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Can you tell?

Can you recall?

5.1 Introduction: 
Oscillation is a very common and 

interesting phenomenon in the world of Physics. 
In our daily life we come across various 
examples of oscillatory motion, like rocking 
of a cradle, swinging of a swing, motion of the 
pendulum of a clock, the vibrations of a guitar 
or violin string, up and down motion of the 
needle of a sewing machine, the motion of the 
prongs of a vibrating tuning fork, oscillations 
of a spring, etc. In these cases, the motion 
repeated after a certain interval of time is a 
periodic motion. Here the motion of an object 
is mostly to and fro or up and down. 

Oscillatory motion is a periodic motion. In 
this chapter, we shall see that the displacement, 
velocity and acceleration for this motion can be 
represented by sine and cosine functions. These 
functions are known as harmonic functions. 
Therefore, an oscillatory motion obeying such 
functions is called harmonic motion. After 
studying this chapter, you will be able to 
understand the use of appropriate terminology 
to describe oscillations, simple harmonic 
motion (S.H.M.), graphical representations 
of S.H.M., energy changes during S.H.M., 
damping of oscillations, resonance, etc. 
5.2 Explanation of Periodic Motion:

Any motion which repeats itself after 

a definite interval of time is called periodic 
motion. A body performing periodic motion 
goes on repeating the same set of movements. 
The time taken for one such set of movements 
is called its period or periodic time. At the end 
of each set of movements, the state of the body 
is the same as that at the beginning. Some 
examples of periodic motion are the motion 
of the moon around the earth and the motion 
of other planets around the sun, the motion of 
electrons around the nucleus, etc. As seen in 
Chapter 1, the uniform circular motion of any 
object is thus a periodic motion. 

Another type of periodic motion in 
which a particle repeatedly moves to and 
fro along the same path is the oscillatory or 
vibratory motion. Every oscillatory motion is 
periodic but every periodic motion need not be 
oscillatory. Circular motion is periodic but it is 
not oscillatory.

The simplest form of oscillatory periodic 
motion is the simple harmonic motion in which 
every particle of the oscillating body moves 
to and fro, about its mean position, along a 
certain fixed path. If the path is a straight line, 
the motion is called linear simple harmonic 
motion and if the path is an arc of a circle, 
it is called angular simple harmonic motion. 
The smallest interval of time after which the to 
and fro motion is repeated is called its period 
(T) and the number of oscillations completed 
per unit time is called the frequency (n) of the 
periodic motion. 

5. Oscillations

1. What do you mean by linear motion 
and angular motion?

2. Can you give some practical examples 
of oscillations in our daily life?

3. What do you know about restoring 
force?

4. All musical instruments make use of 
oscillations, can you identify, where?

5. Why does a ball floating on water 
bobs up and down, if pushed down and 
released?

Is the motion of a leaf of a tree blowing in 
the wind periodic?

5.3 Linear Simple Harmonic Motion 
(S.H.M.): 

Place a rectangular block on a smooth 
frictionless horizontal surface. Attach one end 
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(a)

Remember this

of a spring to a rigid wall and the other end to 
the block as shown in Fig. 5.1. Pull the block 
of mass m towards the right and release it. The 
block will begin its to and fro motion on either 
side of its equilibrium position. This motion is 
linear simple harmonic motion. 

 f kx��                                --- (5.1)
where, k is a constant that depends upon the 
elastic properties of the spring. It is called the 
force constant. The negative sign indicates 
that the force and displacement are oppositely 
directed. 

If the block is displaced towards left from 
its equilibrium position, the force exerted by 
the spring on the block is directed towards the 
right and its magnitude is proportional to the 
displacement from the mean position. (Fig. 
5.1(c))

Thus, f = - kx can be used as the equation 
of motion of the block.

Now if the block is released from the 
rightmost position, the restoring force exerted 
by the spring accelerates it towards its 
equilibrium position. The acceleration (a) of 
the block is given by,  

 a
f

m

k

m
x� � ��

�
�

�
�
�                        --- (5.2)

where, m is mass of the block. This shows 
that the acceleration is also proportional to 
the displacement and its direction is opposite 
to that of the displacement, i.e., the force and 
acceleration are both directed towards the 
mean or equilibrium position. 

As the block moves towards the mean 
position, its speed starts increasing due to 
its acceleration, but its displacement from 
the mean position goes on decreasing. When 
the block returns to its mean position, the 
displacement and hence force and acceleration 
are zero. The speed of the block at the mean 
position becomes maximum and hence its 
kinetic energy attains its maximum value. 
Thus, the block does not stop at the mean 
position, but continues to move beyond the 
mean position towards the left. During this 
process, the spring is compressed and it exerts 
a restoring force on the block towards right. 
Once again, the force and displacement are 
oppositely directed. This opposing force 
retards the motion of the block, so that the 

Fig. 5.1 (a), (b) and (c):  Spring mass oscillator.

