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Can you recall?

6.1 Introduction: 
You may be familiar with different waves 

like water waves, sound waves, light waves, 
mechanical waves, electromagnetic waves 
etc. A mechanical wave is a disturbance 
produced in an elastic medium due to periodic 
vibrations of particles of the medium about 
their respective mean positions. In this 
process, energy and momentum are transferred 
from one particle to another. Thus, a wave 
carries or transfers energy from one point to 
another., but there is no transfer of matter or 
particles of the medium in which the wave 
is travelling.  Another type of waves, known 
as electromagnetic waves, do not require 
material medium for their propagation; these 
are non-mechanical waves. We have studied 
sound waves (which are mechanical waves), 
their properties and various phenomena like 
echo, reverberation, Doppler effect related to 
these waves in earlier classes. In this Chapter, 
we will study mechanical waves, reflection 
of these waves, principle of superposition of 
waves, various phenomena like formation of 
stationary waves, beats, and their applications. 
6.2 Progressive Wave:

Have you seen ripples created on the 
surface of water when a stone is dropped in it? 

The water is displaced locally where the stone 
actually falls in water. The disturbance slowly 
spreads and distant particles get disturbed from 
their position of rest. The wave disturbs the 
particles for a short duration during its path. 
These particles oscillate about their position 
of rest for a short time. They are not bodily 
moved from their respective positions. This 
disturbance caused by the stone is actually a 
wave pulse. It is a disturbance caused locally 
for a short duration.

A wave, in which the disturbance 
produced in the medium travels in a given 
direction continuously, without any damping 
and obstruction, from one particle to another, 
is a progressive wave or a travelling wave 
e.g., the sound wave, which is a pressure wave 
consisting of compressions and rarefactions 
travelling along the direction of propagation 
of the wave.
6.2.1 Properties of progressive waves:
 1)  Each particle in a medium executes the 

same type of vibration. Particles vibrate 
about their mean positions performing 
simple harmonic motion.

 2)  All vibrating particles of the medium 
have the same amplitude, period and 
frequency.

 3)  The phase, (i.e., state of vibration of a 
particle), changes from one particle to 
another.

 4)  No particle remains permanently at rest. 
Each particle comes to rest momentarily 
while at the extreme positions of vibration. 

 5)  The particles attain maximum velocity 
when they pass through their mean 
positions.

 6)  During the propagation of wave, energy 
is transferred along the wave. There is no 
transfer of matter.

 7)  The wave propagates through the medium 

6. Superposition of Waves

1. What is wave motion? 
2. What is a wave pulse?
3. What are common properties of 

waves?
4. What happens when a wave 

propagates?
5. What are mechanical waves?
6. What are electromagnetic waves?
7. How are mechanical waves different 

from electromagnetic waves?
8. What are sound waves?
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Can you tell?

with a certain velocity. This velocity 
depends upon properties of the medium.

 8)  Progressive waves are of two types - 
transverse waves and longitudinal waves.

 9)  In a transverse wave, vibrations of 
particles are perpenduclar to the direction 
of propogation of wave and produce crests 
and troughs in their medium of travel.  
In longitudinal wave, vibrations of 
particles are along the direction of 
propagation of wave and produce 
compressions and rarefactions along the 
direction of propagation of the wave.

 10) Both, the transverse as well as the 
longitudinal, mechanical waves can 
propagate through solids but only 
longitudinal waves can propagate through 
fluids. 
You might recall that when a mechanical 

wave passes through an elastic medium, the 
displacement of any particle of the medium 
at a space point x at time t is given by the 
expression 
 y(x,t) = f(x - vt)     --- (6.1)
where v is the speed at which the disturbance 
travels through the medium to the right 
(increasing x). The factor (x - vt) appears 
because the disturbance produced at the point  
x = 0 at time t reaches the point x = x′ on 
the right at time (t + x′/v) or we say that the 
disturbance of the particle at time t at position 
x = x′ actually originated on the left side at 
time (t - x′/v). Thus, Eq. (6.1) represents a 
progressive wave travelling in the positive 
x-direction with a constant speed v. The 
function f depends on the motion of the source 
of disturbance. If the source of disturbance is 
performing simple harmonic motion, the wave 
is represented as a sine or cosine function of 
(x - vt) multiplied by a term which will make 
(x - vt)  dimensionless. Generally we represent 
such a wave by the following equation
 y(x,t) =Asin(kx - ωt)   --- (6.2)
where A is the amplitude of the wave, k = 2π/λ 
is the wave number, λ and ω are the wavelength 
and the angular frequency of the wave and  
v =ω /k is the speed. The SI units of k, λ  and ω   

are rad m-1, m and rad s-1 respectively. If 
T is the time period of oscillation, then  
n = 1/T = ω /(2π) is the frequency of oscillation 
measured in Hz (s-1).  If the wave is travelling 
to the left i.e., along the negative x-direction, 
then the equation for the disturbance is

 y(x,t) =Asin(kx + ωt)                --- (6.3)

Fig. 6.1: Reflection of a wave pulse sent as a 
crest from a rarer medium to a denser medium.

Example 1
• Take a long light string AB. Attach one 

end of the string to a rigid support at B. 
(Here, for the wave pulse traveling on the 
string, the string is the rarer medium and 
the rigid support acts as a denser medium.)

• By giving a jerk to the free end A of the 
string, a crest is generated in the string.

• Observe what happens when this crest 
moves towards B?

• Observe what happens when the crest 
reaches B?

What is the minimum distance between any 
two particles of a medium which always 
have the same speed if a sine wave travels 
through the medium?

6.3 Reflection of Waves:
When a progressive wave, travelling 

through a medium, reaches an interface 
separating two media, a certain part of the 
wave energy comes back in the same medium. 
The wave changes its direction of travel. This is 
called reflection of a wave from the interface.

Reflection is the phenomenon in which 
the sound wave traveling from one medium 
to another comes back in the original medium 
with slightly different intensity and energy. To 
understand the reflection of waves, we will 
consider three examples below.
6.3.1 Reflection of a Transverse Wave:
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• Take a long light string AB. Attach the 
end B of the string to a ring which can 
slide easily on a vertical metal rod without 
friction. (Here string is the denser medium 
while end B attached to the sliding ring is 
at the interface of a rarer medium as it can 
move freely.) 

• Give a jerk to free end A of the string.
• Observe what happens when crest reaches 

the point B attached to the ring.
• Try to find the reason of the observed 

movement.
Example 3

• Observe the part of wave pulse reflected 
back on the heavy string.

• Produce a wave pulse as a crest on the 
light string Q moving towards the junction 
point O.

• Observe the part of wave pulse reflected 
on the light string.

• What difference do you observe when the 
wave pulse gets reflected on the light string 
and when the wave pulse gets reflected on 
the heavy string? 

• Try to find reasons behind your 
observations.
In example 1, when crest moves along the 

string towards B, it pulls the particles of string 
in upward direction. Similarly when the crest 
reaches B at rigid support, it tries to pull the 
point B upwards. But being a rigid support, 
B remains at rest and an equal and opposite 
reaction is produced on the string according 
to Newton’s third law of motion. The string is 
pulled downwards. Thus crest gets reflected as 
a trough (Fig. 6.1) or a trough gets reflected as a 
crest.  Hence from example 1, we can conclude 
that when transverse wave is reflected from a 
rigid support, i.e., from a denser medium, a 
crest is reflected as a trough and a trough is 
reflected as a crest. You have learnt in Xth and 
XIth Std. that there is a phase difference of π 
radian between the particles at a crest and at 
a trough. Therefore we conclude that there is 
a phase change of π radian on reflection from 
the fixed end, i.e., from a denser medium. 

In example 2, we observe that when the 
crest reaches the point B, it pulls the ring 
upwards and causes the ring to move upward. 
The wave is seen to get reflected back as a 
crest and no phase change occurs on reflection 
from  a rarer medium (Fig. 6.2). 

In example 3, we find that a crest 
travelling from the heavy string gets reflected 
as a crest from the lighter string, i.e., reflection 
at the surface when a wave is travelling from 
a denser medium to a rarer medium causes a 
crest to be reflected as a crest (Fig. 6.3 (a)). 

Fig.6.2: Reflection of a wave pulse sent as a 
crest from a denser medium to a rarer medium.

Fig. 6.3: Reflection of a crest from (a) denser 
medium (in this case a heavy string) and (b) 
rarer medium (in this case a light string).

• Perform the same activity repeatedly and 
observe carefully. Try to find the reasons 
of movements in above observations.

Example 2        

• Take a heavy string P and a light string 
Q and join them. Suppose they are joined 
at point O. (Heavy string acts as a denser 
medium and light string is the rarer 
medium.)

• Produce a wave pulse as a crest on the heavy 
string P moving towards the junction O.

(a)

(b)
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But in example 3 (Fig. 6.3 (b)), when a crest 
travels from the lighter string to the heavy 
string, the crest is reflected as a trough and 
vice versa.   
6.3.2 Reflection of a Longitudinal Wave:

Consider a longitudinal wave travelling 
from a rarer medium to a denser medium. In 
a longitudinal wave compression is a high 
pressure region while rarefaction is a low 
pressure region. When compression reaches 
the denser medium, it tries to push the particles 
of that medium. But the energy of particles in 
the rarer medium is not sufficient to compress 
the particles of denser medium. According to 
Newton’s third law of motion, an equal and 
opposite reaction comes into play.  As a result, 
the particles of rarer medium get compressed. 
Thus, when the longitudinal wave travels 
from a rarer medium to a denser medium, a 
compression is reflected as a compression 
and a rarefaction is reflected as a rarefaction. 
There is no change of pressure phase during 
this reflection (Fig. 6.4).

6.4 Superposition of Waves:
Suppose you wish to listen to your 

favourite music. Is it always possible 
particularly when there are many other sounds 
from the surroundings disturbing you. How can 
the background sounds be blocked? Of course, 
the mobile lover generation uses headphones 
and enjoys listening to its favorite music. 
But you cannot avoid the background sound 
completely. Why?

