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Try this

Do you know?

10.1 Introduction: 
In this Chapter you will be studying how 

magnetic fields are produced by an electric 
current. Important foundation for further 
developments will also be laid down.

Hans Christian Oersted first discovered 
that magnetic field is produced by an electric 
current passing through a wire. Later, Gauss, 
Henry, Faraday and others showed that 
magnetic field is an important partner of 
electric field. Maxwell’s theoretical work 
highlighted the close relationship of electric 
and magnetic fields. This resulted into several 
practical applications in day today life, 
for example electrical motors, generators, 
communication systems and computers.  

In electrostatics, we have considered 
static charges and the force exerted by them on 
other charge or test charge. We now consider 
forces between charges in motion.

 

You have learnt in Xth Std. that if a 
magnetic needle is held in close proximity of 
a current carrying wire, it shows the direction 
of magnetic field circling around the wire. 
Imagine that a current carrying wire is grabbed 
with your right hand with the thumb pointing 
in the direction of the current, then your fingers 
curl around in the direction of the magnetic 
field (Fig. 10.2).

10. Magnetic Fields due to Electric Current

You must have noticed high tension power 
transmission lines, the power lines on the 
big tall steel towers. Strong magnetic fields 
are created by these lines. Care has to be 
taken to reduce the exposure levels to less 
than 0.5 milligauss (mG).

You can show that wires having 
currents passing through them, (a) in 
opposite directions repel and (b) in the 
same direction attract.

Hang two conducting wires from 
an insulating support. Connect them to 
a cell first as shown in Fig. 10.1 (a) and 
later as shown Fig. 10.1 (b), with the help 
of binding posts. You will notice that the 
wires in (a) repel each other and those in (b) 
come closer, i.e., they attract each other as 
soon as the current starts. The force in this 
experiment is certainly not of electrostatic 
origin, even through the current is due to the 
electrons flowing in the wires. The overall 
charge neutrality is maintained throughout 
the wire, hence the electrostatic forces are 
ruled out.

Fig. 10.1 (a)  Fig. 10.1 (b)  

Can you recall?

• Do you know that a magnetic field is 
produced around a current carrying wire?

• What is right hand rule?
• Can you suggest an experiment to draw 

magnetic field lines of the magnetic field 
around the current carrying wire?

• Do you know solenoid? Can you compare 
the magnetic field due to a current 
carrying solenoid with that due to a bar 
magnet?
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How can one account for the force on 
the neighbouring current carrying wire? The 
magnetic field due to current in the wire 1 at 
any point on wire 2 is directed into the plane 
of the paper. The electrons flow in a direction 
opposite to the conventional current. Then the 
wire 2 experiences a force F

��
 towards wire 1.  

10.2 Magnetic Force: 
From the above discussion and Fig. 10.3, 

you must have realized that the directions of 
v


, B
��

 and F
��

  follow a vector cross product 
relationship. Actually the magnetic force F

m
 

on an electron with a charge -e, moving with 
velocity v



 in a magnetic field B
��

 is 

Fm

��
 = -e( v



 × B
��

)               --- (10.1)
In general for a charge q, the magnetic 

force will be  

Fm

��
 = q( v



 × B
��

)               --- (10.2)  
If both electric field E

��
 and the magnetic 

field B
��

 are present, the net force on charge q 
moving with the velocity v



in

F
��

 = q[ E
��

+( v


× B
��

)]             --- (10.3)

= q E
��

+q( v


× B
��

) = F e

��
 + Fm

��
       --- (10.4)

Justification for this law can be found in 
experiments such as the one described in Fig. 
10.1 (a) and (b). The force described in Fig. 
(10.4) is known as Lorentz force. Here F e

��
is 

the force due to electric field and Fm

��
 is the 

force due to magnetic field.
There are interesting consequences of the 

Lorentz force law.
(i) If the velocity v



 of a charged particle is 
parallel to the magnetic field B

��
, the magnetic 

force is zero.

Fig. 10.4: The cross product is in the direction of 
the unit vector perpendicular to both v



and B
��

. 

Thus the vectors v


and F
��

are always 
perpendicular to each other. Hence. F

��
. v


= 0, 
for any magnetic field B

��
. Magnetic force Fm

��
  

is thus perpendicular to the displacement and 
hence the magnetic force never does any work 
on moving charges.

The magnetic forces may change the 
direction of motion of a charged particle but 
they can never affect the speed.

Interestingly, Eq. (10.2) leads to the 
definition of units of B

��
. From Eq. (10.2),

F
��

= q | v


× B
��

|  = qvB sin θ , --- (10.5)
where θ is the angle between v



and B
��

and  is unit vector in the direction of force .
 If the force F is 1 N acting on the 

charge of 1 C moving with a speed of 1m s-1 
perpendicular to B

��
, then we can define the 

unit of B.
... B

F

q
=

v
∴unit of B is 

N s

C m

.

.
.

Dimensionally,
[B] = [F/qv]

(ii) If the charge is stationary, v


=0, the 
force = 0, even if B

��
 ≠ 0.

From Eq. (10.4) it may be observed that 
the force on the charge due to electric field 
depends on the strength of the electric field 
and the magnitude of the charge. However, the 
magnetic force depends on the velocity of the 
charge and the cross product of the velocity 
vector v



 the magnetic field vector B
��

, and the 
charge q. 

Consider the vectors v


and B
��

with certain 
angle  between them. Then v



× B
��

 will be a 
vector  perpendicular to the plane containing 
the vectors v



and B
��

 (Fig. 10.4).

Fig. 10.2: Right 
hand thumb rule.

Fig. 10.3: Force on wire 
2 due to current in wire 1.

I
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Do you know?

Do you know?

Magnetic Resonance Imaging (MRI) 
technique used  for medical imaging 
requires a magnetic field with a strength of 
1.5 T and even upto 7 T. Nuclear Magnetic 
Resonance experiments require a magnetic 
field upto 14 T. Such high magnetic fields 
can be produced using superconducting coil 
electromagnet. On the other hand, Earth’s 
magnetic field on the surface of the Earth is 
about 3.6 ×10-5 T = 0.36 gauss.

10.3 Cyclotron Motion: 
In a magnetic field, a charged particle 

typically undergoes circular motion. Figure 
10.5 shows a uniform magnetic field directed 
perpendicularly into the plane  of the paper 
(parallel to the -ve z axis). 

Can you recall?

Electromagnetic crane: How does it work?

This SI unit is called tesla (T)
1 T = 104  gauss. Gauss is not an SI unit, 

but is used as a convenient unit. 

B F

R

x

y

Fig. 10.5: Charged 
particle  moving in 
a magnetic field.

Figure 10.5 shows a particle with charge 
q moving with a speed v, and a uniform 
magnetic field B

��
 is directed into the plane 

of the paper. According to the Lorentz force 
law, the magnetic force on the particle will 
act towards the centre of a circle of radius R, 
and this force will provide centripetal force to 
sustain a uniform circular motion.

Thus

q B
m

R
v

v
=

2

    --- (10.6)
∴mv = p = qBR   --- (10.7)
Equation (10.7) represents what is known 

as cyclotron formula. It describes the circular 
motion of a charged particle in a particle 
accelerator, the cyclotron. 

Let us look at a charged particle which 
is moving in a circle with a constant speed. 
This is uniform circular motion that you 
have studied earlier. Thus, there must be 
a net force acting on the particle, directed 
towards the centre of the circle. As the speed 
is constant, the force also must be constant, 
always perpendicular to the velocity of the 
particle at any given instant of time. Such a 
force is provided by the uniform magnetic 
field B

��
 perpendicular to the plane of the 

circle along which the charged particle 
moves.