Fig. 5.1(b) shows the equilibrium position 
in which the spring exerts no force on the 
block. If the block is displaced towards the 
right from its equilibrium position, the force 
exerted by the spring on the block is directed 
towards the left [Fig. 5.1(a)]. On account of its 
elastic properties, the spring tends to regain its 
original shape and size and therefore it exerts a 
restoring force on the block. This is responsible 
to bring it back to the original position. This 
force is proportional to the displacement but its 
direction is opposite to that of the displacement. 
If x is the displacement, the restoring force f is 
given by,

For such a motion, as a convention, we shall 
always measure the displacement from the 
mean position. Also, as the entire motion 
is along a single straight line, we need not 
use vector notation (only ±  signs will be 
enough).
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Activity

Remember this

Use your brain power

speed goes on reducing and finally it becomes 
zero. This position is shown in Fig. 5.1(c). In 
this position the displacement from the mean 
position and restoring force are maximum. 
This force now accelerates the block towards 
the right, towards the equilibrium position. The 
process goes on repeating that causes the block 
to oscillate on either side of its equilibrium 
(mean) position. Such oscillatory motion along 
a straight path is called linear simple harmonic 
motion (S.H.M.). Linear S.H.M. is defined as 
the linear periodic motion of a body, in which 
force (or acceleration) is always directed 
towards the mean position and its magnitude 
is proportional to the displacement from the 
mean position. 

If there is friction between a block and 
the resting surface, how will it govern the 
motion of the block?

A complete oscillation is when the object 
goes from one extreme to other and back to 
the initial position. 
The conditions required for simple harmonic 
motion are:
1. Oscillation of the particle is about a 

fixed point.
2. The net force or acceleration is always 

directed towards the fixed point.
3. The particle comes back to the fixed 

point due to restoring force.
Harmonic oscillation is that oscillation 
which can be expressed in terms of a single 
harmonic function, such as  x a t� �sin� �or   
x a t� �cos�
Non-harmonic oscillation is that oscillation 
which cannot be expressed in terms of single 
harmonic function. It may be a combination 
of two or more harmonic oscillations such 
as x  = a sinωt  + b sin2ωt , etc.

Some experiments described below can be 
performed in the classroom to demonstrate 
S.H.M. Try to write their equations.

5.4 Differential Equation of S.H.M. :
In a linear S.H.M., the force is directed 

towards the mean position and its magnitude 
is directly proportional to the displacement 
of the body from mean position. As seen in  
Eq. (5.1), 

    f = - kx
where k is force constant and x is displacement 
from the mean position. 
According to Newton’s second law of motion, 
 f = ma  ∴ ma = - kx          --- (5.3)

The velocity of the particle is, v�=
dx

dt
  

(a) A hydrometer is 
immersed in a glass jar 
filled with water. In the 
equilibrium position 
it floats vertically in 
water. If it is slightly 

depressed and released, it bobs up and down 
performing linear S.H.M.
(b) A U-tube is filled with a sufficiently long 
column of mercury. Initially when both the 

arms of U tube are exposed 
to atmosphere, the level of 
mercury in both the arms 

is the same. Now, if the level of mercury 
in one of the arms is depressed slightly 
and released, the level of mercury in each 
arm starts moving up and down about the 
equilibrium position, performing linear 
S.H.M.
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Can you tell?

and its acceleration,  a
d

dt
�=

v
 =

d x

dt

2

2

Substituting it in Eq. (5.3), we get

 
m

d x

dt
kx

2

2
� �

                         

 � � ������
d x

dt

k

m
x

2

2
0      --- (5.4)

 Substituting  
k

m
�� 2 , where ω  is the 

angular frequency, 

 
d x

dt
x

2

2
2 0� ��                               --- (5.5)

Eq. (5.5) is the differential equation of linear 
S.H.M. 

 ∴
d x

dt
x

2

2
2� ��                           --- (5.6)

But a
d x

dt
=�

2

2  is the acceleration of the particle 
performing S.H.M. 
 ∴ a x� �� 2                        --- (5.7)
This is the expression for acceleration in terms 
of displacement x.
From Eq. (5.6), we have 

d x

dt
x

2

2
2� ��

 ∴ 
d

dt

dx

dt
x

�
�
�

�
�
� � ��

2

  
 

� � �
d

dt
x

v
� 2

 
 

� � �
d

dx

dx

dt
x

v� �
 �2

 
 

� � �v
vd

dx
x

�
� 2

 � � �v v� �d x dx� 2

 Integrating both the sides, we get   
 � �� �v v� �d x dx� 2

 � � � �
v2 2 2

2 2

� x
C ,                  --- (5.8)

where C  is the constant of integration. 
Let A be the maximum displacement 

(amplitude) of the particle in S.H.M. 
When the particle is at the extreme 

position, velocity (v) is zero. 
  Thus, at  x A� � ,��� � ��� �v 0

Substituting in Eq. (5.8), we get 

 0
2

2 2

� � �
� A

C

 � � �C
A

�
� 2 2

2
                 --- (5.9)

Using C in Eq. (5.8), we get

 
v2 2 2 2 2

2 2 2
� � �

� �x A
   

 � � �� �v2 2 2 2� A x

 � � � �v � A x2 2     --- (5.10)
This is the expression for the velocity of a 
particle performing linear S.H.M. in terms of 
displacement x .

Substituting v =
dx

dt
 in Eq. (5.10), we get

Why is the symbol ω  and also the term 
angular frequency used for a linear motion?