We know that sound waves are 
longitudinal waves propagating through an 
elastic medium. When two waves travelling 
through a medium cross each other, each 
wave travels in such a way as if there is no 
other wave. Each wave sets the particles of 
the medium into simple harmonic motion. 
Thus each particle of the medium is set into 
two simple harmonic motions due to the two 
waves. The total displacement of the particles, 
at any instant of time during travelling of 
these waves, is the vector sum of the two 
displacements. This happens according to the 
principle of superposition of waves, which 
states that, when two or more waves, travelling 
through a medium, pass through a common 
point, each wave produces its own displacement 
at that point, independent of the presence of 
the other wave. The resultant displacement 
at that point is equal to the vector sum of the 
displacements due to the individual wave at that 
point. As displacement is a vector, we must add 
the individual displacements by considering 
their directions. There is no change in the 
shape and nature of individual waves due to 
superposition of waves. This principle applies 
to all types of waves like sound waves, light 

Fig. 6.4: Reflection of a longitudinal wave from 
a denser medium.

Fig. 6.5: Reflection of a longitudinal wave from 
a rarer medium.

When longitudinal wave travels from a 
denser medium to a rarer medium (Fig. 6.5), a 
compression is reflected as a rarefaction. Here 
reversal of pressure phase takes place, i.e., 
pressure phase changes by π radians.

When compression reaches a rarer 
medium from denser medium, it pushes the 
particles of rare medium. Due to this, particles 
of the rarer medium get compressed and move 
forward and a rarefaction is left behind. Thus 
a compression gets reflected as a rarefaction. 
Similarly a rarefaction gets reflected as a 
compression (Fig. 6.5).
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waves, waves on a string etc. and we say that 
interference of waves has taken place.

You might have seen singers using a special 
type of headphones during recording of 
songs.  Those are active noise cancellation 
headphones, which is the best possible 
solution to avoid background sound. 
Active noise cancellation headphones 
consist of small microphones one on each 
earpiece. They detect the ambient noise 
that arrives at the ears. A special electronic 
circuit is built inside the earpiece to create 
sound waveforms exactly opposite to the 
arriving noise. This is called antisound. 
The antisound is added in the earphones so 
as to cancel the noise from outside. This is 
possible due to superposition of waves, as 
the displacements due to these two waves 
cancel each other. The phenomena of 
interference, beats, formation of stationary 
waves etc. are based on the principle of 
superposition of waves.

Fig. 6.6: Superposition of two wave pulses 
of equal amplitude and same phase moving 
towards each other.

Fig. 6.7: Superposition of two wave pulses of 
equal amplitude and opposite phases moving 
towards each other.

propagation after superposition are shown 
in Figs. 6.6 (a) to 6.6 (g). Suppose two 
waves cross each other between t = 2 s and 
t = 4 s, as shown in Figs. 6.6 (c), (d) and 
(e). Here the two wave pulses superpose, 
the resultant displacement is equal to the 
sum of the displacements (full line) due to 
individual wave pulses (dashed lines).  This 
is constructive interference. The displacement 
due to wave pulses after crossing at t = 5 s and  
t = 6 s are shown in Figs. 6.6 (f) and (g). After 
crossing each other, both the wave pulses 
continue to maintain their individual shapes.
6.4.2 Superposition of Two Wave Pulses 
of Equal Amplitude and Opposite Phases 
Moving towards Each Other :

Let us consider superposition of two wave 
pulses in two different ways.
6.4.1 Superposition of Two Wave Pulses of 
Equal Amplitude and Same Phase Moving 
towards Each Other :

The propagation of approaching wave 
pulses, their successive positions after 
every second, their  superposition and their 

The propagation of approaching wave 
pulses, their successive positions after every 
second, their superposition and propagation 
after superposition are shown in Fig. 6.7 (a) to 
Fig. 6.7 (e). 

These wave pulses superimpose at  
t = 2 s and the resultant displacement (full 
line) is zero, due to individual displacements 
(dashed lines) differing in phase exactly 
by 180°. This is destructive interference. 
Displacement due to one wave pulse is 
cancelled by  the displacement due to the 
other wave pulse when they cross each other 
(Fig. 6.7 (c)). After crossing each other, both 
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the wave pulses continue and maintain their 
individual shapes.
6.4.3 Amplitude of the Resultant Wave 
Produced due to Superposition of Two Waves:
Consider two waves having the same frequency 
but different amplitudes A

1
 and A

2
. Let these 

waves differ in phase by ϕ . The displacement 
of each wave at x = 0 is given as
 y A t1 1� sin�

           
y A t2 2� �� �sin � �

According to the principle of superposition 
of waves, the resultant displacement at x = 0 is 

y y y� �1 2

or, y A t A t� � �� �1 2� sinsin� � �  
y A t A t A t� � �1 2 2� � � cos �sin sin cos  sin� � � � �

y A A t A t� �� � �1 2 2cos sin  cos� � � �sin

If we write 
 A A A1 2� ��cos  cos� �    --- (6.4)
     and A A2sin sin� ��      --- (6.5)
we get
 y A t A t� �cos  sin sin  cos� � � ��
∴ � �y A t� �� �sin � �       --- (6.6)

This is the equation of the resultant 
wave. It has the same frequency as that of the 
interfering waves. The resultant amplitude A 
is given by squaring and adding Eqs. (6.4) and 
(6.5).

A A A A A2 2 2 2
1 2

2

2
2 2cos sin cos sin� � � �� � �� � �

A A A A A A2
1

2
1 2 2

2 2
2

2 22� �� � � �cos cos sin� � �

∴ A A A A A� � �1
2

1 2 2
22� cos�            --- (6.7)

Special cases: 
1. When ϕ  = 0, i.e., the waves are in phase, 
the resultant amplitude is

A A A A A A A� � � � �1
2

1 2 2
2

1 2
22 0� (� )cos  

    =  A A1 2+
The resultant amplitude is maximum when  
ϕ  = 0.
If the amplitudes of the waves are equal i.e.,  
A

1 
= A

2
 = A

0
 (say), then the resultant amplitude 

is 2A
0
. 

2. When ϕ  = π, i.e., the waves are out of 

phase, the resultant amplitude is 

A A A A cos A A A� � � � �1
2

1 2 2
2

1 2
22� (� )�  

   =  |A
1
- A

2
|

The resultant amplitude is minimum when  
ϕ  = π.
If the amplitudes of the waves are equal i.e.,  
A

1 
= A

2
 = A

0
 (say), then the resultant amplitude 

is  zero.
Thus, the maximum amplitude is the 

sum of the two amplitudes when the phase 
difference between the two waves is zero and 
the minimum amplitude is the difference of 
the two amplitudes when the phase difference 
between the two waves is π.

The intensities of the waves are 
proportional to the squares of their amplitudes. 
Hence, when ϕ  = 0
 I A A Amax max��( ) � �( �)�

2
1 2

2� �      --- (6.8)
and when ϕ  = π
 I A A Amin min���( ) �(� �)2

1 2
2� �        --- (6.9)

Therefore intensity is maximum when the 
two waves interfere in phase while intensity is 
minimum when the two waves interfere out of 
phase.

You will learn more about superposition 
of waves in Chapter 7 on Wave Optics.

Example 6.1: The displacements of two 
sinusoidal waves propagating through a 
string are given by the following equations

  y x t1 4 20 30� �� �sin

  y x t2 4 25 40� �� �sin

where x and y are in centimeter and t is in 
second.
a) Calculate the phase difference between 
these two waves at the points x = 5 cm and 
t = 2 s.
b) When these two waves interfere, what 
are the maximum and minimum values of 
the intensity?
Solution: Given   

y x t1 4 20 30� �� �sin
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6.5 Stationary Waves:
We have seen the superposition of two 

wave pulses, having same amplitudes and either 
same phase or opposite phases, and changes 
in the resultant amplitude pictorially in section 
6.4. We have also derived the mathematical 
expression for the resultant displacement when 
two waves of same frequency superimpose as 
given by Eqs. (6.4) to (6.6). Now we are going 
to study an example of superposition of waves 
having the same amplitude and the same 
frequency travelling in opposite directions.
6.5.1 Formation of Stationary Waves:

Imagine a string stretched between two 
fixed points. If the string is pulled at the 
middle and released, we get what is know as a 
stationary wave. Releasing of string produces 
two progressive waves travelling in opposite 
directions. These waves are reflected at the 
fixed ends. The waves produced in the string 
initially and their reflected waves combine  
to produce stationary waves as shown in  
Fig. 6.8 (a). 

 and y x t2 4 25 40� �� �sin
a) To find phase difference when x = 5 cm 
and t = 2 s:
y1 4 20 5 30 2

4 100 60 4 40

� � � �� �
� �� � �

sin

sin sin     

y2 4 25 5 40 2

4 125 80 4 45

� � � �� �
� �� � �

sin

sin sin      
∴    Phase difference is 5 radian because ϕ 
= |45 – 40| = 5 radian.
b) To find the maximum and minimum 
values of the intensity :
Amplitudes of the two waves are A

1 
= 4 cm 

and A
2 
= 4 cm,

     ∴ I A Amax �� �� � � �� � �1 2

2 2
4 4 64

when the phase difference is zero

and  I A Amin �� �� � � �� � �1 2

2 2
4 4 0

when the phase difference is π.

Example 6.2: A progressive wave travels 
on a stretched string. A particle on this 
string takes 4.0 ms to move from its mean 
position to one of its extreme positions. The 
distance between two consecutive points on 
the string which are at their mean positions 
(at a certain time instant) is 2.0 cm. Find 
the frequency, wavelength and speed of the 
wave.
Solution : 

∴ frequency n = 1/T  = (1/16) × 103 s-1 

                                                  = 62. 5 Hz
As shown in Fig. (b), points A, B, and C 
correspond to mean positions, but the string 
is moving in one direction at point A and 
in the opposite direction  at point B. Thus, 
out of the two consecutive particles at 
their mean positions, one will be moving 
upwards while the other will be moving 
downwards. The distance between them 
is 2.0 cm. Therefore distance between two 
consecutive particles moving in the same 
direction will be 2 × 2 cm = 4 cm. Thus the 
wavelength λ = 4 cm = 0.04 m
Speed of wave v = n × λ = 62.5 × 0.04 
                                         = 2.5 m/s.

(a)

(b)

A particles  takes 4.0 × 10-3 s to travel from 
its mean position to extreme position. This 
is a quarter of the complete oscillation as 
shown in Fig. (a). Hence, the particle will 
take 4 × 4.0 × 10-3 s = 16 × 10-3 s to complete 
one oscillation. 

Fig. 6.8 (a): Formation of stationary 
waves on a string. The two sided arrows  

indicate the motion of the particles of the string.
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6.5.2 Equation of Stationary Wave on a 
Stretched String:

Consider two simple harmonic progressive 
waves of equal amplitudes (a) and wavelength 
(λ) propagating on a long uniform string in 
opposite directions (remember 2π/λ = k and 
2πn = ω). 