Fig. (a) Fig. (b)

Fig. (c)

Example 10.1: A negatively charged 
particle travels with a velocity v



 through 
a uniform magnetic field B

��
 as  shown 

in the following figure, in three different 
situations. What is the direction of the 
magnetic force F

��
m due to the magnetic 

field, on the particle?

B

B

B

Solution: In  Fig. (a), the direction of the  
vector v



× B
��

 will be in the positive y 
direction. Hence F

��
m  will be in the positive 

y direction. In Fig. (b) v


× B
��

 will be in the 
positive x direction. Hence the force  Fm will 
be in the opposite direction. In Fig. (c) v



and 
B
��

are anti-parallel, the angle between them 
is 180° and because sin 180° = 0, F

��
m will be 

zero, i.e., no force acts on the particle.
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Remember this

10.3.1 Cyclotron Accelerator:
Particle accelerators have played a key 

role in providing high energy (MeV to GeV) 
particle beams useful in studying particle-
matter interactions and some of these are also 
useful in medical treatment of certain tumors/
diseases. 

The Cyclotron is a charged particle 
accelerator, accelerating charged particles to 
high energies. It was invented by Lawrence 
and Livingston in the year 1934 for the purpose 
of studying nuclear structure.

Both electric as well as magnetic fields 
are used in a Cyclotron, in combination. These 
are applied in directions perpendicular to each 
other and hence they are called crossed fields. 
The magnetic field puts the particle (ion) into 
circular path and a high frequency electric 
field accelerates it. Frequency of revolution 
of a charged particle is independent of its 
energy, in a magnetic field. This fact is used 
in this machine. Cyclotron consists of two 
semicircular disc-like metal chambers, D

1
 and  

D
2
, called the dees (Ds). Figure 10.6 shows a 

schematic diagram of a cyclotron. A uniform 
magnetic field B is applied perpendicular 
to plane of the Ds. This magnetic field is 
produced using an electromagnet producing a 
field upto 1.5 T. An alternating voltage upto 
10000 V at high frequency, 10 MH

z
 (f

a
), is 

applied between the two Ds. Positive ions are 
produced by a gas ionizing source kept at the 
point O in between the two Ds. The electric 
field provides acceleration to the charged 
particle (ion). 

Once the ion in emitted, it accelerates due 
to the negative voltage of a D and performs a 
semi circular motion within the D. Whenever 
the ion moves from one D to the other D, it 

accelerates due to the potential difference 
between the two Ds and again performs 
semicircular motion in the other D. Thus the 
ion is acted upon by the electric field every 
time it moves from one D to the other D. As the 
electric field is alternating, its sign is changed 
in accordance with the circular motion of the 
ion. Hence the ion is always accelerated, its 
energy increases and the radius of its circular 
path also increases, making the entire path a 
spiral (See Fig. 10.6).

Consider an ion source placed at P. An 
ion moves in a semi circular path in one of the 
Ds and reaches the gap between the two Ds 
in a time interval T/2, T being the period of 
a full revolution. Using the Cyclotron formula 
Eq. (10.7),

mv = qBR,
where q is the change on the ion.

� � �

�

T
R m R

qBR

m

qB

2 2

2

� �

�
v

          --- (10.8)

The frequency of revolution (Cyclotron 
frequency) is

Fig 10.6: Schematic diagram of a Cyclotron 

with the two Ds. A uniform magnetic field B
��

 is 
perpendicular to the plane of the paper, coming 
out. The ions are injected into the D at point P. 
An alternating voltage is supplied to the Ds. The 
entire assembly is placed in a vacuum chamber.

Field penetrating into the paper is 
represented as ⊗, while that coming out of 
the paper is shown by .  
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Internet my friend

Do you know?

f
T

qB

mc � �
1

2�
    --- (10.9) 

The frequency of the applied voltage (f
a
) 

between the two Ds is adjusted so that polarity 
of the two Ds is reversed as the ion arrives at 
the gap after completing one semi circle. This 
condition f

a
 = f

c
 is the resonance condition.

The ions do not experience any electric 
field while they travel within the D. Their 
kinetic energy increases by eV every time they 
cross over from one D to the other. Here V is 
the voltage difference across the gap. The ions 
move in circular path with successively larger 
and larger radius to a maximum radius at 
which they are deflected by a magnetic field so 
that they can be extracted through an exit slit.

From Eq. (10.7),

v exit=
qB

m

R ,

where R
exit

 is the radius of the path at the 
exit.

The kinetic energy of the ions/ protons 
will be 

K.E. =
1

2
 mv2 = 

q B R

m
exit

2 2 2

2
          --- (10.10)

Thus the final energy is proportional to the 
square of the radius of the outermost circular 
path (R

exit
). 

10.4 Helical Motion: 
So far it has been assumed that the charged 

particle moves in a plane perpendicular to 
magnetic field B

��
.  If such a particle has 

some component of  velocity parallel to B
��

, 
( v


/ / ) then it leads to helical motion. Since a 
component v



/ /  is parallel to B
��

, the magnetic 
force Fm

��
 will be:   

Particle accelerators are important 
for a variety of research purposes. Large 
accelerators are used in particle research. 
There have been several accelerators 
in India since 1953. The Department of 
Atomic Energy (DAE), Govt. of India, had 
taken initiative in setting up accelerators 
for research. Apart from ion accelerators, 
the DAE has developed and commissioned 
a 2 GeV electron accelerator which is a 
radiation source for research in science. This 
accelerator, 'Synchrotron', is fully functional 
at Raja Ramanna Centre for Advanced 
Technology, Indore. An electron accelerator, 
Microtron with electron energy 8-10 MeV 
is functioning at Physics Department, 
Savitribai Phule Pune University, Pune.

 (i) Existing and upcoming particle 
accelerators in India  http://www.
researchgate.net

 (ii) Search the internet for particle 
accelerators and get more information.

10.5 Magnetic Force on a Wire Carrying a 
Current: 

We have seen earlier the Lorentz force 
law (Eq. (10.4)). From this equation, we can 
obtain the force on a current carrying wire.
(i) Straight wire: 

Consider a straight wire of length L as 
shown in Fig. 10.8. An external magnetic field 
B
��

 is applied perpendicular to the wire, coming 
Fig. 10.7: Helical Motion of a charged particle 

in a magnetic field B
��

.

Fm

��
 = v


/ / × B
��

 =v.B sin (0°) = 0 --- (10.11)
Thus, v



/ /  will not be affected and the 
particle will move along the direction of  B

��
. 

At the same time the perpendicular component 
of the velocity ( v



⊥) leads to circular motion 
as stated above. As a result, the particle moves 
parallel to the field B

��
 while moving along a 

circular path perpendicular to B
��

. Thus the 
path becomes a helix (Fig. 10.7). 

z

x

y

B
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Fig. 10.9: Wire with arbitrary shape.

extended to a wire of arbitrary shape as shown 
in Fig. 10.9. 