5.5  Acceleration (a), Velocity (v) and 
Displacement (x) of S.H.M. :

We can obtain expressions for the 
acceleration, velocity and displacement of 
a particle performing S.H.M. by solving the 
differential equation of S.H.M. in terms of 
displacement x and time t. 

From Eq. (5.5), we have 
d x

dt
x

2

2
2 0� ��

Example 5.1 A body of mass 0.2 kg 
performs linear S.H.M. It experiences 
a restoring force of 0.2 N when its 
displacement from the mean position is 4 
cm. Determine (i) force constant (ii) period 
of S.H.M. and (iii) acceleration of the 
body when its displacement from the mean 
position is 1 cm. 
Solution: (i) Force constant,
   k = f / x 
      = (0.2)/ 0.04 = 5 N/m
(ii)    Period  T � � /�2� �

            = 2 2
0 2

5
� �

m

k
��

.
������= 0.4π s

(iii)  Acceleration 

a x
k

m
x� � �

.
.�� � � � � � � � ��2 25

0 2
0 04 1 m s
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d

d

x

t
A x� ��� 2 2

  
 
�

�
�

d
d

x

A x
t

2 2
�

Integrating both the sides, we get 

 
 

� �
�

�
d

d
x

A x
t

2 2
�

 sin� �
�
�

�
�
� � �1 x

A
t� �            --- (5.11)

Here f  is the constant of integration. To 
know f , we need to know the value of x at 
any instance of time t, most convenient being  
t = 0. 
 � � �� �x A t�sin � �      --- (5.12)

This is the general expression for the 
displacement (x) of a particle performing 
linear S.H.M. at time t. Let us find expressions 
for displacement for two particular cases. 
Case (i) If the particle starts S.H.M. from the 
mean position, x = 0 at t = 0
Using Eq. (5.11), we get � �� �

�
�

�
�
� �

�sin �1 0
x

A
or�  

Substituting in Eq. (5.12), we get
 x A t� � � �� sin �              --- (5.13)
This is the expression for displacement at any 
instant if the particle starts S.H.M. from the 
mean position. Positive sign to be chosen if it 
starts towards positive and negative sign for 
starting towards negative. 
Case (ii) If the particle starts S.H.M. from the 
extreme position, x A t� � ��� ���at 0

 
  

� � �
�
�

�
�
� �

��
� �

sin 1

2

3

2

x

A
�� ��or

Substituting in Eq. (5.12), we get 
 

x A t x A t� ��
�
�

�
�
� � ��

�
�

�
�
�sin sin�

�
�

�
2

3

2
�� �� ��or

  
              
 ∴ x A t� � � �� cos��    --- (5.14)
This is the expression for displacement at any 
instant, if the particle starts S.H.M. from the 
extreme position. Positive sign for starting 
from positive extreme position and negative 
sign for starting from the negative extreme 
position.

In the cases (i) and (ii) above, we have used 
the phrase, “if the particle starts S.H.M…...” 
More specifically, it is not the particle that 
starts its S.H.M., but we (the observer) 
start counting the time t from that instant. 
The particle is already performing its 
motion. We start recording the time as per 
our convenience. In other words, t = 0 (or 
initial condition) is always subjective to the 
observer.

Expressions of displacement (x), velocity (v) 
and acceleration (a) at time t:
From Eq. (5.12), �x A t� �� ��sin � �  

� � � �� �v
d

d

x

t
A t� � �cos

 

� � � � �� �a
t

A t
dv

d
� � �2 sin

 

Example 5.2: A particle performs linear 
S.H.M. of period 4 seconds and amplitude 
4 cm. Find the time taken by it to travel a 
distance of 1 cm from the positive extreme 
position.
Solution: x A t� �� ��sin � �
Since particle performs S.H.M. from 
positive extreme position, f  = 

π
2

  and 
from data     
���� �x A� � �1 3cm

� � ��
�
�

�
�
�3 4

2

2
� � � � � �sin

� �
T

t

 ∴ 
3

4

2

4
� cos�

�
t  = � �cos

π
2

t

∴ 
� �
2

41 4 41 4
180

0t � � ��
�
�

�
�
� �. . �

c

 t � � .=0 46�s

   
     

Or � � �s, . � � � .
180

2
41 4 0 46t t� � ��

��
�
��  

Example 5.3:  A particle performing 
linear S.H.M. with period 6 second is 
at the positive extreme position at t = 0. 
The particle is found to be at a distance 
of 3 cm from this position at time t = 7s,  
before reaching the mean position. Find the 
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amplitude of S.H.M.
Solution: x A t� �sin�( )� �
Since particle starts (t = 0) from positive 
extreme position, f  = π/2 and x A� � 3

          
 

� � ��
�
�

�
�
�x A t� �sin �

�
2

             
 

� � � ��
�
�

�
�
�A A

T
t3

2

2
� � �sin� �

� �

 
 

�
�

� � ��
�
�

�
�
�

A

A

3 2

6
7

2
sin

� �
�

 
 
 

�
�

� ��
�
�

�
�
�

A

A

3 7

3 2
sin

� �

 
 
 