The equation of wave travelling along the 
x-axis in the positive direction is 

 y a nt
x

1 2� ��
�
�

�
�
�sin�{ }�

�
 --- (6.10)

The equation of wave travelling along the 
x-axis in the negative direction is
 y a nt

x
2 2� ��

�
�

�
�
�

�
�
�

�
�
�

sin �
�

  --- (6.11)

When these waves interfere, the resultant 
displacement of particles of string is given by 
the principle of superposition of waves as
 y y y� �1 2

y a nt
x

a nt
x

� ��
�
�

�
�
�

�
�
�

�
�
�
� ��

�
�

�
�
�

�
�
�

�
�
�

sin sin2 2�
�

�
�

By using,

sin sin sinC D
C D C D

� �
��

�
�

�
�
�

��
�
�

�
�
�2

2 2
cos ,we 

get

y a nt
x

� � �2 2
2

�sin �
�
�

cos

y = 2 a � sincos
2

2
�
�

�
x

nt� �   or, --- (6.12)

Using 2
2

a
x

A�cos
�
�

�   in Eq. (6.12), we get 

y A nt� sin�( )2�

As ω = 2πn, we get, y A t� sin� .
This is the equation of a stationary wave 

which gives resultant displacement due to two 
simple harmonic progressive waves. It may be 
noted that the terms in position x and time t 
appear separately and not as a combination  
2π (nt ± x/λ). 

Hence, the wave is not a progressive 
wave. x is present only in the expression for 
the amplitude. The amplitude of the resultant 
wave is given as A a

x
� 2

2
�cos

�
�

. It is a 
periodic function of x i.e., the amplitude is 
varying periodically in space. The amplitudes 
are different for different particles but each 

point on the string oscillates with the same 
frequency ω (same as that of the individual 
progressive wave). All the particles of the 
string pass through their mean positions 
simultaneously twice during each vibration. 
The string as a whole is vibrating with 
frequency ω with different amplitudes at 
different points. The wave is not moving either 
to the left or to the right. We therefore call such 
a wave a stationary wave or a standing wave. 
Particles move so fast that the visual effect is 
formation of loops. It is therefore customary 
to represent stationary waves as loops. In case 
of a string tied at both the ends, loops are seen 
when a stationary wave is formed because 
each progressive wave on a string is a traverse 
wave. When two identical waves travelling 
along the same path in opposite directions 
interfere with each other, resultant wave is 
called stationary wave.
Condition for node:

Nodes are the points of minimum 
displacement. This is possible if the amplitude 
is minimum (zero), i.e.,

2
2

0a
x

�cos
�
�

� ,

or, cos
2�
�

x
= 0,

or, 2

2

3

2

5

2

�
�

� � �x
�� ,�� ,�� ,……….

∴ x  = 
� � �
4

3

4

5

4
,�� ,�� ,���

i.e., x p� �� �2 1
4

�  where p = 1, 2, 3, ………

The distance between two successive nodes is  
λ
2

.

Condition for antinode:
Antinodes are the points of maximum 
displacement,
 i.e., A a� ���2

      ∴ 2
2

2a
x

a�cos
�
�

� �

       or, �cos
2

1
�
�

x
� �

      ∴ �� , , ,
2

0 2 3
�
�

� � �
x
� �   
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       or, x � �0
2

3

2
,�� ,�� ,�� , ..
�

�
�

i.e., x
p

�
�
2

  where p =  0, 1, 2,3….
The distance between two successive antinodes 

is λ
2

. Nodes and antinodes are formed 

alternately. Therefore, the distance between a 

node and an adjacent antinode is λ
4

 .

When sin ωt  = 1, at that instant of time, 
all the particles for which cos kx is positive 
have their maximum displacement in positive 
direction. At the same instant, all the particles 
for which cos kx is negative have their 
maximum displacement in negative direction. 
When sin ωt  = 0, all the particles cross their 
mean positions, some of them moving in the 
positive direction and some in the negative 
direction.

Longitudinal waves e.g. sound waves 
travelling in a tube /pipe of finite length 
are relected at the ends in the same way as 
transverse waves along a string are reflected 
at the ends. Interference between these 
waves travelling in opposite directions gives 
rise to standing waves as  shown in Fig. 6.8 
(b). We represent longitudinal stationary 
wave by a loop but the actual motion of the 
particles is along the length of the loop and not 
perpendiculat to it.

through a medium along the same path in 
opposite directions.

2. If two identical transverse progressive 
waves superimpose or interfere, the 
resultant wave is a transverse stationary 
wave as shown in Fig. 6.8 (a).

• When a transverse stationary wave is 
produced on a string, some points on the 
string are motionless. The points which do 
not move are called nodes.

• There are some points on the string which 
oscillate with greatest amplitude (say A). 
They are called antinodes.

• Points between the nodes and antinodes 
vibrate with values of amplitudes between 
0 and A. 

3. If two identical longitudinal progressive 
waves superimpose or interfere, the 
resultant wave is a longitudinal stationary 
wave. Figure 6.8 (b) shows a stationary 
sound wave produced in a pipe closed at 
one end.

• The points, at which the amplitude of the 
particles of the medium is minimum (zero), 
are called nodes.

• The points, at which the amplitude of the 
particles of the medium is maximum (say 
A), are called antinodes.

• Points between the nodes and antinodes 
vibrate with values of amplitudes between 
0 and A

4. The distance between two consecutive 

nodes is  
λ
2

 and the distance between two 

consecutive antinodes is λ
2

.

5. Nodes and antinodes are produced 
alternately. The distance between a node 
and an adjacent antinode is λ

4
.

6. The amplitude of vibration varies 
periodically in space. All points vibrate 
with the same frequency.

7. Though all the particles (except those 
at the nodes) possess energy, there is 
no propagation of energy. The wave is 
localized and its velocity is zero. Therefore, 
we call it a stationary wave. 

Fig. 6.8 (b): Figure on the 
left shows standing waves 
in a conventional way while 
figure on the right shows 
the actual oscillations of 
material particles for a 
longitudinal stationary 
wave. Points A and N 
denote antinodes and nodes 
respectively.

6.5.3 Properties of Stationary Waves:
1. Stationary waves are produced due to 

superposition of two identical waves (either 
transverse or longitudinal waves) traveling 
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Do you know?

6. All  particles between two consecutive 
nodes are moving in the same direction 
and are in phase while those in adjacent 
loops are moving in opposite directions 
and differ in phase by 180° in stationary 
waves but in a progressive wave, phases of 
adjacent particles are different.

• What happens if a simple pendulum is 
pulled aside and released?

• What happens when a guitar string is 
plucked?

• Have you noticed vibrations in a drill 
machine or in a washing machine? How 
do they differ from vibrations in the 
above two cases?

• A vibrating tuning fork of certain 
frequency is held in contact with table 
top and vibrations are noticed and then 
another vibrating tuning fork of different 
frequency is held on table top. Are the 
vibrations produced in the table top the 
same for both the tuning forks? Why?

Example 6.3:  Find the distance between 
two successive nodes in a stationary wave 
on a string vibrating with frequency 64 
Hz. The velocity of progressive wave that 
resulted in the stationary wave is 48 m s-1 .
Solution: Given:  
 Speed of wave = v = 48 m s-1

 Frequency n = 64 Hz
We have v � n�
  ∴ λ = = =

v

n
� .
48

64
0 75m

We know that distance between successive 
nodes 

= 
�
2

0 75

2
�

.
= 0.375 m

8. All the particles between adjacent nodes 
(i.e., in one loop) vibrate in phase. There 
is no progressive change of phase from 
one particle to another particle. All the 
particles in the same loop are in the same 
phase of oscillation, which reverses for the 
adjacent loop.

Musical instruments such as violin, tanpura, 
are based on the principle of formation of 
stationary waves or standing waves.

6.6 Free and Forced Vibrations: 
The frequency at which an object tends 

to vibrate when hit, plucked or somehow 
disturbed is known as its natural frequency. 
In these vibrations, object is not under the 
influence of any outside force. 

When a simple pendulum is pulled aside 
and released, it performs free vibrations with 
its natural frequency. Similarly when a string 
of guitar is plucked at some point it performs 
free vibrations with its natural frequency. 

In free vibration, the body at first is 
given an initial displacement and the force is 
then withdrawn. The body starts vibrating and 
continues the motion on its own. No external 
force acts on the body further to keep it in 
motion.

Free vibration of a system means that the 
system vibrates at its natural frequency. In 
case of free vibrations, a body continuously 

6.5.4 Comparison of Progressive Waves and 
Stationary Waves: 
1. In a progressive wave, the disturbance 

travels form one region to the other with 
definite velocity. In stationary waves, 
disturbance remains in the region where it 
is produced, velocity of the wave is zero.

2. In progressive waves, amplitudes of all 
particles are same but in stationary waves, 
amplitudes of particles are different.

3. In a stationary wave, all the particles cross 
their mean positions simultaneously but in 
a progressive wave, this does not happen. 

4. In progressive waves, all the particles are 
moving while in stationary waves particles 
at the position of nodes are always at rest.

5. Energy is transmitted from one region 
to another in progressive waves but in 
stationary waves there is no transfer of 
energy.
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loses energy due to frictional resistance of 
surrounding medium. Therefore, the amplitude 
of vibrations goes on decreasing, the vibrations 
of the body eventually stop and the body comes 
to rest.

The vibrations in a drill machine and in a 
washing machine are forced vibrations. Also 
the vibrations produced in the table top due to 
tuning forks of two different frequencies are 
different as they are forced vibrations due to 
two tuning forks of different frequencies. 

In forced vibrations, an external periodic 
force is applied on a body whose natural period 
is different from the period of the force. The 
body is made to vibrate with a frequency equal 
to that of the externally impressed force. The 
amplitude of forced vibrations depends upon 
the difference between the frequency of external 
periodic force and the natural frequency of the 
body. If this difference is small, the amplitude 
of forced vibrations is large and vice versa. If 
the frequencies exactly match, it is termed as 
resonance and the amplitude of vibration is 
maximum.