Fig. 10.8 Electrons in the wire having drift 

velocity v


d  
 
experience a magnetic force Fm

��
 

upwards as the applied magnetic field lines 
come out of the plane of the paper.

out of the plane of the paper. Let a current 
I flow through the wire under an applied 
potential difference. If v



d
 is the drift velocity 

of conduction electrons in the part of length 
L of the wire, the charge q flowing across the 
plane pp in time t will be 

q = I t

q = 
IL

vd

               --- (10.12)

The magnetic force F
��

m
 
on this charge, 

according to Eq. (10.2), due to the applied 
magnetic field B

��
 is given by

 

F q B

IL
B n

IL B n

m v

      
v

v

      

� �� � ��

�

�

� �

� �

� �

( )

sin

. .sin

d

d

d �

90 ,
where  is a unit vector perpendicular to 

both B
��

 and  v


d , in the direction of F
��

m

F
��

m  = ILB            --- (10.13)
This is, therefore, the magnetic force 

acting on the portion of the straight wire 
having length L.  

If B
��

 is not perpendicular to the wire, then 
the above Eq. (10.13) takes the form

F
��

m
 = I L
��

× B
��

,              --- (10.14)
where L

��
 is the length vector directed 

along the portion of the wire of length L. 
(ii) Arbitrarily shaped wire: 

In the previous section we considered 
a straight wire. Equation (10.14) can be 

Consider a segment of infinitesimal length 
dl along the wire. If I in the current flowing, 
using Eq. (10.14), the magnetic force due to 
perpendicular magnetic field B

��
  (coming out 

of the plane of the paper) is given by
d F
��

m  = I d l


× B
��

              --- (10.15)
The force on the total length of wire is 

thus
F F I l B
�� �� � ��

m m� � �� �d d
             --- (10.16)

If B
��

is uniform over the whole wire,

F I l B
�� � ��

m � �
�

�
��� d

            --- (10.17)

Fm

I

Example 10.2: A particle of charge q 
follows a trajectory as shown in the figure. 
Obtain the type of the charge (positive or 
negatively charged). Obtain the momentum 
p of the particle in terms of B, L, s, q, s being 
the distance travelled by the particle.
Particle trajectory: A uniform magnetic 
field B

��
 is applied in the region pp', 

perpendicular to the plane of the paper, 
coming out of the plane of the paper.

Solution: B
��

 is coming out of the paper.
Since the particle moves upwards, there 
must be a force in that direction. The 
velocity is in the positive x direction.

Fm

L

I

Vde
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10.7 Torque on a Current Loop:  
It will be very interesting to apply the 

results of the above sections to a current 
carrying loop of a wire. You have learnt about 
an electric motor in Xth Std. An electric motor 
works on the principle you have studied in the 
preceding sections, i.e., the magnetic force on 
a current carrying wire due to a magnetic field. 
Figure 10.10 shows a current carrying loop 
(abcd) in a uniform magnetic field. There will, 
therefore, be the magnetic forces F

��
m  acting in 

opposite directions on the segments of the loop 
ab and cd. This results into rotation of the loop 
about its central axis.

Without going into the details of contact 
carbon brushes and external circuit, we can 
visualize the rotating action of a motor. 

10.6 Force on a Closed Circuit in a Magnetic 
Field B

��
:

Equation (10.17) can be extended to a closed 
wire circuit C

 
F I l B
�� � ��
�m � ��  d
C            --- (10.18)

Here, the integral is over the closed circuit C.
For uniform B

��
,

 
F I l B
�� � ��

�m �
�

�
�

�

�
���  d

C             
--- (10.19)

The term in the bracket in Eq. (10.19) is the 
sum of vectors along a closed circuit. Hence it 
must be zero.
  ∴ F

��
m = 0 ( B

��
 uniform)         --- (10.20)

∴ v


 × B
��

 is in -ve y direction. As the force 
is in +y direction, i.e., opposite, the charge 
must be negative. According to Eq (10.7),
magnitude of the momentum p = qBR. The 
trajectory is circular with radius R. 

Using upper triangle in the figure,
(R - S)2 + L2 = R2

∴ R = 
S L

S

2 2

2

+
 ; 

    p = qBR 

       = 
qB S L

S

2 2

2

�� �

Example 10.3: Consider a square loop of 
wire loaded with a glass bulb of mass m 
hanging vertically, suspended in air with 
its one part in a uniform magnetic field B

��
 

with its direction coming out of the plane of 
the paper (). Due to the current I flowing 
through the loop, there is a magnetic force 

in upward direction. Calculate the current 
I in the loop for which the magnetic force 
would be exactly balanced by the force on 
mass m due to gravity.
Solution: The current I in the loop with 
its part in the magnetic field B causes an 
upward force F

m
 in the horizontal part of 

the loop, given by
F

m
 = IBa,

where a is the length of one arm of the 
loop.

This force is balanced by the force due 
to gravity.

∴ F
m
 = I Ba = mg

∴ I
mg

Ba
=

For this current, the wire loop will 
hang in air.

a
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Fig. 10.10: A current loop in a magnetic field: 
principle of a motor.

F
��

4  = Il
2
 B sin (90-θ),           --- (10.21)

where θ is angle between normal ( ) 
to  the plane of loop and the direction of the 
magnetic field B

��
.

The force F
��

2  
on side 2 (da) is equal and 

opposite to F
��

4  and both act along the same 
line.

 
Thus, F

��
2  

and F
��

4  cancel out each other.
The magnitude of forces F

��
1  and F

��
3  on 

sides 3 (ab) and 1 (cd) is Il
1
 B sin 90° i.e., Il

1
 

B. These two forces do not act along the same 
line and hence they produce a net torque. This 
torque results into rotation of the loop so that 
the loop is perpendicular to the direction of  
B
��

, the magnetic field. The moment arm is  

 
1

2
(l

2
 sin θ ) about the central axis of the loop.

The torque τ due to forces F
��

1  and F
��

3  becomes

τ = (Il
1
 B 

1

2
 l

2
 sin θ ) + (Il

1
 B 

1

2
 l

2
 sin θ )

   = Il
1
  l

2
 B sin θ              --- (10.22)

If the current carrying loop is made up of 
multiple turns N, in the form of a flat coil, the 
total torque becomes

τ' = Nτ = N I l
1
 l

2
 B sin θ

τ' = (NIA)B sin θ            --- (10.23)
A = l

1
l
2

Here A is the area enclosed by the loop. 
The above equation holds good for all flat 
(planar) coils irrespective of their shape, in a 
uniform magnetic field. 

The current carrying wire loop is of 

rectangular shape and is placed in the uniform 

magnetic field in such a way that the segments 

ab and cd of the loop are perpendicular to the 

field B
��

. We can use the Eq. (10.14) to find out 

the direction of the magnetic force F
��

m . 

Let us now look at the action of rotation 

in detail. For this purpose, consider Fig. 10.11, 

showing the rectangular loop abcd placed in a 

uniform magnetic field B
��

 such that the sides 

ab and cd are perpendicular to the magnetic 

field B
��

 but the sides bc and da are not.  

Fm

Fm

Fig. 10.11: Loop abcd placed in a uniform 
magnetic field. Electric connections are not 
shown.

Now we can calculate the net force 
and the net torque on the loop in a situation 
depicted in Fig. 10.11 and Fig. 10.12. Let us 
obtain the forces on all sides of the loop. The 
force F

��
4

 
on side 4 (bc) are 

Fig. 10.12 : Side view of the loop abcd at an 
angle θ.

F3

B

Fm

(90- )
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Can you recall?

Larger the current is, larger is the deflection  
and larger is the torque due to the spring. If the 
deflection is f, the restoring torque due to the 
spring is equal to K f where K is the torsional 
constant of the spring.

