 1

( )
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cos            --- (12.15)

The peak voltage (emf) e
0
 in the induced

emf pulse corresponds to 
d

d

�
t

�
�
�

�
�
�

max

.

We can see from Fig. 12.7 (c) that 

 
d

d

�
�

�
�
�

�
�
�

max

 occurs at positions near the mean 

position. In Eq. 12.15, the cosine term does not 
differ much from unity for very small angles 
(close to zero).

Hence we conclude that

e
t T0

02
� �
�
�

�
�
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�
�

�
�
� ��

�
�

�
�
�

d

d

d

d

� �
�

��

max max
--- (12.16)

For given magnet-coil system, the peak induced 
emf e

0
 is directly proportional to angular 

amplitude (θ0 ) and inversely proportional to 
time period (T).

Example 12.1: A coil consists of 400 
turns of wire. Each turn is a square of side  
d = 20 cm. A uniform magnetic field directed 
perpendicular to the plane of the coil is 
turned on. If the field changes linearly from 
0 to 0.50 T in 0.8 s, what is the magnitude 
of induced emf in the coil while the field is 
changing?

Solution:  The magnitude of induced emf in 
the coil is written as 

e= d(Nφ )/ dt = N (dφ /dt)

∵φ = B⋅ A 
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Fig. 12.8 (a): Schematic of a Generator.

12.7 Generators:

In Chapter 10 you have learnt the principle 

of electric motors. The basic construction of 

an electric generator is the same as that of 

a motor. In this case the armature is turned 

by some external agency/torque as shown in 

Fig.12.8 (a). As the conductor wires cut across 

the magnetic lines of force, an induced emf  

(e = Blv) is produced across the terminals of 

the commutator. The induced e.m.f is found to 

be proportional to the  speed of rotation (ω) of 

the armature.

Let us focus our attention on one conductor 

of the armature as shown in Fig. 12.8 (b). In 

position (i), the conductor is moving upward 

across the lines of force inducing maximum 

emf. When the armature reaches in position 

(ii) the conductor is moving parallel to the field 

and there is no induced emf (e = 0). At position 

(iii), the same conductor moves down across 

the lines of force and the induced emf/ current 

is directed opposite to that in case of (i). The 

graph, plotted between the current flowing in 

the lamp as a function of the time (t) shows a 

sinusoidally varying current as is shown in (iv) 

of Fig. 12.8 (b). 

When a coil is rotating with a constant 

angular velocity ω , the angle between 

magnetic field  B
��

 and the area vector A
��

 of the 

coil at any instant t is θ  = ωt (assuming θ  = 0 at  

t = 0). As the effective area of the coil is 

changing due to rotation in the magnetic field 

B, the flux φB  at any time can be written as 

φB = B.A cosθ  = B.A cos ωt.

From Faraday's law, the induced emf e, 

generated by a rotating coil of N turns 

Fig. 12.8 (b): Wave form generation.
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Do you know?

12.8 Back emf and back torque: 
We know that emf can be generated in 

a circuit in different ways. In a battery it is 
the chemical force, which gives rise to emf. 
In piezoelectric crystals mechanical pressure 
generates the emf. In a thermocouple it is the 
temperature gradient which is responsible 
for producing emf in a circuit containing the 
junctions of two metallic wires. In a photo 
electric cell, the incident light above a certain 
frequency  is responsible for producing the emf. 
In a Van de Graaff  Generator the electrons 
are literally loaded into a conveyor belt and 
swept along to create a potential difference. 
A generator utilises the movement of wire 
through a magnetic field to produce motional 
emf/current through a circuit. We have 
seen that the physical construction of a DC 
generator and motor is practically the same. 
If a DC generator is connected to a battery, 
it will run as a motor. If a motor is turned 

If a wire without any current is kept in a 
magnetic field, then it experiences no force 
as shown in figure (a). But when the wire is 
carrying a current into the plane of the paper 
in the magnetic field, a force will be exerted 
on the wire towards the left as shown in the 
figure (b).  The field will be strengthened 
on the right side of the wire where the lines 
of force are in the same direction as that of 
the magnetic field and weakened on the left 
side where the field lines are in opposite 
direction to that of the applied magnetic 
field. For a wire carrying a current out of 
the plane of the paper, the force will act to 
the right as shown in figure (c).

(a)   (b)     (c)

Fig. 12.8: (c)  Alternating current,  

                 (d) Pulsating direct current.
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where f is the frequency of revolution of 

the coil.
Since the value of sin ωt varies between  

+1 and -1, the polarity of the emf changes 
with time. The emf has its extremum value at  
θ = 90° and 270° as the change in flux is 
greatest at these points. As the direction of 
induced current changes periodically it is called 
as alternating current (AC) (Fig. 12.8 (c)). 
The frequency of AC is equal to the number 
of times per second, the current changes from 
positive (+ve) to negative (-ve) and back 
again. The domestic electrical current varies 
at a frequency of 50 cycles/second.

For the purpose of charging a storage 

battery it is necessary to generate a steady 
or direct current (DC). The reversing action 
of commutator can be used to generate 
pulsating  DC as depicted in Fig. 12.8 (d). The 
commutator acts like a rapid switch which 
reverses the connections to the armature at just 
the right times to match with the reversals in 
current. Modern AC motors are more compact 
and rugged than the DC motors. 



275

by any external means, it will behave  as a 
generator. So whenever a motor is running, 
its generator action can not be turned off. By 
Lenz's law the induced emf will tend to oppose 
the change which causes it. In the present case, 
the 'cause' is the current through the armature. 
Therefore, the induced emf will tend to reduce 
the armature current. The induced emf which 
is unavoidable due to generator action in a 
motor is called back emf. Initially, when a 
motor is just starting up, its armature is not 
turning and hence it is not producing any back 
emf. As the motor starts speeding up the back 
emf increases and armature current decreases. 
This explains the reason as to why the current 
through a motor is larger in the beginning than 
when the motor is running at full speed.