An object vibrating with its natural 
frequency can cause another nearby object to 
vibrate. The second object absorbs the energy 
transmitted by the first object and starts 
vibrating if the natural frequencies of the two 
objects match. You have seen the example of 
two simple pendula supported from a string in 
the previous chapter. The second object is said 
to undergo forced vibrations. Strings or air 
columns can also undergo forced oscillations 
if the frequency of the external source of sound 
is close to the natural frequency of the system. 
Resonance is said to occur and we hear a 
louder sound.
6.7 Harmonics and Overtones:

When a string or an air column is set 
into vibrations by some means, the waves are 
reflected from the ends and stationary waves 
can be formed. An important condition to form 
stationary waves depends on the boundary 

conditions that constrain the possible 
wavelengths or frequencies of vibration 
of the system. These are called the natural 
frequencies of normal modes of oscillations. 
The minimum of these frequencies is termed the 
fundamental frequency or the first harmonic. 
The corresponding mode of oscillations is 
called the fundamental mode or fundamental 
tone. The term overtone is used to represent 
higher frequencies. The first frequency higher 
than the fundamental frequency is called 
the first overtone, the next higher frequency 
is the second overtone and so on. The term 
'harmonic' is used when the frequency of a 
particular overtone is an integral multiple of 
the fundamental frequency. In strings and 
air columns, the frequencies of overtones 
are integral multiples of the fundamental 
frequencies, hence they are termed as 
harmonics. But all harmonics may not be 
present in a given sound. The overtones are 
only those multiples of fundamental frequency 
which are actually present in a given sound.
The harmonics may or may not be present in 
the sound so produced.

To understand the concept of harmonics 
and overtones, let us study vibrations of air 
column.

6.7.1 End Correction:

When an air column vibrates either in a 
pipe closed at one end or open at both ends, 
boundary conditions demand that there is   
always an antinode at the open end(s) (since 
the particles of the medium are comparatively 
free) and a node at the closed end (since there is 
hardly any freedom for the particles to move). 
The antinode is not formed exactly at the open 
end but it is slightly beyond the open end as air 
is more free to vibrate there in comparison to 
the air inside the pipe. Also as air particles in 
the plane of open end of the pipe are not free 
to move in all directions, reflection takes place 
at the plane at small distance outside the pipe. 
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The distance between the open end of the pipe 
and the position of antinode is called the end 
correction. According to Reynold, to the first 
approximation, the end correction at an end is 
given by e = 0.3d, where d is the inner diameter 
of the pipe. Thus the length L of air column is 
different from the length l of the pipe.
For a pipe closed at one end

The corrected length of air column L = length 
of air column in pipe l + end correction at the 
open end.

∴ L = l + e   --- (6.13)

For a pipe open at both ends

The corrected length of air column L = length 
of air column in pipe l + end corrections at 
both the ends. 

∴ L = l + 2e   --- (6.14)

6.7.2 Vibrations of air column in a pipe 
closed at one end:

Consider a long cylindrical tube closed at 
one end. It consists of an air column with rigid 
boundary at one end. When a vibrating tuning 
fork is held near the open end of the closed 
pipe, sound waves are sent by the fork inside 
the tube. Longitudinal waves traveling along 
a pipe of finite length are reflected at the ends 
as transverse waves are refelcted at the fixed 
ends of a string. The phase of the reflected 
wave depends on whether the end of the pipe 
is open or closed and how wide or narrow the 
pipe is in compansion to the wavelength of 
longitudinal wave like a sound wave.

At the closed end there is least freedom 
for motion of air particles. Thus, there must be 
a node at the closed end. The particles little 
beyond the open end are most free to vibrate. 
As a result, an antinode must be formed little 
beyond the open end. The length l of pipe and 
length L of air column are shown separately in 
all the figures (refer Figs. 6.9 and 6.10).

The first mode of vibrations of air column 
closed at one end is as shown in Fig. 6.9 (a).

This is the simplest mode of vibration of 
air column closed at one end, known as the 
fundamental mode. 

∴ Length of air column 

L ��
�
4

  and � � 4L

where λ is the wavelength of fundamental 
mode of vibrations in air column. If n is the 
fundamental frequency, we have
 v � n�    --- (6.15)
 � �n

v

�  
 � �n

L

v

4
�

�
v

4( )l e
 --- (6.16)

The fundamental frequency is also known 
as the first harmonic. It is the lowest frequency 
of vibration in air column in a pipe closed at 
one end.

The next mode of vibrations of air column 
closed at one end is as shown in Fig. 6.9 (b). 
Here the air column is made to vibrate in such 
a way (as shown in Fig. 6.9 (b)) that it contains 
a node at the closed end, an antinode at the 
open end with one more node and antinode 
in between. If n

1 
is the frequency and λ

1
 is the 

wavelength of wave in this mode of vibrations 
in air column, we have, the length of the air 
column L ��

3

4
1�

 
       � ��1

4

3

L
�

�4

3

( )l e
                 --- (6.17)

The velocity in the second mode is given  
as  v � n1 1�  
 � � � �

�
n

L l e1
1

3

4

3

4

v V V

� ( )

∴ n n1 3=                                            --- (6.18)
This frequency is the third harmonic. It is 

the first overtone. Remember that the overtones 
are always numbered sequentially.

Fig. 6.9 (a): Set-up for 
generating vibrations 
of air column in a 
pipe closed at one end. 
The distance of the 
antinode from the open 
end of the pipe has 
been exaggerated.
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             (b)       (c)

Fig. 6.9 (b) and (c): First and second overtones 
for vibrations of air column in a pipe closed 
at one end. The distance of the antinode from 
the open end of the pipe has been exaggerated.

The next higher mode of vibrations of air 
column closed at one end is as shown in Fig. 
6.9 (c). Here the same air column is made to 
vibrate in such a way that it contains a node 
at the closed end, an antinode at the open end 
with two more nodes and antinodes in between. 
If n

2
 is the frequency and λ

2 
is the wavelength 

of the wave in this mode of vibrations in air  
column, we have
Length of air column L ��

5

4
2�  

 
 
� ��2

4

5

L
 
= 

4

5

( )l e+
                        --- (6.19)

The velocity this mode is given as 

v � n2 2�  

� � � �
�

n
V

L

V

l e2
2

5

4

5

4

v

� ( )     ∴ n n2 5=      -- (6.20)

This frequency is the fifth harmonic. It is 
the second overtone. 

Continuing in a similar way, for the pth 
overtone we get the frequency n

p
 as 

n p np � �� �2 1 .                                     -- (6.21)
Thus for a pipe closed at one end only odd 

harmonics are present and even harmonics are 
absent.
6.7.3 Vibrations of air column in a pipe open 
at both ends:

 In this case boundary conditions are such 
that an antinode is present at each open end. 
When a source of sound like a tuning fork 
is held near one end of the pipe, it sends the 
waves inside the pipe.

Even though both the ends of the pipe are 
open, the air inside the pipe is still bound by the 
wall of the tube. As a result, the air inside the 
pipe is little denser than the air outside. When 
the waves travel to the other open end, there is 
partial reflection at the open end. The partially 
reflected waves superimpose with the incident 
waves. Under suitable conditions, stationary 
waves will be formed. There is maximum 
freedom for motion of air column at both the 
ends as pipe is open at both ends.

Suppose a compression produced by a 
tuning fork travels through the air column. It 

Fig. 6.10: First three 
modes of vibrations of 
air column in a pipe 
open at both ends. 
The distance of the 
antinodes from the 
open ends of the pipe 
has been exaggerated.

   (a)    (b)

   (c)

gets reflected as a rarefaction at open end. The 
rarefaction moves back and gets reflected as 
compression at the other end. It suffers second 
reflection at open end near the source and then 
interferes with the wave coming in by a path 
difference of 2L. 

The different modes of vibrations of air 
column in pipe open at both ends are shown 
in Fig. 6.10 (a), (b) and (c). The fundamental 
tone or mode of vibrations of air column open 
at both ends is as shown in Fig. 6.10 (a). There 
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are two antinodes at two open ends and one 
node between them.
∴ Length of air column � �L

�
2

 or,         � � 2L        

           and v = 2 nL                            ----(6.22)

 � � � �
�

  n
L l e

v v v

� 2 2 2( )              ----(6.23)

 This is the fundamental frequency or 
the first harmonic. It is the lowest frequency of 
vibration.

The next possible mode of vibrations of 
air column open at both ends is as shown in 
Fig. 6.10 (b). Three antinodes and two nodes 
are formed.
∴ Length of air column � �L �1

 i.e., λ
1
 = L = (l +2e)                    ----(6.24)

If n
1 

and λ
1
 are frequency and wavelength 

of this mode of vibration of air column 
respectively, then
 v � n1 1�

 n
L l e1

1 2
� � �

�
v v v

� ( )

 ∴ n n1 2� �=     --- (6.25)
This is the frequency of second harmonic 

or first overtone.
In the next possible mode of vibrations of 

air column open at both ends  (as shown in Fig. 
6.10 (c)), four antinodes and three nodes are 
formed.

∴Length of air column� �L
3

2
2�

 � � �
�

�2

2

3

2 2

3

L l e( )
                     --- (6.26)

If n
2
 and λ

2
 are the frequency and 

wavelength of this mode of vibration of air 
column respectively, then v � n2 2�
 
 

� � � �
�

n
L l e2

2

3

2

3

2 2

v v v

� ( )

 
� �n n2 3� �

                         
--- (6.27)

This is the frequency of third harmonic or 
second overtone.

Thus all harmonics are present as 
overtones in the modes of vibration of air 
column open at both ends.
Continuing in this manner, the frequency n

p 
for 

pth overtone is, 

 n p np � �� �1    --- (6.28)
where n is the fundamental frequency and p = 
0,1,2,3…
It may be noted that
1. Sound produced by an open pipe contains 

all harmonics. Its quality is richer than  
that produced by a closed pipe. 

2. Fundamental frequency of vibration of air 
column in an open pipe is double that of 
the fundamental frequency of vibration in 
a closed pipe of the same length.
Using the formula and knowing values 

of n, l and end correction velocity of sound 
in air at room temperature can be calculated. 
As discussed earlier, the antinodes are formed 
little beyond the open ends of the pipe. It is 
however not possible to locate the positions 
of the antinodes precisely. Therefore, in 
experiments, the length of the pipe is measured 
and end corrections are incorporated.
6.7.4 Practical Determination of End 
Connection:

An exact method to determine the end 
correction, using two pipes of same diameter 
but different lengths l

1
 and l

2 
, with fundamental 

frequencies n
1
 and n

2 
respectively, is as follows.