Thus, K f = NIAB,
and the deflection f = 

NAB

K
�
�
�

�
�
�  I --- (10.24)

Thus the deflection f is proportional to 
the current I. Modern instruments use digital 
ammeters and voltmeters and do not use such 
a moving coil galvanometer. 
10.8 Magnetic Dipole Moment: 

In the preceding section, we have dealt 
with a current carrying coil. This current 
carrying coil can be described with a vector µ

��
, 

its magnetic dipole moment. If  is a unit vector 
normal to the plane of the coil, the direction of 
µ
��

  is the direction of  shown in Fig. 10.12 (b). 
We can then define the magnitude of µ

��
 as

 µ = NIA,             --- (10.25)
where N is the number of turns of the coil, I 
the current passing through the coil, A the area 
enclosed by each turn of the coil.

If held in uniform magnetic field B
��

, the 
torque responsible for the rotation of the coil, 
according to Eq. (10.23) will be
τ = µB sinθ ,

How does the coil in a motor rotate by a full 
rotation? In a motor, we require continuous 
rotation of the current carrying coil. As the 
plane of the coil tends to become parallel 
to the magnetic field B

��
, the current in the 

coil is reversed externally. Referring to 
Fig. 10.10, the segment ab occupies the 
position cd. At this position of rotation, the 
current is reversed. Instead of from b to a, 
it flows from a to b, force F

��
m  continues 

to act in the same direction so that the 
torque continues to rotate the coil. The 
reversal of the current is achieved by using 
a commutator which connects the wires 
of the power supply to the coil via carbon 
brush contacts.  

10.7.1 Moving Coil Galvanometer: 
A current in a circuit or a voltage of a 

battery can be measured in terms of a torque 
exerted by a magnetic field on a current 
carrying coil. Analog voltmeters and ammeters 
work on this principle. Figure 10.13 shows a 
cross sectional diagram of a galvanometer.

It consists of a coil of several turns 
mounted (suspended or pivoted) in such a way 
that it can freely rotate about a fixed axis, in 
a radial uniform magnetic field. A soft iron 
cylindrical core makes the field radial and 
strong. The coil rotates due to a torque acting 
on it as the current flows through it. This torque 
is given by (Eq. 10.23)

τ = N I A.B, where A is the area of the 
coil, B the strength of the magnetic field, N the 
number of turns of the coil and I the current in 
the coil. Here, sin θ  = 1 as the field is radial 
(plane of the coil will always be parallel to 
the field). However, this torque is counter 
balanced by a torque due to a spring fitted as 
shown in the Fig. 10.13. 

This counter torque balances the magnetic 
torque, so that a fixed steady current I in the 
coil produces a steady angular deflection f . 

Fig. 10.13: Moving coil galvanometer.
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θ being an angle between µ
��

 (i.e., ) and B
��

.
 ∴ τ



 = µ
��

 × B
��

             --- (10.26)
You have learnt in XIth Std. about the torque on 
an electric dipole exerted by an electric field, 

E
��

.
 ∴ τ



 = P
��

 × E
��

           --- (10.27)
Here P

��
 is the electric dipole moment.

The two expression Eq. (10.26) and Eq. (10.27) 
are analogous to each other. 

10.10 Magnetic Field due to a Current : 
Biot-Savart Law:

In sections 10.1 and 10.2, we have seen 
that magnetic field is produced by a current 
carrying wire. Can we calculate this magnetic 
field? Fig. 10.14: Minimum and maximum magnetic 

potential energy of a magnetic dipole µ  in a 
magnetic field B

��
.

Figure 10.15: A current  carrying wire of 
arbitrary shape, carrying a current I. The current 
in the differential length element dl produces 

differential magnetic field d B
��

 at a point P at a 

distance r


 from the element dl. The  indicates  

that d B
��

 is directed into the plane of the paper.

10.9 Magnetic Potential Energy of a Dipole: 
A magnetic dipole freely suspended in a 

magnetic field possesses magnetic potential 
energy because of its orientation in the field.

You have learnt about an electric dipole 
in Chapter 8. Electrical Potential energy is 
associated with an electric dipole on account 
of its orientation in an electric field. It has been 
shown that the potential energy U of an electric  
dipole P

��
 in an electric field E

��
 is given by  

U = - P
��

. E
��

            --- (10.28)
Analogously, the magnetic potential 

energy of a magnetic dipole µ
��

 in a magnetic 
field B

��
 is given by

U = - µ
��

. B
��

            --- (10.29)
= - µB.cos θ ,            --- (10.30)
where θ  is the angle between µ

��
 and B

��
.

Case (i) : If θ  = 0, U = - µ B.cos(0°) = - µB
This is the minimum potential energy of a 

magnetic dipole in a magnetic field i.e., when 
   and   are parallel to each other.
Case (ii) : If   = 180°, U = - µ.B.cos (180°) 
= µB.

This is the maximum potential energy 
of a magnetic dipole in a magnetic field, i.e., 
when  and  are antiparallel to each other.

Figure 10.15 shows an arbitrarily shaped 
wire carrying a current I. dl is a length element 
along the wire. The current in this element is 
in the direction of the length vector dl

���
. Let 

us calculate the differential field d B
��

 at the 
point P, produced by the current I through the 
length element dl. Net magnetic field at the 
point P can be obtained by superimposition 
of magnetic fields d B

��
 at that point due to 

different length elements along the wire. This 
can be done by integrating i.e., summing up 
of magnetic fields d B

��
 from these length 

elements. Experimentally, the magnetic fields 
d B
��

 produced by current I in the length element 
d l


 is

B Bµµ

Case (i) Case (ii)

Example 10.4: A circular coil of conducting 
wire has 500 turns and an area 1.26×10-4 m2 
is enclosed by the coil. A current 100 µA 
is passed through the coil. Calculate the 
magnetic moment of the coil.
Solution: 

µ = NIA
   = 500 × 100 × 10-6 × 1.26 × 10-4 Am2

   = 630 × 10-8 = 6.3 × 10-6 Am2 or J/T.

dB

I
dl

I r


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 d
d

B
I l

r
�
�
�

�0
24

sin             --- (10.31)

Here, θ  is the angle between the directions 
of dl
���

and r


. µ
0
 is called permeability constant 

given by 
µ

0 
= 4π × 10-7 T. m/A              --- (10.32)

    ≈ 1.26 × 10-6 T. m/A            --- (10.33)
The direction of d B

��
 is dictated by the 

cross product dl
���

× r


. Vectorially,

d
d

B
I l r

r

�� � �
�

��
�
0

34
             --- (10.34)

Equation (10.31) and Eq. (10.34) are 
known as the Biot and Savart law. This inverse 
square law is experimentally deduced. It may 
be noted that this is still inverse square law 
as r


 appears in the numerator and r3 in the 
denominator. Using the Biot-Savart law, we 
can calculate the magnetic field produced by 
various distributions of currents as discussed 
below:
(i) Current in a straight, long wire:

You are aware of the right hand thumb 
rule which gives the direction of the magnetic 
field produced by a current flowing in a wire. 
Figure 10.16 shows a long wire of length l. 
We want to calculate magnetic field B

��
 at a 

point P which is at a perpendicular distance R 
from the wire. Let us consider a current length 
element of infinitesimal length d l



, of the wire. 
Let I be the current passing through the wire, 
situated at a distance r from the point P. The 
product I. dl

���
 is called current element. I  is the 

current passing through the wire. Using Eq. 
(10.31), the magnetic field d B

��
 produced at P 

due to the current length element I. dl
���

 becomes 

d
d

B
I l

r

�� �
�
�
�

�0
24

sin
           --- (10.35) 

Here, the direction of d B
��

 is given by the 
cross product d l



 × r


 (see Eq. (10.34)), hence 
into the plane of the paper.
(a) We now calculate the magnitude of 

the magnetic field produced at P by all 
current length elements in the upper half 
of the infinitely long wire. We do this 
by integrating Eq. (10.35) from zero to 
infinity.