�
�

� ��
�
�

�
�
� � �

A

A

3

3 2 3

1

2
sin cos

� � �

 � � �� � �2 6A A

 � �A 6�cm

Example 5.4: The speeds of a particle 
performing linear S.H.M. are 8 cm/s and 
6 cm/s at respective displacements of 6 cm 
and 8 cm. Find its period and amplitude.
Solution: 
 v�� �� �� � A x2 2     

       ∴ 
8

6

6

8

4

3

36

64

2 2

2 2

2

2
�

�� �
�� �

�
�� �
�� �

�

�

�

�

A

A

A

A
or   

       ∴ A = 10�cm

 
v1

2
1

2� �� �� �� A x

 
� � �� ��8

2
10 62 2� �

�
T  

8
2

8��
�
T

 ∴ T = 6.284 s

Extreme values of displacement (x), velocity 
(v) and acceleration (a): 
1) Displacement: The general expression for 
displacement x in S.H.M. is x t� �� �A�sin � �
At the mean position, � �t �� �  = 0 or π 
∴  xmin  = 0. 

Thus, at the mean position, the 
displacement of the particle performing 
S.H.M. is minimum (i.e. zero). 
At the extreme position, � �

�
t �� � �

2
  or 

3

2

π
 

 � � �� �x tA�sin � �

 � � �x � �sinA
�
2

�� ∴ x Amax � �

Thus, at the extreme position the displacement 
of the particle performing S.H.M. is maximum.  
2) Velocity: According to Eq. (5.10) the 
magnitude of velocity of the particle performing 
S.H.M. is  v � � �� A x2 2

At the mean position, x A� � � �� �� � � �0 vmax � . 
Thus, the velocity of the particle in S.H.M. 

is maximum at the mean position.    
At the extreme position, x A  � ��  � ��vmin � � .�0

Thus, the velocity of the particle in S.H.M. 
is minimum at the extreme positions.   
3) Acceleration: The magnitude of the 
acceleration of the particle in S.H.M is ω 2 x �
At the mean position x � �=0 , so that the 
acceleration is minimum. ∴ amin ���0 .
At the extreme positions x A   � � , so that the 
acceleration is maximum a

max
 = ω 2 A

1. State at which point during an oscillation 
the oscillator has zero velocity but 
positive acceleration?

2. During which part of the simple 
harmonic motion velocity is positive 
but the displacement is negative, and 
vice versa?

3. During which part of the oscillation the 
two are along the same direction?

Example 5.5:  The maximum velocity of a 
particle performing S.H.M. is 6.28 cm/s. If 
the length of its path is 8 cm, calculate its 
period.
Solution:
       � . � � �vmax � �6 28 2

�cm

s

cm

s
�  and � � � �A= 4 cm

 
 

vmax � �A A
T

�
�2

 ∴ 2 4
2

�
�

�
T

 ∴  T = 4�s
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This result shows that the particle is at the 

same position after a time 
2�
�

. That means, 

the particle completes one oscillation in time 
2�
�

. It can be shown that t T� �
2�
�

 is the 

minimum time after which it repeats.

Hence its period T is given by T �
2�
�From Eq.(5.4) and Eq.(5.5)   

� 2 � �
k

m

force per unit displacement

mass

� � �

=       acceleration per unit displacement

� �T
acceleration per unit displacement

2�
� � � ��  

Also, T =  2π
m

k
         --- (5.15)

5.6.3 Frequency of S.H.M.:  
The number of oscillations performed by 

a particle performing S.H.M. per unit time is 
called the frequency of S.H.M. 

In time T , the particle performs one 
oscillation. Hence in unit time it performs 

1

T
    

oscillations. 
Hence, frequency n  of S.H.M. is given by

 n T

k

m
� � �

1

2

1

2

�
� �

��                          --- (5.16)

Combination of springs: A number of 
springs of different spring constants can be 
combined in series (Figure A) or in parallel 
(Figure B) or both.
Series combination (Figure A): In this case, 
all the springs are connected one after the 
other forming a single chain. Consider 
an arrangement of two such springs of 
spring constants k

1 
and k

2
. If the springs are 

massless, each will have the same stretching 
force as f. For vertical arrangement, it 
will be the weight mg. If e

1
 and e

2
 are the 

respective extensions, we can write,

    f k e k e e
f

k
e

f

k
� � � � �� � � �1 1 2 2 1

1
2

2

and

The total extension is

 
e e e f

k k
� � � �

�

�
�

�

�
�1 2

1 2

1 1
. 

5.6: Amplitude(A), Period(T) and Frequency 
(n) of S.H.M. :
5.6.1 Amplitude of S.H.M.:

Fig. 5.2 S.H.M. of a particle.
Consider a particle P performing S.H.M. 

along the straight line MN (Fig. 5.2). The 
centre O of MN is the mean position of the 
particle.

The displacement of the particle as given 
by Eq. (5.12) is x A t� �� ��sin � �

The particle will have its maximum 
displacement when �sin � �t �� � � �1,  i.e., 
when x A� � .  This distance A is called the 
amplitude of S.H.M.

The maximum displacement of a particle 
performing S.H.M. from its mean position is 
called the amplitude of S.H.M. 
5.6.2 Period of S.H.M.: 

The time taken by the particle performing 
S.H.M. to complete one oscillation is called the 
period of S.H.M. 