For a pipe open at both ends:

 v� � �= =2 21 1 2 2n L n L     using Eq. (6.22)

 � �� �n L n L1 1 2 2

 � �� �� �� �n l e n l e1 1 2 22 2� � � � � � � �

� ���� �� ��� ��� ��� �
�
�� �

�
�� �

e
n l n l

n n

n l n l

n n
1 1 2 2

2 1

2 2 1 1

1 22 2
or     --- (6.29)

For a pipe closed at one end:

 v� � � �= =4 41 1 2 2n L n L

 
� �� � �n L n L1 1 2 2

 
� �� �� �� �� � � � � � � � �n l e n l e1 1 2 2

 � �
�
�� �

e
n l n l

n n
1 1 2 2

2 1

  or  
n l n l

n n
2 2 1 1

1 2

�
�� �   --- (6.30)

Remember this

For correct value of end correction, the inner 
diameter of pipe must be uniform throughout 
its length. It may be noted that effect of flow 
of air and effect of temperature of air outside 
the tube has been neglected.
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Activity

Take a glass 
tube open at both 
ends and clamp 
it so that its one 
end dips into a  
glass cylinder 
containing water 
as shown in the 
accompanying 
figure. By 
changing the 
position of the 
tube at the clamp, 

you can adjust the length of the air column 
in the tube. Hold a vibrating tuning fork of 
frequency 488 Hz or 512 Hz just above the 
open end of the tube and make the air column 
vibrate. What is the difference between the 
sounds that you hear? The sound will be 
louder. This is an example of resonance. 
This set-up is a resonance tube. Note the 
heights of the air column when you hear 
louder sound. Interpret your observations.

Take another tuning fork of the same 
frequency as the first one. Vibrate them 
together above the open end of the tube. Do 
you hear beats? If the two tuning forks are of 
same frequency, you should not hear beats. 
In practice, due to usage, frequencies change 
and in most of the cases, you will hear beats. 
If you do not hear beats, there can be two 
reasons : (i) frequencies of the two forks 
are exactly same or (ii) the frequencies are 
very much different (difference greater than 
6-7 Hz) and we cannot recognize the beats. 
Then wind a piece of thread around the tong 
of one of the tuning fork so that its frequency 
changes slightly. Try to hear the beats. By 
changing the position of the thread, vary the 
frequency and note down your observations 
systematically. What information you get 
from this activity? 

Example 6.4: An air column is of length 
17 cm long. Calculate the frequency of 5th 
overtone if the air column is (a) closed at one 
end and (b) open at both ends. (Velocity of 
sound in air = 340 ms-1).
Solution: Given 
Length of air column = 17cm =  0.17m
Overtone number p = 5 and velocity of sound 
in air = 340 ms-1.
For an air column closed at one end, 

Fundamental frequency n
L

c � �
�

v

4

340

4 0 17
�

.
 

       = 500 Hz
and frequency of pth overtone n p np

c c� �� �2 1

∴ for fifth overtone n5
C � � �� ��2 5 1 500

   = 5500�Hz

For an air column open at both ends, 

Fundamental frequency n
L

0 � �
�

v

2

340

2 0 17
� ��

.
       n = 1000��Hz
and frequency of pth overtone n p n

p

0 � �� �1 0

∴ for fifth overtone       n5
0 5 1 1000� �� ��

        n
5

6000O = ��Hz
Example 6.5 : A closed pipe and an open pipe 
have the same length. Show that no mode of 
the closed pipe has the same wavelength as 
any mode of the open pipe. 

Solution: For a closed pipe (that is a pipe 

closed at one end and open at the other), 

the frequency of allowed modes is given by  

n = 2 +1 n  where n =
4

4p
c c cp

L
� � (superscript 

c and o refer to closed and open pipe 

respectively) using Eqs. (6.21) and (6.16), 

where p is any integer. 

� �
�

 �p
c �

4

2 1

L

p
, where p is any integer.

n0
m
 = (m + 1)n0 and n0 = V/2L. Using Eqs 

(6.28) and (6.23) where m is any integer. ∴ 
λ0

m 
= 

4

2 1

2

1

L

p

L

m�
�

�
�

If � �p
c

m
o�� , it would mean 

4

2 1

2

1

L

p

L

m�
�

�
� .

Or, 2 (m +1) = 2p + 1 which is not possible. 
Hence the two pipes cannot have modes with 
the same frequency or wavelength. 
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Activity Length of loop = 
λ
2

 =l

  ∴λ = 2l
The frequency of vibrations of the string,    
 

n
l

T

m
� �

v

�
1

2
       

v �
�

�
��

�

�
��

T

m

This is the lowest frequency with which 
the string can vibrate. It is the fundamental 

6.7.5 Vibrations Produced in a String:
Consider a string of length l stretched 

between two rigid supports. The linear density 
(mass per unit length of string) is m and the 
tension T acts on the string due to stretching. If 
it is made to vibrate by plucking or by using a 
vibrator like a tuning fork, a transverse wave 
can be produced along the string.  

When the wave reaches to the fixed ends 
of the string, it gets reflected with change 
of phase by π radians. The reflected waves 
interfere with the incident wave and stationary 
waves are formed along the string. The string 
vibrates with different modes of vibrations.

If a string is stretched between two rigid 
supports and is plucked at its centre, the string 
vibrates as shown in Fig 6.11 (a). It consists 
of an antinode formed at the centre and nodes 
at the two ends with one loop formed along 
its length. If λ is the wavelength and l is the 
length of the string, we get

Take two pipes of slightly different 
diameters, open at both the ends, so that 
one pipe can be moved freely inside 
the other. Keep the wider pipe fixed by 

clamping on a stand 
and move the other 
pipe up and down 
by hand as shown in 
the accompanying 
figure. Use a tuning 
fork of frequency 
320 Hz or 288 Hz 
and keep it above the 
open end of the fixed 
pipe. Move the inner 
tube and try to hear 

the various sound patterns and write down 
your observations. Try to analyze the results 
based on the knowledge you have from the 
sound pattern formed with a pipe open at 
both ends.

Fig. 6.11: Different modes of vibrations of a 
stretched string.

(a)

(b)

(c)

frequency of vibrations or the first harmonic.
If the centre of the string is prevented from 

vibrating by touching it with a light object and 
string is plucked at a point midway between 
one of the segments, the string vibrates as 
shown in Fig. 6.11 (b).

Two loops are formed in this mode of 
vibrations. There is a node at the centre of the 
string and at its both ends. If  λ1  is wavelength 

of vibrations, the length of one loop = 
�1

2 2
�

l

 ∴�1�� � l
Thus, the frequency of vibrations is given as
 
 

n
T

m1
1

1
�
�

 n
l

T

m1

1
=�
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Comparing with fundamental frequency 
we get that n

1
=2n.

Thus the frequency of the first overtone 
or second harmonic is equal to twice the 
fundamental frequency.

The string is made to vibrate in such a way 
that three loops are formed along the string as 
shown in Fig. 6.11 (c). If λ2  is the wavelength 
here, the length of one loop is 

�2

2 3
�

l

∴�2

2

3
��

l

Therefore the frequency of vibrations is 

 n
T

m2
2

1
�
�

 n
l

T

m2

3

2
=�

Comparing with fundamental frequency, 
we get that n

2
=3n.

Thus frequency of second overtone or third 
harmonic is equal to thrice the fundamental 
frequency. Similarly for higher modes of 
vibrations of the string, the frequencies of 
vibrations are as 4n, 5n, 6n…etc. Thus all 
harmonics are present in case of a stretched 
string and the frequencies are given by

 n
p
 = pn    --- (6.31)

6.7.6 Laws of a Vibrating String :
The fundamental frequency of a vibrating 

string under tension is given as 
 n

l

T

m
=

1

2
    --- (6.32)

From this formula, three laws of vibrating 
string can be given as follows:
1) Law of length: The fundamental frequency 
of vibrations of a string is inversely proportional 
to the length of the vibrating string, if tension 
and mass per unit length are constant.

         n ∝ 1

l
, if T and m are constant. --- (6.33)

2) Law of tension: The fundamental frequency 
of vibrations of a string is directly proportional 
to the square root of tension, if vibrating length 
and mass per unit length are constant.
    n ∝ T  , if l and m are constant.  --- (6.34)
3) Law of linear density: The fundamental 
frequency of vibrations of a string is inversely 
proportional to the square root of mass per 
unit length (linear density), if the tension and 
vibrating length of the string are constant.

     n ∝ 1

m
 , if T and l are constant. --- (6.35)

If r is the radius and ρ is the density of material 
of string, linear density is given as 

Example 6.6: A string is fixed at both ends. 
What is the ratio of the frequency of the first 
harmonic to that of the second harmonic? 
Solution: For a string of length l fixed at 
both ends, the wavelengths of the first and 
second harmonics are given as l = λ/2 and 
l = λ

1 
respectively. Hence the ratio of their 

frequencies is

 
n

n

l

l1 1

1

2

1

2
� � � ��

/

/
� � �

v

v

�
�

�
�

Example 6.7: The velocity of a transverse 
wave on a string of length 0.5 m is 225 m/s. 
(a) What is the fundamental frequency of a 
standing wave on this string if both ends are 

kept fixed? (b) While this string is vibrating 
in the fundamental harmonic, what is the 
wavelength of sound produced in air if the 
velocity of sound in air is 330 m/s?
Solution:  The wavelength of the 
fundamental mode is λ = 2l, hence the 
fundamental frequency is 

n
l

� � �
�

� �v

�
v m s

m
s

2

225

2 0 5
225 1�

� /

. �
� �   = 225 Hz 

While the string is vibrating in the 
fundamental harmonic, the frequency of 
the sound produced by the string will be 
same as the fundamental frequency of the 
string. The wavelength of sound produced  

is � � �
/

�
� � �

v �m s

s
s

n

330

225 1
=1.467 m.



148

Linear density = mass per unit length
          = volume per unit length × density
  ��(� r 2 l / )�l ρ
As n

m
�∝

1
, if T and l are constant, we get

n
r

� ��
1

2� �

      ∴ n��
1

�
 and �� �n

r
∝

1
           --- (6.36)

Thus the fundamental frequency of 
vibrations of a stretched string is inversely 
proportional to (i) the radius of string and (ii) 
the square root of the density of the material of 
vibrating string.

the weights, the tension in the wire can be 
varied. The movable bridges allow us to 
change the vibrating length AB of the wire.  