(b) Let us now calculate the magnitude of the 
magnetic field produced at P by a similar 
current length element in the lower half 
of the wire. By symmetry, its magnitude 
and direction is the same as that due to the 
current length element in the upper half 
of the wire. The magnetic field is directed 
into the plane of the paper.
Adding both the contributions  (a) and (b), 

the total magnetic field B at point P is

       B B
I l

r
� �

� �

� �2 2
40

0
2

0

d
d�

�
�sin

  --- (10.36)

But r l R� �2 2

and sinθ  = sin (π-θ )= 
R

r

R

l R
�

�2 2
 --(10.37)
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I
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�
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�
�

0
2

0

2

1

2
            --- (10.38)

From Eq. (10.38), this is the magnetic 
field at a point P at a perpendicular distance 
R from the infinitely straight wire. This is due 
to both the upper semi-infinite part and the 
lower semi-infinite part of the wire. Thus, the 
magnetic field B due to semi-infinite straight 
wire is

 � �B
I

R

�
�

0

4
              --- (10.39)

In Eq. (10.38) and Eq. (10.39), the field 
is inversely proportional to the distance from 
the wire.

Fig. 10.16: The magnetic field d B
��

 at P going 
into the plane of the paper, due to current I 
through the wire.

R
I

r

θ
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To solve I
dl

l R
�

�� �
�

� 2 2 3 2
0

/ ,

we substitute l = R tan θ ; dl = r sec2θ  dθ  
Now the limits of the integral also change.
l = 0, tan θ  = 0 ∴ θ  = 0 
l = ∞, tan θ  = ∞ ∴ θ  = π/2

� �
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�

�I
R d
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d
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Fig. 10.17 : Two long parallel wires, distance d 
apart.

For infinitely long wires, this force will be 
infinite!

Force per unit length of the wire will be

 
� �F

I I

d

�
�
0 1 2

2             
--- (10.42)

If the currents I
1
 and I

2
 are antiparallel, 

the force will be repulsive. 
Let us consider a section of length L of 

the  wire 2. The force on this section due to the 
current in wire 1 is given by

F = I
2
 B.L             --- (10.43)

� �
�
�

0 1 2
212

I I

d
L F              --- (10.44)

We will denote this force by F
21

 i.e., the 
force on a section of length L of wire 2 due to  
the current in wire 1. Similarly, the force on 
a section of the same length L of wire 1 will 
experience a force due to the current in wire 2. 

This force we denote as F
12

, which is 
equal and opposite to F

21
 

∴ F
21

 = - F
12

           --- (10.44 A)
The force of attraction per unit length is 

then, from Eq. (10.44),

 
F

L

I I

d
�
�
�
0 1 2

2
             --- (10.45)

If the currents I
1
 and I

2
 are flowing in 

opposite directions, then there is a force of 
repulsion on the sector of length L of each of 
the wires. The magnitude of the repulsive force 
per unit length of the wire is also given by

F

L

I I

d
�
�
�
0 1 2

2
             --- (10.46)

We can summarize these result as: Parallel 
currents attract, antiparallel currents repel. 

10.11 Force of Attraction between two Long 
Parallel Wires:

As an application of the result obtained 
in the last section, let us obtain the force of 
attraction between two long, parallel wires 
separated by a distance d (Fig. 10.17). Let the 
currents in the two wires be I

1
 and I

2
. 

The magnetic field at the second wire due 
to the current I

1
 in the first one, according to 

Eq. (10.38),

 B
I

d
�
�
�
0 1

2
             --- (10.40)

By the right hand rule, the direction of this 
field is into the plane of the paper. We now 
apply the Lorentz Force law. Accordingly, the 
force  on the wire 2, because of the current I

2
 

and the magnetic field B due to current in wire 
1, is given by (Eq. 10.13).

F I
I

d
dl� �

�
�

�
�
� �2

0 1

2

�
�             --- (10.41)

The direction of this force is towards wire 
1, i.e., it will be attractive force.

The ampere: Definition of the unit of 
electrical current ampere, was adopted a 
few decades ago. Consider two parallel 
conducting wires having infinite length, 
have a separation of 1 m, and are placed 
in vacuum. The constant current through 
these wires producing a force on each other 
of magnitude 2×10-7 N per meter of their 
length, is 1 ampere (A). 

I
1

I
2
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Use your brain power

Fig. 10.18 : Current carrying wire of a shape of 
circular arc. The length element d l



 is always 

perpendicular to r


.

10.12 Magnetic Field Produced by a Current 
in a Circular Arc of a Wire: 

After considering straight parallel wires 
let us obtain the magnetic field at a point 
produced by a current in a circular arc of a 
wire. Figure 10.18 depicts a circular arc of a 
wire (AB), carrying a current I. We can first 
obtain the magnetic field produced by one 
current-length element of the arc and then 
integrate over the entire arc length. The circular 
arc AB subtends an angle θ at the centre O of 
the circle of which the arc is a part, and r is its 
radius. Using Biot-Savart law Eq. (10.34), the 
magnetic field produced at O is:

 d B
I dl r

r

�� � �
�

��
�
0

34

.
  

 

dB I
dl r

r
Idl

r

�
� � �

�

�
�
�
�

0
3

0
2

4

90

4

.
sin

      
     --- (10.47)

is indicated by the curling fingers. Thus, the 
direction of each of the dB is into the plane of 
the paper. The total field at O is therefore,

B dB I
dl

r

I
r

r
d

I

r

A

B

� �

� �

� �

�

�
�

�
�

�
�
�

�
�

0
2

0
2

0

0

4

4 4
     ,           --- (10.48)

where the angle θ is in radians.
Magnetic field at the centre of a full circle of 
a wire, carrying a current I : 
For a full circular wire carrying a current I, the 
magnetic field at the centre of the circle, using 
Eq. (10.48),

 

B
I

r

B
I

r

�

�

�
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�

�

0

0

4
2

2
            --- (10.49) 

We have seen that in case of parallel 
conducting wires carrying steady currents, 
the Biot-Savart law and the Lorentz force 
law give the result in Eq. (10.44A): 
  F

21
 = - F

12

Is this consistent with Newton's third law? 
(Consider for example the gravitational 
pull experienced by the Earth towards the 
Sun and that by the Sun towards the Earth.)

It is a straight forward evaluation from 
Eq. (10.45).
F

L

I I

d
�
�
�
0 1 2

2
�
�
0

4
=10-7 Wb/m; d = 1 m

For I
1
 = I

2
 = 1A, 

F

L
= 2×10-7 N per meter.

Here it is assumed that the wire diameter 
is very much less than 1 m.   

I

r
dB

d

Equation (10.47) gives the magnitude of 
the field. The direction of the field is given 
by the right hand rule. Aligning the thumb in 
the direction of the current, the field direction 

Example 10.5: A wire has 2 straight 
sections and one arc as shown in the figure. 
Determine the direction and magnitude of 
the magnetic field produced at the centre 
O of the semicircle by the three sections 
individually and the total.
Solution: We apply the Biot-Savart law to 
the 3 sections of the wire.
For the section (i) and (iii) the angle between 
the current-length elements I d l



 and R
��

 is 
180° and 0°, respectively. 