Displacement of the particle at time t is 
given by x A t� �� ��sin � �

After a time t t� ��
�
�

�
�
�

2�
�

the displacement will 
be 

 
x A t' � ��

�
�

�
�
� �

�

�
�

�

�
��sin �

�
�

�
2

 � � � �� �x A t' �sin � � �2    
 � � �� �x A t' �sin � �

Example 5.6: The maximum speed of a 
particle performing linear S.H.M is 0.08 
m/s. If its maximum acceleration is 0.32 m/
s2, calculate its (i) period and (ii) amplitude.
Solution: 

(i) 
�a

�max

vmax

� � � �
A

A T

�
�

�
�2 2

 
0 32

0 08

2.

.
�

�
T

        
�� ������ � . �� �T s1 57

(ii) vmax � �A A
T

�
�2

 
� �A 2�cm
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5.7 Reference Circle Method: 
Figure 5.3 shows a rod rotating along a 

vertical circle in the x-y plane. If the rod is 
illuminated parallel to x-axis from either side 
by a linear source parallel to the rod, as shown 
in the Fig. 5.3, the shadow (projection) of the 
rod will be produced on the y-axis. The tip of 
this shadow can be seen to be oscillating about 
the origin, along the y-axis. 

If k
s
 is the effective spring constant (as if 

there is a single spring that gives the same 
total extension for the same force), we can 
write,
 
     

e
f

k
f

k k k k k
� � �

�

�
�

�

�
�� � �

s s

1 1 1 1 1

1 2 1 2

�

For a number of such (massless) springs, in 
series, 1 1 1 1

1 2k k k ks ii

� � ����
�

�
�

�

�
��

For only two massless springs of 

spring constant k each, in series, 

k
k k

k ks � �
�1 2

1 2

Product

Sum
For n such identical massless springs, in 

series, k
k

ns =                              

Fig. B

Let f k e f k e1 1 2 2� � ��,� ,�  be the individual 
restoring forces.
If k

p
 is the effective spring constant, a 

single spring of this spring constant will be 
stretched by the same extension e, by the 
same stretching force f.  
� � � � ��� � ��f k e f f k e k ep 1 2 1 2  
� � � ����k k k kp i1 2

For m such identical massless springs of 
spring constant k each, in parallel, k mkp =

Fig 5.3: Projection of a rotating rod.
We shall now prove that motion of 

the tip of the projection is an S.H.M. if the 
corresponding motion of the tip of the rod 
is a U.C.M. For this, we should take the 
projections of displacement, velocity, etc. on 
any reference diameter and confirm that we 
get the corresponding quantities for a linear 
S.H.M.

Figure 5.4 shows the anticlockwise 
uniform circular motion of a particle P, with 
centre at the origin O. Its angular positions are 
decided with the reference OX. It means, if the 
particle is at E, the angular position is zero, at 

Parallel combination (Figure B): In such a 
combination, all the springs are connected 
between same two points, one of them is the 
support and at the other end, the stretching 
force f is applied at a suitable point. 
Irrespective of their spring constants, each 
spring will now have the same extension e. 
The springs now share the force such that in 
the equilibrium position, the total restoring 
force is equal and opposite to the stretching 
force f.

Fig. A
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F it is 90° = π
2

c
, at G it is 180° = πc, and so on. If 

it comes to E again, it will be 360° = 2πc (and 
not zero). Let 



r  = OP be the position vector of 
this particle. 

Projection of velocity: Instantaneous velocity 
of the particle P in the circular motion is the 
tangential velocity of magnitude rω  as shown 
in the Fig. 5.5. 

Its projection on the reference diameter 
will be v y r r t� � �� �� � � � �cos cos � . This 
is the expression for the velocity of a particle 
performing a linear S.H.M.
Projection of acceleration: Instantaneous 
acceleration of the particle P in circular 
motion is the radial or centripetal acceleration 
of magnitude rω 2 , directed towards O. Its 
projection on the reference diameter will be
 a r r t yy � � � � �� � � �� � � � � �2 2 2sin sin � .

Again, this is the corresponding 
acceleration for the linear S.H.M. 

From this analogy it is clear that projection 
of any quantity for a uniform circular motion 
gives us the corresponding quantity of linear 
S.H.M. This analogy can be verified for any 
diameter as the reference diameter.  Thus, the 
projection of a U.C.M. on any diameter is an 
S.H.M. 
5.8 Phase in S.H.M.: 

Phase in S.H.M. (or for any motion) is 
basically the state of oscillation. In order to 
know the state of oscillation in S.H.M., we 
need to know the displacement (position), the 
direction of velocity and the oscillation number 
(during which oscillation) at that instant of 
time. Knowing only the displacement is not 
enough, because at a given position there are 
two possible directions of velocity (except 
the extreme positions), and it repeats for 
successive oscillations. Knowing only velocity 
is not enough because there are two different 
positions for the same velocity (except the 
mean position). Even after this, both these 
repeat for the successive oscillations.