Example 12.3: A rotating armature of a 
simple generator consists of rectangular 
section DABC of a conducting wire as 
shown in the figure, to which connections 
are made through 
sliding contacts. The 
armature is rotated 
at 1500 rpm in the 
magnetic field ( B

��
) of 

0.5 N/ A.m. Determine 

the induced emf between the terminals P and 
Q of the generator at the instant shown in the 
adjoining figure.
Solution: The wire AB (l = 10 cm) is moving 
to the right with the tangential velocity v. 
           v

� �� �
� �� r

v = ω r where ω  is angular velocity and r is 
the radius. 
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The magnetic field is directed vertically 
upward from North to South pole. As the 
wire AB is cutting the magnetic lines of 
force perpendicularly, the induced emf is, 
therefore, maximum.

 ... e = Blv sinθ with  θ = 90°, 
 Then, e = e

max
 = Blv

        = (0.5 N/A.m) (10/100)m. (6.28m/s)

� �

�

0 5

10
6 28

0 314

.
.

.  V      
or e

max
 ≈ 314.2 mV. 

The emf induced in the wires BC and DA 
is zero because the magnetic Lorentz force 
on free electrons in these wire F q B

�� � ��
� ��

�
�
�( )v  

has no component parallel to the wires. 
Also there is no e.m.f. in the lead in wires, 
which are stationary and are not in motion  
( v


= 0). Therefore the total emf between the 
terminals P and Q is due the movement of 
segment AB. i.e., e = 314 mV. The direction 
of induced emf is given by Lenz's law. 
Example 12.4: A conducting loop of area 
1 m2 is placed normal to uniform magnetic 
field 3Wb/m2. If the magnetic field is 
uniformly reduced to 1 Wb/m2 in a time of 
0.5 s, calculate the induced emf produced in 
the loop.
Solution: Given,

Area of the loop, A = 1 m2

(B)
intial

 = 3Wb/m2

(B)
final

  = 1Wb/m2 

duration of time, ∆t = 0.5 s
∴ Induced emf, 
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magnetic flux induces current in the loop as 
dictated by Lenz's law. The induced current in 
the loop gives rise to a force that opposes the 
pulling of the loop out of the magnetic field.

We know that magnitude of magnetic 
flux through the loop is 

f
B
 = B.A = B.L.x             --- (12.19)

As x decreases, the flux decreases. 
According to Faraday's law, the magnitude of 
induced emf, 

e
t t

BLx

BL
x

t
BL

� �

� � �

d

d

d

d

    
d

d
v

�
( )

           --- (12.20)

The induced emf e is represented on the 
left and the collective resistance R of the loop 
on the right in the Fig. 12.9 (b). The direction 
of induced current i is obtained by Right-Hand 
(RH) Rule.

The magnitude of induced current i can be 
written using Eq. (12.20) as

i
R

BL

R
 

v
= =

| |e
             --- (12.21)

 The three segments of the current carrying 
loop experience the deflecting forces F

��
1 , F
��

2  
and F
��

3  in the magnetic field B
��

 in accordance 
with Eq. ( F

��
 = i L
��

× B
��

). From the symmetry, 
the forces F

��
2  and F

��
3  being equal and opposite, 

cancel each other. The remaining force F
��

1  is 
directed opposite to the external force F

��
 on 

the loop. So F
��

= - F
��

1 .
The magnitude of | F

��
1 | can be written as

 | F
��

1 | = i LB sin 90 = i LB = | F
��

|  --- (12.22)
From Eq. (12.21) and Eq. (12.22)

| F
��

| = | F
��

1 | = iLB

                 = BL

R
LB

B L

R

v v
� �

2 2

  --- (12.23)

From Eq. (12.18) and (12.23), the rate of 
doing mechanical work, that is power:

P F
B L

R

B L

R
� � � �
�� �

.v
v

v
v2 2 2 2 2

  --- (12.24)

If current i is flowing in the closed 
circuit with collective resistance R, the rate 

12.9 Induction and Energy Transfer:
Consider a loop ABCD taken out with 

constant velocity v


 through a uniform 
magnetic field B

→
 as shown in Fig. 12.9 (a). 

A current i is induced in the loop in clockwise 
direction and the loop segments, being still 
in magnetic field, experience forces, F

1
, F

2
 

and F
3
. The dashed lines show the limits of 

magnetic field. To maintain the velocity  v


 
constant, it is required to apply an external 
force F

��
 on the loop so as to overcome the 

magnetic force of equal magnitude but acting 
in opposite direction.

Fig. 12.9 (a): A loop is moving out of magnetic 
field with velocity v.

Fig. 12.9 (b) : Induced emf e, induced current i 
and collective resistance R of the loop.

∴ The rate of doing work on the loop is 

P =
Work ( )

time ( )
=

Force ( )  displacement ( )

time ( )

W

t

F d

t

×

 
 P = Force (F) × velocity (v) 

       = F
�� . v


             --- (12.18)
We would like to find the expression for P 

in terms of B and the characteristics of the loop 
i.e., resistance (R), width (L) and Area (A).

As the loop is moved to the right, the area 
lying within the magnetic field decreases, 
thus causing a decrease in the magnetic flux 
linked with the moving loop. The decreasing 

F
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of production of heat energy in the loop as we 
pull it along at constant speed v, can be written 
as

Rate of production of heat energy =
    P = i2 R             --- (12.25)
From Eq. (12.21) and Eq. (12.25)

P
BL

R
R

P
B L

R

� �
�
�

�
�
� �

�

v

v

2

2 2 2

             --- (12.26)

Comparing Eq. (12.24) and Eq. (12.26), 
we find that the rate of doing mechanical work 
is exactly same as the rate of production of 
heat energy in the circuit/loop.