Example 6.8: A string 105 cm long is 
fixed at one end. Transverse vibrations of 
frequency 15 Hz are imposed at the free end. 
A stationary wave, produced in the string, 
consists of 3 loops. Calculate the speed of 
progressive waves which have produced the 
stationary wave in the string.
Solution: Given 
Length of string = l = 105 cm = 3 loops
   � ��l � 3

2

�

   
� � � � � ��

2

3

2

3
105 70 0 70� � .l cm �m

Speed of wave = v � n�
  v m s� � � �15 0 70 10 50 1. . �

6.8 Sonometer: 
A sonometer consists of a hollow 

rectangular wooden box called the sound box. 
The sound box is used to make a larger mass 
of air vibrate so that the sound produced by 
the vibrating string (metal wire in this case) 
gets amplified. The same principle is applied 
in stringed instruments such as the violin, 
guitar, tanpura etc. There are two bridges P 
and Q along the width of the box which can be 
moved parallel to the length of box. A metal 
wire of uniform cross-section runs along the 
length of the box over the bridges. It is fixed at 
one end and its other end passes over a pulley. 
A hanger with suitable slotted weights can be 
attached to the free end of wire. By changing 

If the wire is plucked at a point midway 
between the bridges, transverse waves are 
produced in the wire. Stationary waves are 
produced between the two bridges due to 
reflection of transverse wave at the bridges 
and their superposition. Thus portion AB of 
the wire between the two bridges P and Q is 
the vibrating length. Wire can also be made to 
vibrate by holding a vibrating tuning fork near 
it. The frequency of vibration is then same 
as that of the tuning fork. If this frequency 
happens to be one of the natural frequencies of 
the wire, standing waves with large amplitude 
are set up in the wire since the two vibrate in 
resonance. 

To identify the resonance, a small piece of 
paper, known as the rider R, is placed over the 
wire at a point in the middle of the length AB 
as determined by the position of the bridges P 
and Q. If the frequency of the tuning fork and 
of the fundamental mode of vibration of the 
wire match (this is achieved by adjusting the 
length AB of wire using the bridges P and Q), 
the paper rider happens to be at the antinode 
and flies off the wire.    

Sonometer can be used to verify the laws 
of a vibrating string.
1) Verification of first law of a vibrating 
string: 

By measuring length of wire and its 
mass, the mass per unit length (m) of wire is 
determined. Then the wire is stretched on the 

Fig. 6.12: Experimental set-up of a sonometer.
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sonometer and the hanger is suspended from 
its free end. A suitable tension (T) is applied 
to the wire by placing slotted weights on the 
hanger. The length of wire (l

1
) vibrating with 

the same frequency (n
1
) as that of the tuning 

fork is determined as follows. 
A light paper rider is placed on the wire 

midway between the bridges. The tuning fork 
is set into vibrations by striking on a rubber 
pad. The stem of tuning fork is held in contact 
with the sonometer box. By changing distance 
between the bridges without disturbing paper 
rider, frequency of vibrations of wire is 
changed. When the frequency of vibrations of 
wire becomes exactly equal to the frequency of 
tuning fork, the wire vibrates with maximum 
amplitude and the paper rider is thrown off.

In this way a set of tuning forks having 
different frequencies n

1
,
 
n

2
,
 
n

3
,
 
…………are 

used and corresponding vibrating lengths of 
wire are noted as l

1
, l

2
, l

3
……….by keeping the 

tension T constant . We will observe that
n

1
l
1 
= n

2
l
2
 = n

3
l
3
 =…….= constant, for constant 

value of tension (T) and mass per unit length 
(m).
∴nl = constant

i.e., n ∝ 
1

l
 , if T and m are constant.

Thus, the first law of a vibrating string is 
verified by using a sonometer.
2) Verification of second law of a vibrating 
string: 

The vibrating length (l) of the given wire 
of mass per unit length (m) is kept constant for 
verification of second law. By changing the 
tension the same length is made to vibrate in 
unison with different tuning forks of various 
frequencies. If tensions T

1
, T

2
, T

3
……..

correspond to frequencies n
1
, n

2
, n

3
,………etc. 

we will observe that.

       

n

T

n

T

n

T
1

1

2

2

3

3

� � ���� �.. constant

       or 
n

T �
= constant  

    ∴ n T∝   if  l and m are constant. This is 
the second law of a vibrating string.
3) Verification of third law of a vibrating 
string: 

For verification of third law of a vibrating 
string, two wires having different masses per 
unit lengths m

1
 and m

2
 (linear densities) are 

used. The first wire is subjected to suitable 
tension and made to vibrate in unison with 
given tuning fork. The vibrating length is noted 
as (l

1
). Using the same fork, the second wire 

is made to vibrate under the same tension and 
the vibrating length (l

2
) is determined. Thus the 

frequency of vibration of the two wires is kept 
same under same applied tension T.  It is found 
that, 
  

l m l m1 1 2 2� =

  l m�= constant
But by first law of a vibrating string, n ∝ 

1

l
Therefore we get that, n ∝ 

1

m
, if T and l 

are constant. This is the third law of vibrating 
string.

In this way, laws of a vibrating string are 
verified by using a sonometer.

Example 6.9: A sonometer wire of length 
50 cm is stretched by keeping weights 
equivalent of 3.5 kg. The fundamental 
frequency of vibration is 125 Hz. Determine 
the linear density of the wire.
Solution: Given,  l = 50 cm = 0.5 m , T = 3.5 
kg × 9.8 m/s2  = 34.3 N, n = 125 Hz

n =
1

2l

T

m

∴ n
l

T

m
2

2

1

4
=

∴ m
T

n l
=

4 2 2

� �
�� � �� �

m
34 3

4 125 0 5
2 2

.

.

� � � � �m 2 195 10 3 1. �kg�m
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6.9 Beats:
This is an interesting phenomenon 

based on the principle of superposition of 
waves. When there is superposition of two 
sound waves, having same amplitude but 
slightly different frequencies, travelling in the 
same direction, the intensity of sound varies 
periodically with time. This phenomenon is 
known as production of beats.

The occurrences of maximum intensity 
are called waxing and those of minimum 
intensity are called waning. One waxing and 
successive waning together constitute one 
beat. The number of beats heard per second is 
called beat frequency.
6.9.1 Analytical method to determine beat 
frequency:

Consider two sound waves, having same 
amplitude and slightly different frequencies 
n

1 
and n

2
. Let us assume that they

 
arrive in 

phase at some point x of the medium. The 
displacement due to each wave at any instant 
of time at that point is given as 

y a n t
x

1 1
1

2� �
�

�
�

�

�
�

�
�
�

��

�
�
�

��
sin� �

� 

y a n t
x

2 2
2

2� �
�

�
�

�

�
�

�
�
�

��

�
�
�

��
sin� �

�
Let us assume for simplicity that the listener 
is at x = 0. 
    ∴ ������� sin( )y a n t1 12� �

Example 6.10: Two wires of the same 
material and the same cross section are 
stretched on a sonometer in succession. 
Length of one wire is 60 cm and that of the 
other is 30 cm. An unknown load is applied 
to the first wire and second wire is loaded 
with 1.5 kg.  If both the wires vibrate 
with the same fundamental frequencies, 
calculate the unknown load.
Solution: Two wires are given to be of the 
same material and having the same cross 
section, 
 � � �m m m1 2

Same fundamental frequency, n n n1 2= =
l
1 
= 60 cm = 0.6 m,  l

2
 = 30 cm  = 0.3 m,   

T
2
 = 1.5 ×9.8 N

 For the first wire, n
l

T

m1
1

1

1

1

2
=

 
 For the second wire, n

l

T

m2
2

2

2

1

2
=

 
� �

�
�

n

n

l

l

T m

T m
1

2

2

1

1 2

2 1

 

 � �
�

� �
n

n

T m

m

0 3

0 6 1 5 9 8
1.

. . .

 � �
�

1
1

2 1 5 9 8
1T

. .

 � �
�

2
1 5 9 8

1T

. .

    or, 4
1 5 9 8

1�
�
T

. .
 ∴T1 6 9 8� � . �N

 ∴Applied load = 6 kg.
Example 6.11: A wire has linear density 
4.0 × 10-3 kg/m.  It is stretched between 
two rigid supports with a tension of 360 N. 
The wire resonates at a frequency of 420 
Hz and 490 Hz in two successive modes. 
Find the length of the wire.

Solution: Given m = 4.0 × 10-3 kg/m, T = 

360 N. Let the wire vibrate at 420 Hz and 

490 Hz in its pth and (p+1)th harmonics. 

Then n
p
 = p.n where n

l

T

m
=

1

2
 is  the 

fundamental frequency

420 Hz = p

l

T

m2
   and  490 Hz = p

l

T

m

+1

2 

� �
�

� �
490

420

1p

p
or, p = 6
Using this value of p, for the frequency of 
pth harmonic, we get

420 Hz = 
6

2

360

4 0 10 3l

�

. � � /

N

kg m� �    = 
900

l
 m/s

∴ l = 900/420 m = 2.143 m
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    and   y a n t2 22� sin( )�
According to the principle of superposition of 
waves,
 y y y� �1 2

 ∴ y a n t a n t� � sin �� � � � � �2 21 2� �sin
or,  

y a
n n

t
n n

t�
��

�
�

�
�
�

�

�
�

�

�
�

��
�
�

�
�
�

�

�
�

�

�
�2 2

2
2

2
1 2 1 2 sin cos� �

     --- (6.37)
[By using formula,

sin � sin sin �]C D
C D C D

� �
��

�
�

�
�
�

��
�
�

�
�
�2

2 2
cos

Rearranging the above equation, we get

y a
n n

t
n n

t�
�� ��

�
�

�

�
�

�� ��

�
�

�

�
�2

2

2

2

2
1 2 1 2� � �cos sin

� �

Substituting  2
2

2
1 2� �

( )
a

n n
t Acos

� ��
��

�
��
�    

and   n n
n1 2

2

�
� , we get

 y A nt� � ��sin 2�   --- (6.38)
This is the equation of a progressive wave 

having frequency n and amplitude A. The 
frequency n is the mean of the frequencies n

1 

and n
2
 of arriving waves while the amplitude A 

varies periodically with time.
The intensity of sound is proportional 

to the square of the amplitude. Hence the 
resultant intensity will be maximum when the 
amplitude is maximum.
For maximum amplitude (waxing),
 A a� �2

 ∴  �� �
( )

2
2

2
21 2a

n n
t acos

� ��
��

�
��
� �

or, �
( )

cos
2

2
11 2� n n

t
��

��
�
��
� �

i.e.,

 

     2
2

0 2 31 2� � � �
n n

t
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�
�

�
�
�

�

�
�

�

�
� � , , , ,……

∴ � ,��t
n n

�
�

0
1

1 2
, �� ,��

,
, .