Hence, to know the phase, we need a 
quantity that is continuously changing with 
time. It is clear that all the quantities of linear 
S.H.M. (x, v, a etc) are the projections taken 

Fig 5.4: S.H.M. as projection of a U.C.M.

At t = 0, let the particle be at P
0
 with 

reference angle φ . During time t, it has 
angular displacement ωt . Thus, the reference 
angle at time t is � � �� �� �t   . Let us choose 
the diameter FH along y-axis as the reference 
diameter and label OM as the projection of  


r  = OP on this. 
Projection of displacement: At time t, we 
get the projection or the position vector  
OM = OP sin sin �� � �� � �� �y r t . This is the 
equation of linear S.H.M. of amplitude r. The 
term ω  can thus be understood as the angular 
velocity of the reference circular motion. For 
linear S.H.M. we may call it the angular 
frequency as it decides the periodicity of the 
S.H.M. In the next section, you will come to 
know that the phase angle � � �� �� �t    of the 
circular motion can be used to be the phase of 
the corresponding S.H.M.

Fig 5.5: Projection 
of velocity.
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on a diameter, of the respective quantities for 
the reference circular motion. The angular 
displacement � � �� �� �t  can thus be used as 
the phase of S.H.M. as it varies continuously 
with time. In this case, it will be called as the 
phase angle. 
Special cases: 
 (i)  Phase θ  = 0 indicates that the particle 

is at the mean position, moving to the 
positive, during the beginning of the first 
oscillation. Phase angle � �� 360 20 �or� c  
is the beginning of the second oscillation, 
and so on for the successive oscillations.

 (ii)  Phase � �� 1800 � �or c  indicates that during 
its first oscillation, the particle is at the 
mean position and moving to the negative. 
Similar state in the second oscillation will 
have phase � � �� �� � �� �360 180 2

0
�or�

c
, 

and so on for the successive oscillations.

 (iii) Phase  �
�

� �
�
�

�
�
�90

2
0 �or�

c

indicates that 

the particle is at the positive extreme 
position during first oscillation. 
For the second oscillation it will be 

� �
�

� �� � ��
�
�

�
�
�360 90 2

2

0
�or�

c

, and so on 

for the successive oscillations. 

(iv) Phase �
�

� �
�
�

�
�
�270

3

2
0 �or�

c

indicates that the 

particle is at the negative extreme position during 
the first oscillation. For the second oscillation 

it will be � �
�

� �� � ��
�
�

�
�
�360 270 2

3

2

0
�or�

c

, and 

so on for the successive oscillations.

Example 5.7: Describe the state of 
oscillation if the phase angle is 11100.
Solution: 1110 3 360 300 0 0� � �
3 3600×  plus something indicates 4th 

oscillation. Now,  A
A

sin 30
2

0 =  

Thus, phase angle 11100 indicates that 
during its 4th oscillation, the particle is at 
+A/2 and moving to the positive extreme.
Example 5.8: While completing its third 
oscillation during linear S.H.M., a particle 

is at 
− 3

2
A , heading to the mean position. 

Determine the phase angle. 
Solution: 

A Asin �� � �
�

�
�

1 1

3

2 3
2

3
�
�

� � � ��
�
�

�
�
�

�
�
�

�
�
�

c c

or�

From negative side, the particle is heading to 
the mean position. Thus, the phase angle is 
in the fourth quadrant for that oscillation.  
  

 
� � ��

�
�

�
�
�� �

�
1 2

3

c

As it is the third oscillation, phase

� � � � � �
�

�
� �

� � � � � � ��
�
�

�
�
�

� � � �
�
�

�
�
�

2 2 4 2
3

6
3

17

3

1 �

   
c

5.9. Graphical Representation of S.H.M.:
(a) Particle executing S.H.M., starting from 
mean position, towards positive: 
As the particle starts from the mean position 
Fig (5.6), towards positive, f  = 0 
� �displacement�x A tsin�
Velocity v = A tω ω�cos

Acceleration � � sina A t� � � �2

(t) 0 T/4 T/2 3T/4 T 5T /4

(θ*) 0
π
2 π

3

2

π
2π

5

2

π

(x) 0 A 0 - A 0 A

(v) Aω 0 - Aω 0 Aω 0

(a) 0 -Aω2 0 Aω2 0 -Aω2

* phase θ = ωt  + f
Conclusions from the graphs:
• Displacement, velocity and acceleration of 

S.H.M. are periodic functions of time. 
• Displacement time curve and acceleration 

time curves are sine curves and velocity 
time curve is a cosine curve. 

• There is phase difference of π/2 radian 
between displacement and velocity. 

• There is phase difference of π/2 radian 
between velocity and acceleration.
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• There is phase difference of π radian 
between displacement and acceleration. 

• Shapes of all the curves get repeated after 
2π radian or after a time T. 