Thus the work done in pulling the loop 
through the magnetic field appears as heat 
energy in the loop.
12.10 Eddy Currents: 

Suppose the conducting loop of Fig. 
12.9 (a) is replaced by a solid conducting 
plate, the relative motion between conductor 
and magnetic field induces a current in the 
conductor plate (Fig. 12.10 (a)). In this case 
again, we encounter an opposing force so we 
must do work while moving the conductor with 
uniform velocity v. The conduction electrons 
making up the induced current do not follow 
one path as they do with the loop, but swirl 
about within the plate as if they were caught in 
an eddy of water. Such a current is called an 
eddy current.  Eddy current can be represented 
by a single path as shown in Fig. 12.10 (a).

The induced current in the conductor plate 
is responsible for transfer of the mechanical 
energy into heat energy. The dissipation of 
energy as heat energy is more apparent in the 
arrangement shown in Fig. 12.10 (a), where a 
conducting plate, free to rotate about a pivot, 
is allowed to swing down like a pendulum 
through a magnetic field. In each swing, when 
the plate enters and leaves the field, a portion 
of its mechanical energy is transformed to heat 
energy. After several such swings there is no 

mechanical energy left with the pendulum and 
the converted heat energy is dissipated  in the 
solid plate making it warm. Eddy current can 
be reduced by discontinuity in the structure of 
conductor plate as depicted in Fig. 12.10 (c).

Fig. 12.10: (a) Eddy currents are induced in solid 
conductor plate, (b) Conducting plate swings 
like a pendulum, (c) Reduction in eddy currents 
due to discontinuous structure of a plate.

(b) (c)

(a)

12.11 Self-Inductance:
Consider a circuit (coil) in which the 

current is changing. The changing current will 
vary the magnitude of magnetic flux linked 
with the coil (circuit) itself and consequently 
an emf will be induced in the circuit. 

Fig. 12.11: Changing current in a coil.

K

The production of induced emf, in the 
circuit (coil) itself, on account of a change in 
the current in it, is termed as the phenomenon 
of self-inductance.

Let at any instant, the value of magnetic 
flux linked with the circuit itself be φ

i
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of induced emf (caused by changing current in 
the circuit) produced around the circuit to the 
rate of change of current in it.

In order  words, the induced emf produced 
around the circuit per unit rate of change of 
current in it, is defined as the self-inductance 
of the circuit.
(iii) When a current increases in the circuit, an 
induced emf acts opposite to it. Consequently, 
the work will have to be done in order to 
establish the magnetic flux associated with a 
steady current i

o
 in the circuit.

Work done in time dt is dW = e.i dt
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or,                         --- (12.30)

     

                = 
1

2 0
2Li   (magnitude)

Now if i
0
 = 1,

Then W L� �
1

2
 

or  L = + 2W (numerically)       --- (12.31)
Hence self-inductance of a circuit is 

numerically equal to twice the work done in 
establishing the magnetic flux associated with 
unit current in the circuit.

This work done W, will represent the 
energy of the circuit.

 ∴ Energy of the circuit =
1

2 0
2Li   --- (12.32)

We know that the mechanical energy is 
expressed in terms of kinetic energy as

 KE = 
1

2
2mv             --- (12.33)

Comparing the Eq. (12.33) and Eq. (12.34), 
we find that self inductance (L) of an electrical 
circuit plays the same role (electrical inertia) 
as played by mass (inertia) in mechanical 

corresponding to current i in it (Fig. 12.11). It 
is obvious that f will be proportional to current 
i.

i.e., f  ∝ i
or    f  = Li or L = f /i,           --- (12. 27) 

where L is a constant of proportionality and is 
termed as the self-inductance (or coefficient of 
self induction) of the coil.

For a closely wound coil of N turns, the 
same magnetic flux will be linked with all the 
turns. When the flux through the coil changes 
each turn of the coil contributes towards the 
induced emf. Therefore a term flux linkage is 
used for a closely wound coil. The flux linkage 
for a coil with N turns corresponding to current 
i will be written as 
 NfB ∝ i

    NfB  = Li 

 L = NfB  / i             --- (12.28)

The inductance (L) depends only on the 
geometry and material properties of the core 
of the coil. 
Unit of Inductance:

According to Faraday's law, induced emf 
e is given by

e
t

� �
d

d

�               

Using Eq. (12.27)

e
t

Li L
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t
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d

d

d

d
( )              --- (12.29)

Unit of L
i t
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��

�
��
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| e |

| |d / d

volt

A / s
Henry     

Definition of L: 
Self inductance L may be defined in the 

following ways:
(i) From Eq. (12.27), f  = Li or L

i
�
�

Hence, the self-inductance of a circuit is 
the ratio of magnetic flux (produced due to 
current in the circuit) linked with the circuit  
to the current flowing in it. The magnetic 
flux produced per unit current in the circuit is 
defined as its self inductance.