2 3

1 2 1 2n n n n� �
�

Thus, the time interval between two 
successive maxima of sound is always 1

1 2n n−
.  

 
Hence the period of beats is T =

1

1 2n n− .

The number of waxing heard per second is the 
reciprocal of period of waxing.
  ∴  frequency of beats, N = n

1 
– n

2       
--- (6.39)

The intensity of sound will be minimum 
when amplitude is zero (waning):
For minimum amplitude, A = 0,

∴ 2 2
2

01 2a
n n

t cos �
��
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�
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�
�

�

�
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 or,    
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01 2�
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∴ 2
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�
� � ��, �, ...

∴ t = 
1

2

3

2

5

21 2 1 2 1 2(
�,��

(
�,��

() ) )n n n n n n− − −
,

Therefore time interval between two 
successive minima is also 1

1 2( )n n−
, which is 

expected. 

Fig. 6.13: Superposition of two harmonic waves 
of nearly equal frequencies resulting in the 
formation of beats.

By comparing the instances of successive 
waxing and waning, we come to know that 
waxing and waning occur alternately with 
equal frequency.

The variation in the loudness of sound 
that goes up and down is the phenomenon 
of formation of beats. It can be considered 
as superposition of waves and formation of 
standing waves in time at one point in space 
where waves of slightly different frequencies 
are passing. The two waves are in and out 
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Activity

Remember this

of phase giving constructive and destructive 
interference. The interval between two 
maximum sound intensities is the time period 
of beats. 

   When a source of sound and the listener 
are in relative motion, the listener detects 
a sound whose frequency is different from 
the actual or original frequency of the 
sound source. This is Doppler effect. 
A microwave signal (pulse) of known 

frequency is sent towards the moving airplane. 
Principle of Doppler effect giving the apparent 
frequency when the source and observer are 
in relative motion applies twice, once for 
the signal sent by the microwave source and 
received by the airplane and second time 
when the signal is reflected by the airplane 
and is received back at the microwave 
source. Phenomenon of beats, arising due to 
the difference in frequencies produced by 
the source and received at the source after 
reflection from the air plane, allows us to 
calculate the velocity of the air plane. 

The same principle is used by traffic 
police to determine the speed of a vehicle to 
check whether speed limit is exceeded. Sonar 
(Sound navigation and ranging) works on 
similar principle for determining speed of 
submarines using a sound source and sensitive 
microphones.

Doppler ultrasonography and echo 
cardiogram work on similar principle. Doctors 
use an analogous set up to assess the direction 
and speed of blood flow in a human body and 
identify circulation problems. Measurement of 
the dimension of the blood vessels can be used 
to estimate the volume flow rate. Ultrasound 
beams also determine phase shifts to diagnose 
vascular problems in arteries and veins.  
 3]  Unknown frequency of a sound note can 

be determined by using the phenomenon 
of beats. Initially the sound notes of 
known and unknown frequency are heard 
simultaneously. The known frequency 
from a source of adjustable frequency 
is adjusted in such a way that the beat 
frequency reduces to zero. At this stage 
frequencies of both the sound notes 
become equal. Hence unknown frequency 
can be determined.

We can hear beats if the frequency difference 
between the two superimposed waves is 
very small (practically less than 6-7 Hz, 
for normal human ear). At frequencies 
higher than these, individual beats cannot 
be distinguished from the sound that is 
produced.

• Take two tuning forks of the same 
frequency.

• Put some wax on the prongs of one of 
the forks.

• Vibrate both the tuning forks and keep 
them side by side.

• Listen to the periodic vibrations of 
loudness of resulting sound.

• How many beats have you heard in one 
minute?

• Can you guess whether frequency of 
tuning fork is increased or decreased by 
applying wax on the prong?

• How you can find the new frequency of 
the fork after applying wax on it.

6.9.2 Applications of beats :
 1] The phenomenon of beats is used for 

matching the frequencies of different 
musical instruments by artists. They go 
on tuning until no beats are heard by 
their sensitive ears. When beat frequency 
becomes equal to zero, the musical 
instruments are in unison with each other 
i.e., their frequencies are identical and 
the effect of playing such instruments 
together gives a pleasant music.

 2]  The speed of an airplane can be determined 
by using Doppler RADAR. 
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Example 6.12: Two sound waves having 
wavelengths 81cm and 82.5 cm produce 
8 beats per second. Calculate the speed of 
sound in air.
Solution: Given  
 λ

1  
=  81 cm  =  0.81 m

 λ
2
 =  82.5 cm  =  0.825 m

 n1
1 0 81

� ��
.

v v

�    
 n2

2 0 825
� ��

.

v v

�

Here ���� ,��� ��� �1 2 1 2� ��n n  .  
As 8 beats are produced per second,

n n1 2 8� �

� � �
v v

� �1 2

8
    

∴ v
1 1

8
1 2� �
�

�

�
�

�

�
� �

� ��
��

�
��
�v

1

0 81

1

0 825
8

. .

� �v 356 4.

Example 6.13: Two tuning forks having 
frequencies 320 Hz and 340 Hz are sounded 
together to produce sound waves. The 
velocity of sound in air is 326.4 m s-1. Find 
the difference in wavelength of these waves.
Solution: Given  
n

1 
= 320 Hz, n

2 
= 340 Hz, v = 326.4 m s-1.

v � �n n1 1 2 2� �
Here, n

1
 < n

2
,   ∴λ1 > λ2 

 
� � � �� �1 2

1 2
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v v

n n
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�

�
�

�

�
�� �1 2

1 2

1 1
� v

n n     

� � � ��
��

�
��

� �1 2 326 4
1

320

1

340� .
     
∴λ1 - λ2 = 0.06 m

sound wave travels through a medium, there 
are regions of compressions and rarefactions. 
Thus there are changes in pressure. When 
a sound is heard, say by a human, the wave 
exerts pressure on the human ear. The pressure 
variation is related to the amplitude and hence 
to the intensity. Depending on the sound 
produced, the variation in this pressure is  
from 28 Pa for the loudest tolerable sound 
to 2.0 × 10-5 Pa for the feeblest sound like 
a whisper that can be heard by a human. 
Intensity is a measurable quantity while 
the sensation of hearing or loudness is very 
subjective. It is therefore important to find 
out how does a sound of intensity I affect a 
detectable change ∆I in the intensity for the 
human ear to note. It is known that the value 
of such ∆I depends linearly on intensity I and 
this fact allows humans to deal with a large 
variation in intensity. 

The response of human ear to sound is 
exponential and not linear. It depends upon the 
amount of energy crossing unit area around a 
point per unit time. Intensity is proportional to 
the square of amplitude. It also depends upon 
various other factors like distance of source 
from the listener, the motion of air, density of 
medium, the surface area of sounding body etc. 
The presence of other resonant objects around 
the sounding body also affects loudness of 
sound.

Scientifically, sound is specified not by its 
intensity but by the sound level β (expressed in 
decibles (dB)),  defined as

  � �
�

�
�

�

�
�10 10

0

�log
I

I
,    --- (6.40)

where I
0
 is a minimum reference intensity  

(10-12 W/m2) that a normal human ear can hear. 
Sound levels are then expressed in decibel 
(dB). When I = I

0
, β =

 
0, thus the standard 

reference intensity has measure of sound level 
0 dB. The unit of difference in loudness is bel. 
You have studied about this unit in XIth Std.

6.10 Characteristics of Sound:
Sound has three characteristics: loudness, 
pitch and quality.
1. Loudness:  Loudness is the human perception 
to intensity of sound. We know that when a 
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A sequence of frequencies which have a 
specific relationship with each other is called 
a musical scale.  Normally both in Indian 
classical music and western classical music, 
eight frequencies, in specific ratio, form an 
octave, each frequency denoting a specific 
note. In a given octave frequency increases 
along sa re ga ma pa dha ni så (as well as 
along Do Re Mi Fa So La Ti Dò). An example 
of values of frequencies is 240, 270, 300, 320, 
360, 400, 450, 480 Hz respectively.
6.11 Musical instruments: 

Audible waves originate in vibrating 
strings, vibrating air columns and vibrating 
plates and membranes. Accordingly, musical 
instruments are classified into three main types. 
(a) Stringed instruments (b) wind instruments 
(c) percussion instruments.
a) Stringed instruments: consist of stretched 
strings. Sound is produced by plucking of 
strings. The strings are tuned to certain 
frequencies by adjusting tension in them. They 
are further of three different types. 
1) Plucked string type: In these instruments 
string is plucked by fingers, e.g., tanpura, 
sitar, guitar, veena, etc.
2) Bowed string type: In these instruments, a 
string is played by bowing, e.g., violin, sarangi.
3) Struck string type: the string is struck by a 
stick , e.g. santoor, piano.
b) Wind instruments: These instruments 
consist of air column. Sound is produced by 
setting vibrations of air column. They are 
further of three different types
1) Freewind type: In these instruments free 
brass reeds are vibrated by air. The air is 
either blown or compressed. e.g., mouth organ, 
harmonium etc.
2) Edge type: In these instruments air is blown 
against an edge. e.g., Flute.
3) Reedpipes: They may consists of single 
or double reeds and also instruments without 
reeds .e.g., saxophone, clarinet (single reed), 
bassoon (double reed), bugle (without reed).

1
1

10
 decibel bel=

As mentioned above, minimum audible 
sound is denoted by 0 dB while whispering 
and normal speech have levels 10 dB and 60 
dB respectively at a distance of approximately 
1 m from the source. The intensity level of 
maximum tolerable sound for a human ear is 
around 120 dB.   

Loudness is different at different 
frequencies, even for the same intensity. For 
measuring loudness the unit phon is used. 
Phon is a measure of loudness. It is equal to 
the loudness in decibel of any equally loud 
pure tone of frequency 1000Hz.
2. Pitch: It is a sensation of sound which 
helps the listener to distinguish between a high 
frequency and a low frequency note. Pitch is 
the human perception to frequency- higher 
frequency denotes higher pitch. The pitch of 
a female voice is higher than that of a male 
voice. 
3. Quality or timbre: Normally sound 
generated by a source has a number of frequency 
components with different amplitudes. Quality 
of sound is that characteristic which enables 
us to distinguish between two sounds of same 
pitch and loudness. We can recognize the 
voice of a person or an instrument due to its 
quality of sound. Quality depends on number 
of overtones present in the sound along with a 
given frequency.  