� �
�
� �

�
dB

Idl

R

Idl

R

�
�

�
�

0
2

0
24

180
0

4

0sin( ) sin( )

For section (ii), d l


 is always perpendicular 
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Fig. 10.19: Magnetic field on the axis of a 
circular current loop of radius R. 

the element d l


 on the loop. Using Biot-Savart 
law, the magnitude of the magnetic field dB is 
given by

  dB I
dl r

r
�

��
�
0

34

 

           --- (10.50) 

We have r2 = R2 + z2 
Any element d l



 will always be perpendicular 
to the vector r



 from the element to the 
point P. The element d l



 is in the x-y plane, 
while the vector r



 is in the y-z plane. Hence  
d l


× r


 = dl.r

          ∴ dB I
dl

r
�
�
�
0

24             --- (10.51)

     �
�

�
�
0

2 24
I

dl

R(z )
             --- (10.52)

The  direction of d B
��

is perpendicular to 
the plane formed by d l



 and r


. Its z component 
is dB

z
 and the component perpendicular to 

the z-axis is dB⊥. The components dB⊥ when 
summed over, yield zero as they cancel out 
due to symmetry. This can be easily seen from 
the diametrically opposite element d l



 giving 
dB⊥ opposite to that due to d l



. Hence, only z 
component remains.
∴ The net contribution along the z axis is 
obtained by integrating dB

z
 = dB cosθ  over 

the entire loop. 
From Fig. 10.19,
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/ - (10.53)

This is the magnitude of the magnetic field due 
to current I in the loop of radius R, on a point 
at P on the z axis of the loop.  

10.13: Axial Magnetic Field Produced by 
Current in a Circular Loop: 

Here we shall obtain the magnetic field, 
due to current in a circular loop, at different 
points along its axis. We assume that the 
current is steady.

to R
��

.
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Integrating, B
I

R
dl

I

R
R
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I

R

�0

4

∴ For the sections (i), and (iii), B = 0, for 

section (ii) B = 
µ0

4

I

R  at the point O.

Total B = 0 + 
µ0

4

I

R  + 0 = 
µ0

4

I

R ;  Direction 
of B is coming out of the plane of the paper.

R
II

R

i dl

dl

y

z

z

x

r

dB

dB
dB

Figure 10.19 shows a circular loop of a 
wire carrying a current I. The loop itself is in 
the x-y plane with its centre at the origin O. The 
radius of the loop, carrying a steady current I, 
is R. We need to calculate the magnetic field 
at a point P on the Z-axis, at a distance r



 from 
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Use your brain power

Do you know?

Can you recall?

Fig. 10.20: Magnetic field lines for a current loop.

10.14 Magnetic Lines for a Current Loop: 
We know that the magnetic field at a 

point P on the axis is given by Eq. (10.53) as 

 
B

IR

Rz � �
�0
2 2 3 2

2

2(z ) /

So far we have used the constant µ
0
 

everywhere. This means in each such case, 
we have carried out the evaluation in free 
space (vacuum). µ0 is the permeability of 
free space. 

Circular loop carrying a current as a 
magnetic dipole: The behaviour of the 
magnetic field due to a circular current loop, 
at large distances is very similar to that due 
to electric field of an electric dipole. From the 
above equation for B

z
, at large distance z from 

the loop along its axis,
 z >>R

 ∴ B
IR

zz �
�0

2

32
 

The area of the loop is A = πR2

 � �B
IA

zz

�
�
0

32
 at z >> R        --- (10.56)  

As a special case, the field at the centre of 
the loop is obtained from the above equation 
by letting z = 0: 
 B

I

R0
0

2
�
�              --- (10.54)

For a coil of N turns, 
 B

NI

R
�
�0

2
            --- (10.55)

The magnetic field lines from a circular 
loop are depicted in Fig. 10.20. The direction 
of the field is as per the right hand thumb rule: 
Curl the palm of your right hand along the 
circular wire with the fingers in the direction 
of the current. The stretched right hand thumb 
then gives the direction of the magnetic field 
(Fig. 10.21). Thus, the upper part of the loop 
seen in Fig. 10.20 may be regarded as the 
North pole and the lower part as the South pole 
of a bar magnet.

Fig. 10.21: The right hand thumb rule.

In XIth Std you have noted the analogy 
between the electrostatic quantities and 
magnetostatic quantities: The electrostatic 
analogue 

I

I

The magnetic moment m
��

 of a circular loop is 
defined as m

��
 = I A
��

, where A
��

 is a vector of 
magnitude A and direction perpendicular to A.
Using Eq. (10.56),
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             --- (10.57)

Note that B Z

��
and m
��

 are in the same direction, 
perpendicular to the plane of the loop.
Using electrostatic analogue,

 E
p

z

�� ��
�

2

4 0
3��

,

which is the electric field at an axial point of 
an electric dipole. 

• Using electrostatic analogue, obtain the 

magnetic field at a distance x on the 

perpendicular bisector of a magnetic dipole 

m
��

. For x>>R, verify that  B
m

x

�� ��
�
�
�
0

34
• What is the fundamental difference between 

an electric dipole and a magnetic dipole? 
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in the plane of the paper even if its direction is 
unknown. The length element on the Amperian 
loop is d l



 (in the plane of the paper). 
B
��

.d l


= Bdl cos θ , and from Eq. (10.58),

B dl B dl I
�� �
� �. cos� �� �� �0       --- (10.59)  

10.15 Ampere's Law: 
We know that if a distribution of charges 

is given, one can obtain the electric field by 
using the inverse square law. If the distribution 
of charges is planar, or has spherical or 
cylindrical symmetry, then with the help 
of Gauss' Law we can find the net electric 
field  with relative ease. On similar note, we 
can obtain the magnetic field produced by a 
distribution of currents (not charges!).

Again, if the distribution of currents has 
some symmetry, then we can use Ampere's 
law to find out the magnetic field with fair 
ease, as you will see below. You have studied 
Biot-Savart law and its consequences. The 
Ampere's law can be derived from Biot-Savart 
Law. The law is due to Andre' Marie Ampere 
(1775-1836) after whom the SI unit of current 
is named.

The Ampere's law is:
B ds I
�� �
� . �� �0             --- (10.58)

The sign  indicates
∫  that the integral 

is to be evaluated over a closed loop called 
Amperian loop. The current I on the right 
hand side is the net current encircled by the 
Amperian loop. In an example shown in Fig. 
10.22, cross-sections of four long straight wires 
carrying currents I

1
, I

2
, I

3
, I

4
 into or out of the 

plane of the paper are shown. An Amperian 
loop is drawn to encircle 3 of the current wires 
and not the fourth one. As the current goes 
perpendicular to the plane of the paper, B

��
 is 

Fig. 10.22: Amperian Loop.

Example 10.6: Consider a closely wound 
1000 turn coil, having radius of 1m. If a 
current of 10A passes through the coil, what 
will be the magnitude of the magnetic field 
at the centre?
Solution: N = 1000, R = 100 cm, I = 10A. 
Using Eq. (10.50),
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Thus the integration is over the product 
of length dl of the Amperian loop and the 
component of the magnetic field Bcosθ , 
tangent to the loop.

We use the curled-palm right hand rule 
so that we can mark the currents with positive 
sign or negative sign. Curl the right hand palm 
along the Amperian loop, with fingers in the 
direction of integration. Then a current in the 
direction of the stretched thumb is assigned 
positive sign and the current in the direction 
opposite to the stretched thumb is assigned 
negative sign.

For the distribution of currents as shown 
in Fig. 10.22, I

1
 and I

2
 are coming out of the 

paper, () parallel to the stretched thumb. 
Hence these are positive. I

3
, on the other hand 

is going into the plane of the paper (). Thus, 
it is negative.