(ii) Using Eq. (12.29), L
e

i t
� ��

�
�

�
�
�d d/

Hence, self-inductance of a circuit is the ratio 
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motion.
Inductance of a solenoid: If a current i is 
established in the windings (turns) of a long 
solenoid, the current produces a magnetic flux 
fB  

through the central region. The inductance 
of the solenoid is given by L = NfB /i, where  
N is the number of turns. NfB  

is  called as 
magnetic flux linkage. For a length l near 
the middle of the solenoid the flux linkage is  
NfB  

= (nl) ( B
��

. A
��

) = nlBA, (for θ  = 0°), where 
n is the number of turns per unit length, B is 
the magnetic field inside and A is the cross 
sectional area of the solenoid. 
We know that the magnetic field inside the 
solenoid is given by Eq. (10.65) as
 B = µ0 ni   
Hence

        
L

N

i

nl BA

i

nl A

i
B� � �

�

� �

�

( ) ( )0

0

ni

n lA2
  

where,  Al is the interior volume of solenoid.
Therefore inductance per unit length near 

the middle of a long solenoid is 

L

l
� �0n A2  �

�

�
�

�

�
��

�
0

2
2

4
n

d
, d being the 

diameter of solenoid.             --- (12.34)

This implies that inductance of a solenoid 
L ∝ n2, L ∝ d 2. As n is a number per unit 
length, inductance can be written as a product 
of permeability constant µ0 and a quantity 
with dimension of length. This implies that µ0  

can be expressed in henry/ meter (H/m).

Example 12.5: Derive an expression for the 
self-inductance of a toroid of circular cross-
section of radius r and major radius R. 
Calculate the self inductance (L) of toroid 
for major radius (R) = 15 cm, cross-section 
of toroid having radius (r) =2.0 cm and the 
number of turns (n) =1200.
Solution: The magnetic field inside a 
toroid,

B
Ni

r
�
�
�
0

02
, where N is the number of turns 

and r
0
 is the distance from the toroidal axis.

If r <<R,  we can use r
0 
≅ R.  Hence,
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2
The magnetic flux (f ) passing through 
cavity is 
 � �

�
�

�
� � � �r
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R

Nir

R
2 0 0

2

2 2
This is the flux that links each turn. When 
the current i varies with time, the induced 
emf e across the terminals of toroid is given 
by Faraday’s law.

 e
N

t
N

t

Nir

R
� � � �

�

�
�

�

�
�

d

d

d

d

� �0
2

2

 e N
Nr

R

i

t
� �

�

�
�

�

�
�

�0
2

2

d

d

Comparing with e L
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dWe get,
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2 2

2
   (...r << R)

Given, 
N=1200, r  =2.0 cm, R=15 cm and 
µ0 = 4π×10-7  T.m/A.
L= 2.414 × 10-3 H

Example 12.6: Consider a uniformly 
wound solenoid having N turns and length 
l. The core of the solenoid is air. Find the 
inductance of the solenoid of N =200, l=20 
cm and cross-sectional area, A= 5 cm2. 
Calculate the induced emf e

L
, if the current 

flowing through the solenoid decreases at a 
rate of 60 A/s.
Solution: The magnetic flux through each 
turn of area A in the solenoid is
fB  

= B⋅A = ( µ0 ni)⋅A (∵Magnetic field 
inside a solenoid is B = µ0 ni)
= µ0  

(N/l)⋅i⋅ A(∵n is the number of turns per 
unit length=N/l)
We know that the inductance (L) of the 
solenoid can be written as 
L= (NfB )/ i
Substituting the value of fB , we get
L= (N/i)⋅ { µ0 ⋅(N/l)⋅i⋅ A}
L= µ0 ⋅(N2/l)⋅A
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12.12 Energy Stored in a Magnetic Field:
We have seen that the changing magnetic 

flux in a coil causes an induced emf. The 
induced emf so produced opposes the change 
and hence the energy has to be spent to 
overcome it to build up the magnetic field. 
This  energy may be recovered as heat in a 
resistance of the circuit. This fact gives the  
logical concept of the energy being stored in 
the magnetic field. 

We have dealt with a similar problem 
in electrostatics where the total electrostatic 
energy U

E 
is stored in the medium between the 

plates of a capacitor with capacitance C and 
charge q held at potential V is

U
q

C

C
q CE = = =

2 2

2 2

V
V         [ ]

Now we can estimate the energy spent 
to build up a current I in a circuit having an 
inductance L.

From Eq. (12.29),

The induced emf e L
i

t
� �

d

d
The work alone in moving a charge dq against 
this emf is 
d d

d

d
d

       
d d
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Therefore total work

    W w Li i Li U
I

� � � �� �d d B

0

21

2
   --- (12.35)

This is the energy stored (U
B
) in magnetic field 

and is analogous to the energy stored (U
E
) in 

the electric field in a capacitor given above. 
It can be shown that this energy stored up in 
magnetic field per unit volume (u

B
) comes out 

to be (B2/2 µ0 )  Joules, which parallels the  
(1/2)ε

0
 E2, the energy density (u

E
)  in an electric 

field E, µ0  
and

 
ε

0 
being the permeability and 

permittivity of free space.

Inserting the given values of N, l and A, we 
find
L=(4π⋅10-7Tm/A)⋅(200)2(5⋅10-4m2)/(20⋅10-4 m)

or L≈ 0.1257mH
The induced emf in the solenoid
e

L
= − L (di/dt)

e
L
= − (0.126⋅10−3) (− 60 A/s)=7.543 mV

Example 12.7: The self-inductance of a 
closely wound coil of 200 turns is 10 mH. 
Determine the value of magnetic flux 
through the cross-section of the coil when 
the current passing through the coil is  
4 mA.                           

Solution: Given :  

Self-inductance of coil, L = 10 mH, 

Number of turns, N = 200, and  

Current through the coil, i = 4 mA

The total value of magnetic flux f associated 
with the coil is,

f  = L i

=  (10 × 10-3) H × (4 × 10-3) A

=  4 × 10-5  Wb

The flux per turn (or flux through the cross-
section of the coil)

�
�
N

�
��

�
�

�

�
�

�4 10

200

5 Wb

=  2 × 10-7  Wb

Inductances in series or parallel: 
If several inductances are connected in 

series or in parallel, then the total inductance 
is determined by using following relations: 
L L L LTotal � � � �1 2 3 ...  (Series Combination)

1 1 1 1

1 2 3L L L LTotal

� � � � ...  (Parallel Combination)
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Fig 12.12 : A current carrying solenoid  produces 
uniform magnetic field in the interior region.