A sound which produces a pleasing 
sensation to the ear is a musical sound. It is 
produced by regular and periodic vibrations 
without any sudden change in loudness. 
Musical sound has certain well-defined 
frequencies with sizable amplitude; these 
are normally harmonics of a fundamental 
frequency. A mixture of sounds of different 
frequencies which do not have any relation 
with each other produces what we call a noise. 
Noise therefore is not pleasant to hear. If in 
addition, it is loud, it may cause headaches. 
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c)  Percussion instruments: In these 
instruments sound is produced by setting 
vibrations in a stretched membrane. e.g., tabla, 
drum, dhol, mridangam, sambal, daphali,etc.
These instruments sometimes also consist of 
metal plates which produce sound when they 
are struck against each other or with a beater. 
e.g., cymbals (i.e., jhanja), xylophone,  etc.

A blow on the membrane or plate or 
plucking of string produces vibrations with 
one fundamental and many overtones. 
Superposition of several natural modes of 
oscillations with different amplitudes and 
hence intensities characterize different 
musical instruments. We can thus distinguish 
the instruments by their sounds.

Production of different notes by musical 
instrument depends on the creation of stationary 
waves. For a stringed instrument such as guitar 
or sitar, the two ends of the string are fixed. 
Depending on where the string is plucked, 
stationary waves of various modes can be 
produced, plucking at the midpoint produces 
the minimum frequency or the fundamental 
mode of vibration. In wind instruments, air 
column is made to vibrate by blowing. By 
changing the length of air column note can be 
changed. In wind instrument like flute, holes 
can be uncovered to change the vibrations of 
air column this changes the pattern of nodes 
and antinodes. 

In practice, sound produced is made up 
of several stationary waves having different 
patterns of nodes and antinodes. Musicians 
skill lies in stimulating the string or air column 
to produce the desired mixture of frequencies.

Do you know?

Sir C.V. Raman, the great physicist and 
the first Noble Laureate of India, had done 
research on the Indian classical musical 
instruments such as mridangam and 
tabla. Read more about his research work 
in this field from website: https://www.
livehistoryindia.com c.v.ramans work on 
Indian music. 

Internet my friend

• https:/ /www.acs.psu.edu/drussell/
Demos/superposition/superposition.html

• https:/ /www.acs.psu.edu/drussell/
demos.html

• h t t p s : / / w w w . g o o g l e . c o m /
s e a r c h ? c l i e n t = f i r e f o x - b -
d&q=superposition+of+waves

• https://www.youtube.com/watch?v=J_
Oto3mUIuk

• h t t p s : / / w w w . y o u t u b e . c o m /
watch?v=GsP5LqGtkwE

• h t t p s : / / w w w . a c s . p s u . e d u /
drusse l l /Demos /S tandingWaves /
StandingWaves.html

• https://www.physicsclassroom.com/
class/waves/Lesson-4/Formation-of-
Standing-Waves

• https://www.physicsclassroom.com/
class/waves/Lesson-4/Formation-of-
Standing-Waves

• https://www.youtube.com/watch?v=-
D9UlPcJSRM

• h t t p s : / / w w w . y o u t u b e . c o m /
watch?v=jHjXNFmm8y4

• h t t p s : / / w w w . y o u t u b e . c o m /
watch?v=BWqyXHKhaZ8

• https://physics.info/waves-standing/

• h t t p s : / / w w w . y o u t u b e . c o m /
watch?v=nrJrV_Gn_Cw&t=661s
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1. Choose the correct option.
 i)  When an air column in a pipe closed at 

one end vibrates such that three nodes 
are formed in it, the frequency of its 
vibrations is …….times the fundamental 
frequency.

  (A) 2       (B) 3      (C) 4              (D) 5
 ii)  If two open organ pipes of length 50 cm 

and 51 cm sounded together produce 7 
beats per second, the speed of sound is. 

  (A) 307 m/s       (B) 327m/s 
         (C) 350m/s        (D) 357m/s  
 iii)  The tension in a piano wire is increased 

by 25%. Its frequency becomes ….. times 
the original frequency. 

  (A) 0.8    (B) 1.12   (C) 1.25    (D) 1.56
 iv) Which of the following equations 

represents a wave travelling along the 
y-axis? 

  (A)  � sinx A ky t� �� ��   
  (B)  y A kx t� �� �sin �
  (C)  y A ky t� � �sin ( )cos �
  (D)  y A ky t� � �cos ( )sin �

 v)  A standing wave is produced on a string 
fixed at one end with the other end free. 
The length of the string 

  (A) must be an odd integral multiple of 
λ/4.

  (B) must be an odd integral multiple of 
λ/2.

  (C) must be an odd integral multiple of λ.
  (D) must be an even integral multiple of λ.
2. Answer in brief. 
 i) A wave is represented by an equation  y = 

A sin (Bx + Ct). Given that the constants 
A, B and C are positive, can you tell in 
which direction the wave is moving?

 ii) A string is fixed at the two ends and is 
vibrating in its fundamental mode. It is 
known that the two ends will be at rest. 
Apart from these, is there any position on 
the string which can be touched so as not 
to disturb the motion of the string? What 

will be the answer to this question if the 
string is vibrating in its first and second 
overtones? 

 iii) What are harmonics and overtones?
 iv) For a stationary wave set up in a string 

having both ends fixed, what is the ratio 
of the fundamental frequency to the 
second harmonic?

 v) The amplitude of a wave is represented by 

y
t x

� ��
��

�
��

0 2 4
0 08 0 8

. sin
. .

�
 in SI units.

 
  Find (a) wavelength, (b) frequency and 

(c) amplitude of the wave.
[(a) 0.4 m (b) 25 Hz (c) 0.2 m]  

 3.  State the characteristics of progressive 
waves.

 4.  State the characteristics of stationary 
waves.

 5. Derive an expression for equation of 
stationary wave on a stretched string.

 6.  Find the amplitude of the 
resultant wave produced due to 
interference of two waves given as 
y A t1 1� sin�   y A t2 2� �� �sin � �

 7.  State the laws of vibrating strings and 
explain how they can be verified using a 
sonometer.

 8.  Show that only odd harmonics are present 
in the vibrations of air column in a pipe 
closed at one end.

 9.  Prove that all harmonics are present in 
the vibrations of the air column in a pipe 
open at both ends.

 10.  A wave of frequency 500 Hz is travelling 
with a speed of 350 m/s. 

  (a) What is the phase difference between 
two displacements at a certain point at 
times 1.0 ms apart? (b) what will be the 
smallest distance between two points 
which are 45º out of phase at an instant 
of time? 

                                     [Ans : π, 8.75 cm ]

Exercises
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 11.  A sound wave in a certain fluid medium 
is reflected at an obstacle to form a 
standing wave. The distance between 
two successive nodes is 3.75 cm. If the 
velocity of sound is 1500 m/s, find the 
frequency.

                                            [Ans : 20 kHz]
 12. Two sources of sound are separated by 

a distance 4 m. They both emit sound  
with the same amplitude and frequency 
(330 Hz), but they are 180º out of phase. 
At what points between the two sources, 
will the sound intensity be maximum? 
(Take velocity of sound to be 330 m/s) 
          [Ans: ± 0.25, ± 0.75, ± 1.25 and        
± 1.75 m from the point at the center] 

 13.  Two sound waves travel at a speed of 330 
m/s. If their frequencies are also identical 
and are equal to 540 Hz, what will be 
the phase difference between the waves 
at points 3.5 m from one source and 3 m 
from the other if the sources are in phase?    

                                             [Ans : 1.636 π] 
 14. Two wires of the same material and 

same cross section are stretched on a 
sonometer. One wire is loaded with 1.5 
kg and another is loaded with 6 kg. The 
vibrating length of first wire is 60 cm and 
its fundamental frequency of vibration 
is the same as that of the second wire. 
Calculate vibrating length of the other 
wire.

                                               [Ans: 1.2 m] 
 15. A pipe closed at one end can produce 

overtones at frequencies 640 Hz, 896 Hz 
and 1152 Hz. Calculate the fundamental 
frequency. 

                                              [Ans: 128 Hz]
 16. A standing wave is produced in a tube 

open at both ends. The fundamental 
frequency is 300 Hz. What is the length 
of tube in the fundamental mode? (speed 
of the sound= 340 m s-1). [Ans: 0.5666 m]

 17.  Find the fundamental, first overtone and 
second overtone frequencies of a pipe, 
open at both the ends, of length 25 cm if 
the speed of sound in air is 330 m/s. 

              [Ans: 660 Hz, 1320 Hz, 1980 Hz]  

 18. A pipe open at both the ends has a 
fundamental frequency of 600 Hz. The 
first overtone of a pipe closed at one 
end has the same frequency as the first 
overtone of the open pipe. How long are 
the two pipes? (Take velocity of sound to 
be 330 m/s)

                         [Ans : 27.5 cm, 20.625 cm]  
 19.  A string 1m long is fixed at one end. 

Transverse vibrations of frequency 15 Hz 
are imposed at the free end.  Due to this, a 
stationary wave with four complete loops, 
is produced on the string. Find the speed 
of the progressive wave which produces 
the stationary wave.[Hint: Remember 
that the free end is an antinode.]

                                            [Ans: 6.67 m s-1]
 20.  A violin string vibrates with fundamental 

frequency of 440Hz. What are the 
frequencies of first and second overtones?

                              [Ans: 880 Hz, 1320 Hz]
 21. A set of 8 tuning forks is arranged in a 

series of increasing order of frequencies. 
Each fork gives 4 beats per second with 
the next one and the frequency of last 
fork is twice that of the first. Calculate 
the frequencies of the first and the last 
fork. 

                                    [Ans: 28 Hz, 56 Hz]
 22.  A sonometer wire is stretched by tension 

of 40 N. It vibrates in unison with a 
tuning fork of frequency 384 Hz. How 
many numbers of beats get produced in 
two seconds if the tension in the wire is 
decreased by 1.24 N?

                                            [Ans: 12 beats]
 23.  A sonometer wire of length 0.5 m is 

stretched by a weight of 5 kg. The 
fundamental frequency of vibration is 
100 Hz. Calculate linear density of wire. 
                                 [Ans: 4.9×10-3 kg/m]

 24.  The string of a guitar is 80 cm long and 
has a fundamental frequency of 112 Hz. If 
a guitarist wishes to produce a frequency 
of 160 Hz, where should the person press 
the string?     [Ans : 56 cm from one end]