� � � �� B dl I I Icos ( )� �0 1 2 3


  --- (10.60)

The Current I
4
 is not within the Amperian 

loop. 
As the integration is over a full loop, 

contributions of I
4
 to B cancel out.

Equation (10.58) represents Ampere's law 
or Ampere's circuital law.

An as application of Ampere's law let us 
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Fig. 10.23: Long straight current carrying wire. 

consider a long straight wire carrying a current  
I (Fig. 10.23). B

��
 and d l



 are tangential to the 
Amperian loop which is a circle here.

∴ B
��

.d l


 = B dl = B.rdθ
The field B

��
 at a distance r from the wire 

is given by

B
I

r
�
�
�
0

2
             --- (10.61)
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02
    --- (10.62)

This is in agreement with the Ampere's 
law. Equation (10.61) shows that the magnetic 
field B of an infinitely long wire is proportional 
to the current I but inversely proportional  to 
the distance from the wire, as seen earlier.

10.16 Magnetic Field of a Solenoid and a 
Toroid: (a) Solenoid:  

You have learnt about a solenoid in  
XIth Std. qualitatively. Consider a long, closely 
wound helical coil of a conducting wire. We 
assume that the diameter of the coil is much 
smaller than its length. Figure 10.24 shows 
the schematic diagram of a cross section of 
a current carrying solenoid. The density of 
the magnetic field lines along the axis of the 
solenoid within the solenoid and at a certain 
distance away from the wire, is uniform. Hence 
the magnetic field B is parallel to the axis 
of the solenoid. The lines are widely spaced 
outside the solenoid and hence the magnetic 
field is weak there.

For a real solenoid of finite length, 
magnetic field is uniform and has a good 

You have studied Gauss' law in 
electrostatics as well as magnetism. The 
above example shows that if the distribution 
of currents has a high degree of symmetry 
such as cylindrical symmetry in case of a 
long wire, then the magnetic field for the 
given distribution of currents can be easily 
calculated. It will then become unnecessary to 
solve the integrals which appear in the Biot-
Savart law.

We note here that the Biot-Savart law 
plays a role in magnetostatics that Coulomb's 
law plays in electrostatics. On parallel lines, 
we  can say that what the role Gauss' law 
plays in electrostatics, plays the Ampere's law 
in magnetostatics.

Example 10.7: A coaxial cable consists of 
a central conducting core wire of radius a 
and a coaxial cylindrical outer conductor 
of radius b (see figure). The two conductors 
carry an equal current I in opposite directions 
in and out of the plane of the paper. What 
will be the magnitude of the magnetic field 
B for (i) a < r <b and (ii) b<r ? What will be 
its direction? 

r

r

b

a

Solution: By symmetry, 
B will be tangent to 
any circle centred on 
the central conductor. 
In order to apply the 

Ampere's law, consider a circle of radius r 
such that a < r < b.

 

� �

� �

� � � �

� B dl I

B r I

B
I

r
a r b

�� �
� .

.

,

�

� �
�
�

0

0

0

2

2
  

For r>b,
� � � �

� � �
� B dl I I

B r r b

�� �
� . ( )

.

�

�
0 0

2 0         

 (... The two current 
    are equal and 
    opposite)
(Try to solve this using Biot-Savart Law !)

B d

d
r
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Do you know?

In an ideal solenoid, the length is 
infinite and the wire has a square cross 
section and is wound very closely (with a 
layer of insulating material in between these 
enamelled wires). The magnetic field inside 
the coil is then uniform and along the axis of 
the solenoid. Outside the solenoid, it is zero. 

Fig. 10.25: Ampere's law applied to a part of a 
long ideal solenoid: The dots (.) show that the 
current is coming out of the plane of the paper 
and the crosses (x) show that the current is going 
into the plane of the paper, both in the coil of 
square cross section wire. 

strength at the centre and comparatively weak 
at the outside of the coil. 

Fig. 10.24: Schematic diagram of a cross 
section of a current carrying Solenoid. 
Let us consider an ideal solenoid as shown 

in Fig. 10.25.
For the application of the Ampere's law, 

an Amperian loop is drawn as shown in Fig. 
10.25. From Eq. (10.58),

  B dl I
�� �
�� �. �0

Over the rectangular loop abcd, the above 
integral takes the form

B dl B dl B dl B dl I
a

b

b

c

c

d

d

a�� � �� � �� � �� �
� � � � � � � �� � � � �0

  
             --- (10.63)

In the above equation, I is the net current 
encircled by the loop.

∴ B.L + 0 + 0 + 0 = µ0I            --- (10.64)
The second and fourth integrals are 

zero because B
��

 and d l


 are perpendicular to 
each other. The third integral is zero because 
outside the solenoid, B = 0. We can obtain the 
net current I.

If  the number of turns is n per unit length 
of the solenoid and the current flowing through 
the wire is i, then the net current coming out of 
the plane of the paper is 

I = nLi
∴From Eq. (10.64),

BL = µ0nLi
∴B = µ0ni           --- (10.65) 

Although the above result for B is obtained 
for an ideal solenoid, it is also valid for a 
realistic solenoid, particularly when applied to 
points in the middle of it but certainly not to 
points near the ends. Thus, a solenoid can be 
designed for a specific value of B by a choice 
of i and n. 
(b) Toroid: A toroid is a solenoid of finite 
length bent into a hollow circular tube like 
structure similar to a pressurized rubber tube 
inside a tyre of vehicle. Schematic of a cross 
section of a toroid is shown in Fig. 10.26. By 
applying Ampere's law and taking into account 
the symmetry of this structure, we can obtain 
the magnetic field along the central axis of the 
tube in terms of the current. We construct a 
circular Amperian loop along the central axis 
of the tube, as shown in the figure.

The magnetic field lines are concentric 
circles in the toroid. The direction of the field is 
dictated by the direction of the current i in the 
coil around the toroid. Again, by the Ampere's 
law,

B dl I
�� �
� � �� �0 ,
where I is the net current encircled by the 

loop.
B.2πR = µ0iN             --- (10.66)
Here N is the total number of turns in the 

toriod as the integration is over the full length 
of the loop, 2πR.

� �B
iN

R

�
�
0

2
            --- (10.67)
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Use your brain power

Fig. 10.26: Amperian loop along the central 
axis of the toroid. 

By making different choices for the Amperian 
loop, show that B = 0 for points outside an 
ideal toroid. What must be ideal toroid?

From the Eq. (10.67), B is inversely 
proportional to R. Thus, unlike the solenoid, 
magnetic field is not constant over the cross 
section of the toroid. 

Example 10.8: A solenoid of length 25 cm 
has inner radius of 1 cm and is made up of 
250 turns of copper wire. For a current of 
3A in it, what will be the magnitude of the 
magnetic field inside the solenoid?
Solution: We use Eq. (10.65)

B = µ0 n i

B = 4π ×10-7 × 
250

0 25
3

.
×

B = 4π ×10-7 ×10-3 × 3
∴ B = 3.77 × 10-3T

1. Choose the correct option.
 i)  A conductor has 3 segments; two straight 

and of length L each and a semicircular 
with radius R. It carries a current I. What 
is the magnetic field B at point P?

in the figure. Then it will follow the 
following path. [The magnetic field is 
directed into the paper].

  (A) 
�
�
0

4

I

R
 (B) 

�
�
0

24

I

R
 

  (C) 
µ0

4

I

R
 (C) 

�
�
0

4

I

 ii) Figure a, b show two Amperian loops 
associated with the conductors carrying 
current I in the sense shown. The B dl

�� �
� .∫  

in the cases a and b will be, respectively, 

 (A) It will continue to move along positive x 
axis.