12.13 Energy Density of a Magnetic Field:
Consider a long solenoid having length, l 

near the middle, cross-sectional area A
��

  and 
carrying a current i through it (Fig. 12.12). 
The volume associated with length l will be 
A.l. The energy, U

B
 stored by the length l of 

the solenoid must lie entirely within volume 
Al, because the magnetic field outside the 
solenoid is almost zero. Moreover, the energy 
stored will be uniformly distributed within the 
volume as the magnetic field B

��
 is uniform 

everywhere inside the solenoid.

Thus, the energy stored, per unit volume, 
in the magnetic field is 
 u

U

A lB
B�
�

             --- (12.36)

From Eq. 12.35, we know that U LIB =
1

2
2  

     � � �
�
� �
�
�

�
�
� �u LI

A l

L

l

I

AB

1

2

1

2
2

2
    --- (12.37)

For a long solenoid, we know that the 
inductance (L) per unit length is given by  
Eq. (12. 34) as

 L

l
n A

�
�
�

�
�
� � �0

2 ,

where L is the inductance of a long solenoid 
having length l in the middle, n is the number 
of turns per unit length, and A is the cross-
sectional area of the solenoid, µ0  is the 
permeability constant for air (4π × 10-7 T.m/A 
or 4π × 10-7 H/m) [...1 H (Henry) = 1 T.m2/A]
Substituting the value of (L/l) in Eq. (12.37), 
we get 
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I

A
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B

B

�
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0
2

2
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2 2

2
1

2
               --- (12.38)

For a solenoid the magnetic field at 

interior points is given by Eq. (10.65) as 
B = µ

0
I.n.

Therefore, the expression for energy 
density (u

B
) stored in magnetic field can be 

written as
 u

B
B �

2

02�
             --- (12.39)

This equation gives the density of stored 
energy at any point where magnetic field is 
B. This equation holds good for all magnetic 
fields, no matter how they are produced.

Example 12.8 : Calculate the self-inductance 
of a coaxial cable of length l and carrying a 
current I. The current flows down the inner 
cylinder with radius a, and flows out of 
the outer cylinder with radius b.  
Solution: According to Ampere’s law, the 
magnetic field (B) between two cylinders at 
a distance r from the axis is given by

B
µ I

r
� 0

2

�

��
. 

The magnetic field is zero elsewhere.
We also know that the magnetic energy 
density,

u
B

µ µ

I

r

µ I

rB � �
�

�
�

�

�
� �

2

0 0

0
2 2

2 2
0

2

2 22

1

2 4 8

�
� �

�

Energy stored in a cylindrical shell of length 
l, radius r and thickness dr is given by

         
µ I

r
lrdr

µ I l dr

r
0

2

2 2
0

2

8
2

4�
�
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�
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Integrating from a to b, we get 

         W
µ I l

ln
b

a
� �

�
�

�
�
�

0
2

4�
Magnetic energy confined in an inductor 

(L) carrying a current (I) can also be written 

as 
1

2
2LI .  Comparing the two expressions 

we find the inductance of coaxial cable as    
         L

l
ln

b

a
� �

�
�

�
�
�

µ0

2� 

12.14 Mutual Inductance (M):
Let us consider a case of two coils placed 

side by side as shown in Fig. 12.13. Suppose a 
fixed current I

1
 is flowing through coil 1. Due 

to this current a magnetic field B
1
 (x,y,z) will 

be produced in the nearby region surrounding 
the coil 1. Let φ21  be the magnetic flux liked 
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 e M
dI

dt12 12
2� �              --- (12.44)

It may be noted that by symmetry,  
M

12
 = M

21
 = M.

Alternative definitions of mutual inductance:
It is evident from the Eq. (12.41) and  

Eq. (12.42) that
  φ21  = MI

1
 and φ12  = MI

2 

 or  M
I I

� �
� �21

1

12

2

            --- (12.45)

Hence, the mutual inductance of two 
circuits is equal to the magnetic flux linked 
with one circuit per unit current in the other 
circuit. The circuit in which current is provided 
by an external source is usually referred to as 
primary circuit while the other as secondary. 

Therefore, the mutual inductance M of 
two circuits (or coils) is the magnetic flux  
(φs ) linked with the secondary circuit per unit 
current (I

P
) of the primary circuit.

 
� �M

I
s

p

�

or      φs  = MI
p
             --- (12.46)

Also from Faraday's law

e
d

dt

d

dt
M

d

dt

e

s
s

s

� � � � � �

�

�
  

or 

( )

( )

MI
I

M
dI / dt

p
p

p

 --- (12.47)

Hence, mutual inductance is defined 
as the value of induced emf produced in the 
secondary circuit per unit rate of change in 
current in the primary circuit.

with the surface area s
2
 of the coil 2 due to 

magnetic field B
��

1  and can be written as 

 � �21 1

2

� �� B a
s

�� � ��
,           ---- (12.40)

where s
2
 represents the effective surface (or 

area) enclosed by coil 2. If the positions of the 
coils are fixed in space,
Then φ21  

∝ I
1
 

         φ21  = constant. I
1

or      φ21 = M
21

 I
1                   

--- (12.41)
where, M

21
 is a constant of proportionality and 

is termed as mutual inductance or coefficient 
of mutual induction of coil 2 (or circuit c

2
) 

with respect to coil 1 (or circuit c
1
). Suppose I

1
 

changes slowly with time then magnetic field 
B

1
 in  the vicinity of coil 2 is related to current 

I
1
 in coil 1 in the same way as it would be 

related for a steady current. The magnetic flux 
φ21  will change in proportion as I

1
 changes. 