5.10 Composition of two S.H.M.s having 
same period and along the same path: 

Consider a particle subjected 
simultaneously to two S.H.M.s having the 
same period and along same path (let it be 
along the x-axis), but of different amplitudes 
and initial phases. The resultant displacement 
at any instant is equal to the vector sum of its 
displacements due to both the S.H.M.s at that 
instant.
Equations of displacement of the two S.H.M.s 
along same straight line (x-axis) are 
x

1
 = A

1
 sin (ωt +  φ1 ) and  x

2
 = A

2
 sin (ωt + φ2 ) 

The resultant displacement (x) at any instant  
(t) is given by x = x

1
 + x

2
         

 x   = A
1
 sin (ωt + φ1 ) + A

2
 sin (ωt + φ2 )

∴ x = A
1
 sin ωt cos φ1  

+ A
1
cos ωt sinφ1  

           
+ A

2 
sin ωt cos φ2 + A

2
 cos ωt sin φ2  

A
1
, A

2
,φ1  

and φ2  are constants and ωt is variable. 
Thus, collecting the constants together,
x = (A

1
 cosφ1  

+ A
2
 cos φ2 ) sin ωt +

      (A
1
 sin φ1  

+ A
2
 sin φ2 ) cos ωt

As A
1
, A

2
, φ1  

and φ2 are constants, we can 
combine them in terms of another convenient 
constants R and δ as

Fig. 5.6: (a) Variation of displacement with 
time, (b)  Variation of velocity with time,  
(c)  Variation of acceleration with time.

Fig. 5.7: (a) Variation of displacement with 
time, (b)  Variation of velocity with time,  
(c)  Variation of acceleration with time.

(a)

(b)

(c)

((b) Particle performing S.H.M., starting 
from the positive extreme position. 

As the particle starts from the positive extreme 

position Fig. (5.7),  �
�

�
2

 
� � �� � �displacement, sin cosx A t A t� � � � � � / � � �� � �2

Velocity,  v =  
d

d

d

d

x

t

A t

t
A t�

� �
� � � ��

�
�

cos �
sin

�
� �

Acceleration,

� � �
�

cosa
t

A t

t
A t� �

� � �� �
� � � �dv

d

d

d

� �
� �

sin
2

(t) 0 T/4 T/2 3T/4 T 5T /4

(θ )*
π
2 π

3

2

π
2π

5

2

π
3 π

(x) A 0 -A 0 A 0

(v) 0 -Aω 0 Aω 0 -Aω

(a) -Aω2 0 Aω2 0 -Aω2 0

*(Phase θ = ωt + φ)

(a)

(b)

(c)
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Activity
 R cos δ = A

1
 cos f1 + A

2
 cosf2  --- (5.17)

and    R sin δ  =  A
1
 sinf1  

+ A
2
 sinf2   --- (5.18)

∴ x = R (sin ωt cos δ + cos ωt sin δ)

∴  x = R sin (ωt + δ)
This is the equation of an S.H.M. of the 

same angular frequency (hence, the same 
period) but of amplitude R and initial phase δ. 
It shows that the combination (superposition) 
of two linear S.H.M.s of the same period and 
occurring a long the same path is also an 
S.H.M.

Resultant amplitude, 

           R R R� � � � � �sin cos� �2 2

Substituting from Eq. (5.17) and Eq. (5.18), we 

get

 R2 = A
1

2 + A
2

2 + 2A
1
A

2
cos(f1  

- f2 )

� � � � �� �R A A A A1
2

2
2

1 2 1 22� ���cos � � - (5.19)

Initial phase (δ) of the resultant motion: 

Dividing Eq. (5.18) by Eq. (5.17), we get

 

       

R

R

A A

A A

 

 

sin

cos

sin� sin �

cos� cos

�
�

� �
� �

�
�
�

� 1 1 2 2

1 1 2 2

∴ tan δ = 
A A

A A
1 1 2 2

1 1 2 2

sin� � � sin �

cos� � � cos

� �
� �
�
�

∴ �
� �
� �

�
�
�

�

�
�

�

�
�

�tan
sin� � � sin �

cos� � � cos
1 1 1 2 2

1 1 2 2

A A

A A     --- (5.20)

Special cases: (i) If the two S.H.M.s are in 

phase, (f1  - f2 ) = 0°, ∴ cos (f1  - f2 ) = 1.

 � � � � � � �� �R A A A A A A1
2

2
2

1 2 1 22 �� . Further, 

if A
1 
= A

2 
= A, we get R = 2A

(ii) If the two S.H.M.s are 90° out of phase,  

(f1  - f2 ) = 90° ∴cos (f1  - f2 ) = 0.      

∴ R A A� �1
2

2
2   Further, if A

1
= A

2 
= A, we 

get, R = 2 A

(iii) If the two S.H.M.s are 180° out of phase,  

(f1  - f2 ) = 180° ∴cos (f1  - f2 ) = -1

∴ R A A A A� � �1
2

2
2

1 22 ∴ R A A� �1 2   

Further, if A
1 
= A

2 
= A, we get R = 0

Tie a string horizontally tight between 
two vertical supports. To this string, tie 
three pendula, two of them (A and B) of 
equal lengths. Third one (C) need not have 
the same length, but not very different.  
Oscillate the pendula A and B in a plane 
perpendicular to the horizontal string. It 
will be observed that pendulum C also 
starts oscillating in the same plane, with the 
same period as those of A and B.
With this system and procedure, we are 
imposing two S.H.M.s of the same period. 
The resultant energy transfers through 
the strings into the third pendulum C and 
it starts oscillating. Special cases (i), (ii) 
and (iii) above can be verified by making 
suitable changes.