 (B) It will move along a curved path, bending 
towards positive x axis.

 (C) It will move along a curved path, bending 
towards negative y axis.

 (D) It will move along a sinusoidal path along 
the positive x axis.

 (iv) A conducting thick copper rod of length 
1 m carries a current of 15 A and is 
located on the Earth's equator. There 
the magnetic flux lines of the Earth's 
magnetic field are horizontal, with the 
field of 1.3 × 10-4 T, south to north. The 
magnitude and direction of the force on 
the rod, when it is oriented so that current 
flows from west to east, are

(b)
(a)

Exercises

  (A) - µ
0
I, 0  (B)  µ

0
I, 0

  (C) 0,  µ
0
I (D) 0, - µ

0
I

 iii) A proton enters a perpendicular uniform 
magnetic field B at origin along the 
positive x axis with a velocity v as shown 
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On applying a transverse  a uniform 
magnetic field of 1.851 T, it follows a 
circular trajectory of radius 24.60 cm. 
Obtain the mass of the alpha particle.  
[charge of electron = 1.62 × 10-19 C]

        [Ans: 6.643 × 10-27 kg]
 6.  Two wires shown in the figure are 

connected in a series circuit and the 
same amount of current of 10 A passes 
through both, but in apposite directions. 
Separation between the two wires is 8 
mm. The length AB is S = 22 cm. Obtain 
the direction and magnitude of the 
magnetic field due to current in wire 2 on 
the section AB of wire 1. Also obtain the 
magnitude and direction of the force on 
wire 1. [µ0 = 4π × 10-7 T.m/A]

  (A) 14 × 10-4 N, downward.
  (B) 20 × 10-4 N, downward.
  (C) 14 × 10-4 N, upward.
  (D) 20 × 10-4 N, upward. 
 v) A charged particle is in motion having 

initial velocity v


when it enter into 
a region of uniform magnetic field 
perpendicular to v



. Because of the 
magnetic force the kinetic energy of the 
particle will

  (A) remain uncharged.
  (B) get reduced.
  (C) increase.
  (D) be reduced to zero.
 2.  A piece of straight wire has mass 20 g 

and length 1m. It is to be levitated using 
a current of 1 A flowing through it and 
a perpendicular magnetic field B in a 
horizontal direction. What must be the 
magnetic of B? 

          [Ans: 0.196 T]
 3.  Calculate  the value of magnetic field at a 

distance of 2 cm from a very long straight 
wire carrying a current of 5 A (Given:  
µ0 = 4π × 10-7 Wb/Am).

                [Ans: 5 × 10-5 T]
 4.  An electron is moving with a speed of  

3.2 × 106 m/s in a magnetic field of  
6.00 × 10-4 T perpendicular to its path. 
What will be the radius of the path? What 
will be frequency and the kinetic energy 
in keV ? [Given: mass of electron = 9.1 
×10-31 kg, charge e = 1.6 × 10-19 C, 1 eV = 
1.6 × 10-19 J] 

    [Ans: 3.0 cm, 1.7×107 Hz, 2.9 ×101 eV]
 5.  An alpha particle (the nucleus of 

helium atom) (with charge +2e) is 
accelerated and moves in a vacuum 
tube with kinetic energy = 10.00 MeV. 

               [Ans: Repulsive, 5.5 × 10-4 N]
 7. A very long straight wire carries a current 

5.2 A. What is the magnitude of the 
magnetic field at a distance 3.1 cm from 
the wire? [ µ0 = 4π × 10-7 T.m/A]

            [Ans: 8.355 × 10-5 T]
 8. Current of equal magnitude flows through 

two long parallel wires having separation 
of 1.35 cm. If the force per unit length on 
each of the wires in 4.76 × 10-2 N, what 
must be I ?

         [Ans: 56.68 A]
 9. Magnetic field at a distance 2.4 cm from 

a long straight wire is 16 µT. What must 
be current through the wire?

           [Ans: 1.92 A]
 10. The magnetic field at the centre of a 

circular current carrying loop of radius 
12.3 cm is  6.4 × 10-6 T. What will be the 
magnetic moment of the loop?

              [Ans: 5.954 × 10-2 A.m2]
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 11. A circular loop of radius 9.7 cm carries 
a current 2.3 A. Obtain the magnitude of 
the magnetic field (a) at the centre of the 
loop and (b) at a distance of 9.7 cm from 
the centre of the loop but on the axis.

          [Ans: 1.49 × 10-5 T, 5.271 × 10-6 T]
 12. A circular coil of wire is made up of 100 

turns, each of radius 8.0 cm. If a current 
of 0.40 A passes through it, what be the 
magnetic field at the centre of the coil?

                       [Ans: 3.142 × 10-4 T]
 13. For proton acceleration, a cyclotron is 

used in which a magnetic field of 1.4 
Wb/m2 is applied. Find the time period 
for reversing the electric field between 
the two Ds.

            [Ans: 2.342 × 10-8 s]
 14. A moving coil galvanometer has been 

fitted with a rectangular coil having 50 
turns and dimensions 5 cm × 3 cm. The 
radial magnetic field in which the coil is 
suspended is of 0.05 Wb/m2. The torsional 
constant of the spring is 1.5 × 10-9 Nm/
degree. Obtain the current required to be 
passed through the galvanometer so as to 
produce a deflection of 30°.

               [Ans: 1.2 × 10-5 A]
 15.  A solenoid of length π m and 5 cm in 

diameter has winding of 1000 turns and 
carries a current of 5 A. Calculate the 
magnetic field at its centre along the axis.

                [Ans: 2 × 10-3T]
 16. A toroid of narrow radius of 10 cm has 

1000 turns of wire. For a magnetic field 
of 5 × 10-2 T along its axis, how much 
current is required to be passed through 
the wire?

              [Ans: 25 A]
 17. In a cyclotron protons are to be 

accelerated. Radius of its D is 60 cm. and 
its oscillator  frequency is 10 MHz. What 
will be the kinetic energy of the proton 
thus accelerated? 

  (Proton mass = 1.67 × 10-27 kg, 
  e = 1.60 × 10-19 C, 1eV = 1.6 × 10-19 J)
              [Ans: 7.419 MeV]

 18. A wire loop of the form shown in the 
figure carries a current I. Obtain the 
magnitude and direction of the magnetic 
field at P. Given : B

I

R
�
�
�
0

4
2

          [Ans: B
I

R
� ��

��
�
��

�
�
0

4

3

2
2

�
]

 19. Two long parallel wires going into the 
plane of the paper are separated by a 
distance R, and carry a current I each 
in the same direction. Show that the 
magnitude of the magnetic field at a 
point P equidistant from the wires and 
subtending angle θ from the plane 

containing the wires, is B
I

R
�
�
�

�0 2sin  

What is the direction of the magnetic 

field?
 20. Figure shows a section of a very long  

cylindrical wire of diameter a, carrying 
a current I. The current density which is 
in the direction of the central axis of the 
wire varies linearly with radial distance r 
from the axis according to the relation J = 
J

o
 r/a. Obtain the magnetic field B inside 

the wire at a distance r from its centre.

            [Ans: B
J r

a
� 0 0

3

�
]

 21. In the above problem, what will be the 
magnetic field B inside the wire at a 
distance r from its axis, if the current 
density J is uniform across the cross 
section of the wire?

                [Ans: B
Jr

�
�
�
0 ]

Please see page 264 for theory exercises. 