The induced emf in coil 2 will be written as 

 

e
d

dt

e M
dI

dt

21
21

21 21
1

� �

� �

�

Now we allow current I
2
 to flow through 

coil 2. On account of this current, magnetic flux 
φ12 liked with coil 1 is obviously proportional 
to I

2
. 

That is
	 φ12 ∝ I

2
 

        or φ12  = M
12

 I
2
             --- (12.42)

       or M
I12
12

2

�
�

             --- (12.43)

M
12

 is known as mutual inductance of coil 1 
with respect to coil 2. The induced emf in coil 
1 will be 

Fig. 12.13: Mutual inductance of two coils.

I
1

Use your brain power

It can be shown that the mutual 
potential energy of two circuits is W = MI

1
I

2
. 

Therefore, the mutual inductance (M) may 
also be defined as the mutual potential 
energy (W) of two circuits corresponding to 
unit current flowing in each circuit.

M
W

I I
=

1 2

 

M=W [I
1
 = I

2
 = 1]
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of coupling the greater will be the mutual 
inductance (M).

Inductance of any circuit is proportional to 
the induced voltage it can develop. This is equally 
true for mutual inductance.

M e∝� 21
, where e

21
 is induced emf developed 

in coil 2 due to the portion of the flux from coil 1 
reaching coil 2 (= Kf1 ).

But induced emf is also proportional to the 
number of turns in the coil, 

So,      e N K21 2 1� � �� �  

But      �1 1��N
∴ ( )21 2 1 e N KN∝

Also L N� �∝ 2  or N L∝
∴ N N L L1 2 1 2∝�  = L L1 2�

Replacing e
21

 with M, we now have
 M K L L= 1 2

            --- (12.48)
K is usually less than unity. If K =1, 

the two coils will be perfectly coupled, and 
M L L= 1 2 . 
(i) If K > 0.5, the two coils are tightly coupled 
(ii) If K<0.5, the coils are loosely coupled. 
(iii) If L

1
 = L

2
, then a coil with self-inductance 

L is coupled to itself with mutual inductance
 M L L L L= = =1 2

2

It may not be always desirable to have a 
large value of mutual inductance (M). A large 
value of M is desirable for  a transformer but 
higher M is not desirable for home appliances 
such as a electric clothes dryer. A dangerous 
emf can be induced on the metallic case of 
the dryer if the mutual inductance between its 
heating coils and the case is large. In order 
to minimise M the heating coils are counter 
wound  so that their magnetic fields cancel 
one another and reduces M with the case of 
the dryer. 

Theoretically, the coupling between two 
coils is never perfect. If two coils are wound 
on a common iron core, the coefficient of 
coupling (K) can be considered as unity. For 
two air-core coils or two coils on separate iron 
cores, the coefficient of coupling depends on 
the distance between two coils and the angle 

       The unit of mutual inductance is henry (H).

  
 

henry =
volt

As
= ohm s⋅

 1 henry = 1 ohm.s
If corresponding to 1 A/s rate of change 

of current in the primary circuit, the induced 
emf produced in the secondary circuit is 1 volt, 
then the mutual inductance (M) of the two 
circuits is 1 H.

Example 12.9 : Mutual inductance of the 
wireless charging system.

In a wireless battery charger, the base 
unit can be imagined as a solenoid (coil 
B) of length l with N

B
 turns, carrying a 

current i
B
 and having a cross-section area 

A. The handle coil (coil H) has N
H
 turns 

and surrounds the base solenoid (coil B) 
completely. The base unit is designed to 
hold the handle of the charging unit. The 
handle has a cylindrical hole so that it fits 
loosely over a matching cylinder on the 
base unit. When the handle is placed on the 
base, the current flowing in coil B induces 
a current in the coil H. Thus, the induced 
current in the coil H is used to charge the 
battery housed in the handle.
The magnetic field due to a solenoid coil B,

 B µ ni µ
N

l
isolenoid

B� � �
�
�

�
�
�0 0� � � �

Magnetic flux through coil H caused by the 
magnetic field B

solenoid
 due to solenoid coil 

B,
 f H

 = B
solenoid 

A 
Flux linkage = N

Hf H
 

The mutual inductance (M) of the wireless 
charging system,

M
N

i
µ

N

l
A N

µ
N N

l
A

B AH
H� � �

�
�

�
�
�

� �
�
�

�
�
�

solenoid
0

0

� � .

�

B

B H    

Coefficient of coupling between two circuits: 
The coefficient of coupling (K) is a measure 

of the portion of flux that reaches coil 2 which is in 
the vicinity of coil 1. The greater is the coefficient  
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Use your brain power

Prove that the inductance of parallel wires 
of length l in the same circuit is given by 

L
l

� �
�
�

�
�
�

�
�

0 ln ( ) d / a , where a is the radius 

of wire and d is separation between wire 
axes.

between the axes of the two coils. When the 
coils are parallel (and in line), the coefficient 
K is maximum. If the axes of the coils are at 
right angles (and in line), K is minimum. If we 
want to prevent interaction between the coils, 
the coils should be oriented at right angle to 
each other and be kept as far apart as possible. 
K-value for radio coils (Radio frequency, 
intermediate frequency transformers) lies 
between 0.001 to 0.05.

12.15 Transformer: 
Mutual inductance, is the basis of all types 

of transformers. A transformer is a device used 
for changing the voltage of alternating current 
from low value to high value or vice versa. 
We can see the transformers by road sides in 
villages and cities.

Example12.10: Two coils having self 
inductances L

1
 = 75 mH and  L

2
 = 55 mH 

are coupled with each other. The coefficient 
of coupling (K) is 0.75 calculate the mutual 
inductance (M) of the two coils.

Solution : Given :

 L
1
 = 75 mH, L

2
 = 55 mH, K = 0.75.

 We know that,
 

 

M K L L

M

�

� �
�

1 2

0 75 75 55

48 18

      mH

 mH

.

.

Example 12.11: The mutual inductance 
(M) of the two coils is given as 1.5 H. The 
self inductances of the coils are :  

L
1
 =  5 H, L

2
 =  4 H. Find the coefficient of 

coupling beween the coils.      

Solution:
 Given  L

1
 = 5 H

       L
2
 = 4 H

         M = 1.5 H.
 

 

K
M

L L
� �

�

� �
1 2

1 5

5 4

0 335 33 55

.

. . %    

Fig. 12.14: Transformer consisting of primary 
and secondary coils wound on a soft iron core. 

Whenever the magnetic flux linked 
with a coil changes, an emf is induced in 
the neighbouring coil. In a transformer there 
are two coils, primary (p) and secondary (s) 
insulated from each other and wound on a soft 
iron core as shown in Fig. 12.14. Primary and 
secondary coils are called input and output 
coils respectively.

When an AC voltage is applied to the 
primary coil, the current through the coil 
changes sinusoidally causing similar changes 
in the magnetic flux through the core. As the 
changing magnetic flux is liked with both 
primary and secondary coils, emf is induced 
in each coil. The magnetic flux linked with the 
coil depends upon the number of turns in the 
coil.

Let f be the magnetic flux linked per 
turn with both the coils at an instant t. N

p
 and 

Ns be the number of turns in the primary and 
secondary coil respectively.  

Then at the instant t, the magnetic flux 
linked with primary coil f

p
 = Npf , and with 

secondary coil f
s
 = Ns f .  

The induced emf in primary and secondary 
coil will be

and 

  

e
t

N
t

e N
t

e

e

N

N

p
p

p

s s

s

p

s

p

d

d

d

d
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�

             --- (12.49)
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Do you know?

The ratio N
s
/N

p
 is called turn ratio 

(transformer ratio) of the transformer. Equation 
(12.49) is known as equation for transformer.

For an ideal transformer,
input power = Output power
e

p 
i
p
 = e

s
 i

s
 

e

e

i

i
s

p

p

s

=               --- (12.50)  

Combining Eqs. (12.49) and (12.50)

 e

e

N

N

i

i
s

p

s

p

p

s

= =             --- (12.51)

Case 1: When N
s
 > N

p
 

 then e
s
 > e

p
 (step up transformer)

and i
p 
> i

s
. Current in the primary coil is more 

than that in the secondary coil.
Case 2: When N

s
 < N

p
 

 then e
s
 < e

p
 (step down transformer)

and i
p 
< i

s
. Current in primary coil is less than 

that in secondary coil

Do you know?

Faraday's laws have found innumerable 
applications in modern world. Some 
common examples are: Electric Guitar 
hard drives, Smart cards, Microphones, etc. 
Hybrid cars: In modern days, the electric 
and hybrid vehicles take advantage of 
electromagnetic induction. The limitation 
of such vehicles is the life- time of a battery 
which is not long enough to get similar drive 
from a full tank of fuel/ petrol. In order to 
increase the amount of charge in the battery, 
the car acts as a generator whenever it is 
applying the brakes. At the time of braking, 
the frictional force between the tyres and the 
ground provides the necessary torque to the 
magnets inside the generator. Thus, the car 
takes advantage of back emf which helps 
in charging the battery and consequently 
leads to a longer drive. 

Internet my friend

Do you know?

https://en.wikipedia.org/wiki/
Electromagnetic_induction

1. The flux rule is the terminology that 
Feynman used to refer to the law relating 
magnetic flux to emf. (RP Feynman, 
Feynman lectures on Physics, Vol II)

2. The Faraday’s law relating flux to 
emf is referred to by Griffiths as the 
‘Universal flux rule’. Griffiths used 
the term ‘Faraday’s law to refer to 
what he called- Maxwell-Faraday 
equation. (DJ Griffiths, Introduction to 
electrodynamics 3rd Ed)

Accelerator in India:
Microtron Accelerator for electrons at 
Savitribai Phule Pune University

Picture credit: Dr. S.D. Dhole 
Department of Physics SPPU.

6 MeV Race - Track Microtron Accelerator
1 Electron Gun
2 Cavity
3 Pole pieces
4 Magnetic shield
5 Extractor
6 Extraction port
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Exercises

1. Choose the correct option.
 i)  A circular coil of 100 turns with a cross-

sectional area (A) of 1 m2 is kept with 
its plane perpendicular to the magnetic 
field (B) of 1 T. What is the magnetic 
flux linkage with the coil?

   (A) 1 Wb (B) 100 Wb 
  (C) 50 Wb  (D) 200 Wb
 ii)  A conductor rod of length (l) is moving 

with velocity (v) in a direction normal 
to a uniform magnetic field (B). What 
will be the magnitude of induced emf 
produced between the ends of the moving 
conductor?

  (A) BLv  (B) BLv2 

  (C) �
1

2
Blv  (D) �

2Bl

v
iii)  Two inductor coils with inductance 10 

mH and 20 mH are connected in series. 
What is the resultant inductance of the 
combination of the two coils?

  (A) 20 mH (B) 30 mH 

  (C) 10 mH (D) 
20

3
mH

 iv)  A current through a coil of self inductance 
10 mH increases from 0 to 1 A in 0.1 s. 
What is the induced emf in the coil? 

  (A) 0.1 V (B) 1 V 
  (C) 10 V  (D) 0.01 V 
 v)  What is the energy required to build up a 

current of 1 A in an inductor of 20 mH?          
  (A) 10 mJ (B) 20 mJ 
  (C) 20 J   (D) 10 J 
 2. Answer in brief.
 i)  What do you mean by electromagnetic 

induction? State Faraday’s law of 
induction.

 ii) State and explain Lenz’s law in the light 
of principle of conservation of energy.

 iii) What are eddy currents? State 
applications of eddy currents.

 iv) If the copper disc of a pendulum swings 
between the poles of a magnet, the 
pendulum comes to rest very quickly. 
Explain the reason. What happens to the 
mechanical energy of the pendulum?

 v) Explain why the inductance of two coils 
connected in parallel is less than the 
inductance of either coil.

 3. In a Faraday disc dynamo, a metal disc of 
radius R rotates with an angular velocity 
ω about an axis perpendicular to the 
plane of the disc and passing through its 
centre. The disc is placed in a magnetic 
field B acting perpendicular to the plane 
of the disc. Determine the induced emf 
between the rim and the axis of the disc.  
                  [Ans: 1

2
2( )B Rω ]

 4.  A horizontal wire 20 m long extending 
from east to west is falling with a 
velocity of 10 m/s normal to the Earth’s 
magnetic field of 0.5×10-4 T. What is the 
value of induced emf in the wire?

           [Ans: 10 mV]
 5. A metal disc is made to spin at 20 

revolutions per second about an axis 
passing through its centre and normal to 
its plane. The disc has a radius of 30 cm 
and spins in a uniform magnetic field of 
0.20 T, which is parallel to the axis of 
rotation. Calculate 

 (a) The area swept out per second by the 
radius of the disc,

 (b) The flux cut per second by a radius of the 
disc,

 (c) The induced emf in the disc.
[Ans: (a) 5.656 m2, (b) 1.130 Wb, (c) 1.130V]

 6.  A pair of adjacent coils has a mutual 
inductance of 1.5 H. If the current in 
one coil changes from 0 to 10 A in 0.2 s, 
what is the change of flux linkage with 
the other coil?

        [Ans: df = 15Wb, e = 75 V]
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 7.  A long solenoid has 1500 turns/m. A coil 
C having cross sectional area 25 cm2 and 
150 turns (N

c
) is  wound tightly around 

the centre of the solenoid. If a current 
of 3.0A flows through the solenoid, 
calculate :

 (a) the magnetic flux density at the centre of 
the solenoid, 

 (b) the flux linkage in the coil C,
 (c) the average emf induced in coil C if the 

direction of the current in the solenoid is 
reversed in a time of 0.5 s. 

  (µ0  = 4π	×	10-7 T.m/A)
           [Ans: (a) 5.66×10-3 T, (b) 2.12×10-3 Wb, 
          (c) 8.48×10-3 V]
 8.  A search coil having 2000 turns with 

area 1.5 cm2 is placed in a magnetic 
field of 0.60T. The coil is moved rapidly 
out of the field in a time of 0.2 second. 
Calculate the induced emf across the 
search coil.

             [Ans: 0.9 V]
 9.  An aircraft of wing span of 50 m flies 

horizontally in earth’s magnetic field of 
6×10-5 T at a speed of 400 m/s. Calculate 
the emf generated between the tips of the 
wings of the aircraft.

             [Ans: 1.2 V]
 10.  A stiff semi-circular wire of radius R is 

rotated in a uniform magnetic field B 
about an axis passing through its ends. If 
the frequency of rotation of the wire is f, 
calculate the amplitude of the alternating 
emf induced in the wire. 

                [Ans: e
0
=π2BR2f ]

 11.  Calculate the value of induced emf 
between the ends of an axle of a railway 
carriage 1.75 m long traveling on level 
ground with a uniform velocity of 50 
km per hour. The vertical component of 
Earth’s magnetic field (B

v
) is given to be 

5×10-5T. 
                 [Ans: 1.215 mV]
 12.  The value of mutual inductance of two 

coils is 10 mH. If the current in one of 

the coil changes from 5A to 1A in 0.2 s, 
calculate the value of emf induced in the 
other coil. 

              [Ans:  e = 2 V]
 13. An emf of 96.0 mV is induced in the 

windings of a coil when the current in 
a nearby coil is increasing at the rate of 
1.20 A/s. What is the mutual inductance 
(M) of the two coils? 

             [Ans: 80 mH]
 14. A long solenoid of length l, cross-

sectional area A and having N
1
 turns 

(primary coil)
,
 has a small coil of N

2 

turns (secondary coil) wound about its 
centre. Determine the Mutual inductance 
(M) of the two coils.                             

        [Ans: M =µ0  N
1
 N

2
A/l]

 15. The primary and secondary coil of a 
transformer each have an inductance of 
200 ×10-6H. The mutual inductance (M) 
between the windings is 4×10-6 H. What 
percentage of the flux from one coil 
reaches the other?    
                        [Ans:  2%]

 16. A toroidal ring, having 100 turns per 
cm of a thin wire is wound on a non-
magnetic metal rod of length 1 m and 
diameter 1 cm. If the permeability of 
bar is equal to that of free space (µ0 ), 
calculate the magnetic field inside the 
bar (B) when the current (i) circulating 
through the turns is 1 A. Also determine 
the self-inductance (L) of the coil.

     [Ans: 1.256×10-2T, 9.872 mH]
 17. A uniform magnetic field B(t), pointing 

upward fills a circular region of radius, s 
in horizontal plane. If B is changing with 
time, find the induced electric field.

                     [Ans: �� s
dB

dt
2 ]

  [Hint : Part of Maxwell's equation, 

applied to a time varying magnetic flux, 

leads us to the equation E l
d

dt
m

�� ���
� � �

�
� d

�

,where E
��

is the electric field induced 

when the magnetic flux changes at the 

rate of 
d

dt
mφ ]