5.11: Energy of a Particle Performing 
S.H.M.: 

While performing an S.H.M., the particle 
possesses speed (hence kinetic energy) at all 
the positions except at the extreme positions. 
In spite of the presence of a restoring force 
(except at the mean position), the particle 
occupies various positions. This is an 
indication that work is done and the system 
has potential energy (elastic - in the case of 
a spring, gravitational - for a pendulum, 
magnetic - for a magnet, etc.). Total energy of 
the particle performing an S.H.M. is thus the 
sum of its kinetic and potential energies.

Consider a particle of mass m, performing 
a linear S.H.M. along the path MN about the 
mean position O. At a given instant, let the 
particle be at P, at a distance x from O.

Fig. 5.8: Energy in an S.H.M.

Velocity of the particle in S.H.M. is given 
as  v � � � �� �� � � �A x A t2 2 cos , 
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Can you tell?

where x is the displacement of the particle 
performing S.H.M. and A is the amplitude of 
S.H.M.  

Thus, the kinetic energy, 

E m A x k A xk � �� � � �� �1

2

1

2
2 2 2 2 2� � --- (5.21)

This is the kinetic energy at displacement x. 
At time t, it is 

 

E m mA t

kA t

k v

     

� � �� �

� �� �

1

2

1

2
1

2

2 2 2 2

2 2

� � �

� �

cos

cos --- (5.22)

Thus, with time, it varies as cos2 θ .
The restoring force acting on the particle 

at point P is given by f = - kx where k is the force 
constant. Suppose that the particle is displaced 
further by an infinitesimal displacement dx 
against the restoring force f. The external work 
done (dW) during this displacement is  

 d d d dW f x kx x kx x� �� �� � � � �� � �
The total work done on the particle to 

displace it from O to P is given by 
 

 
W W kx x kx� � �� �

0 0

21

2

x x

d d� �

This should be the potential energy (P.E.) 
E

p
 of the particle at displacement x. 

 � � �E kx m xP

1

2

1

2
2 2 2� �    --- (5.23)

At time t, it is 

               --- (5.23a)

E kx kA t

mA t

P

     

� � �� �

� �� �

1

2

1

2
1

2

2 2 2

2 2 2

sin

sin

� �

� � �

Thus, with time, it varies as sin2 θ .
The total energy of the particle is the sum 

of its kinetic energy and potential energy. 
 � � �E E Ek p�  
Using Eq. (5.21) and Eq. (5.23), we get

E m A x m x� �� � ��
1

2

1

2
2 2 2 2 2� �

E m A kA m max� � � � �1

2

1

2

1

2
2 2 2 2� � v    ---(5.24)

This expression gives the total energy 
of the particle at point P. As m, ω and A are 

constant, the total energy of the particle at any 
point P is constant (independent of x  and t). In 
other words, the energy is conserved in S.H.M. 
If n is the frequency of S.H.M., � ��� 2 n . 
Using this in Eq. (5.24), we get 

E m n A n A m

m
A

T

� � � �

�

1

2
2 2

2

2 2 2 2 2

2
2

2

� �

�       --- (5.25)

Thus, the total energy in S.H.M. is directly 
proportional to (a) the mass of the particle 
(b) the square of the amplitude (c) the square 
of the frequency (d) the force constant, and 
inversely proportional to square of the period.

To start a pendulum swinging, usually you 
pull it slightly to one side and release.
• What kind of energy is transferred to the 

mass in doing this?
• Describe the energy changes that occur 

when the mass is released.
• Is/are there any other way/ways to start 

the oscillations of a pendulum? Which 
energy is supplied in this case/cases?

Special cases: (i) At the mean position, x = 0  
and velocity is maximum. 

Hence E E m A� � � �k max

1

2
2 2�   and potential 

energy Ep� � �
min

0
(ii) At the extreme positions, the velocity of the 
particle is zero and x A� �

Hence E E m A� � � �p max

1

2
2 2�   and kinetic 

energy Ek� � �
min

0
As the particle oscillates, the energy 

changes between kinetic and potential. At the 
mean position, the energy is entirely kinetic; 
while at the extreme positions, it is entirely 
potential. At other positions the energy is 
partly kinetic and partly potential. However, 
the total energy is always conserved.
(iii) If � . .� � . .�,�K E P E=    
1

2
2 2 2m A x� �� � �  ��

1

2
2 2m xω  � �

�
�x

A

2
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Thus at  x
A

�
�

2
 , the K.E. = P.E. = 

E

2
 for a 

particle performing linear S.H.M.    

(iv) At x
A

�
�
2

, P E. . � � �
�
�

�
�
� �

1

2

1

4

1

2 4
2 2kx kA

E
 

� � � �K E � P E. . .3

Thus, at x
A

�
�
2

, the energy is 25% potential 
and 75% kinetic.
The variation of K.E. and P.E. with 
displacement in S.H.M. is shown in Fig. (5.9) 

The distance between the point of 
suspension and centre of gravity of the bob 
(point of oscillation) is called the length of the 
pendulum. Let m be the mass of the bob and 
T' be the tension in the string. The pendulum 
remains in equilibrium in the position OA, 
with the centre of gravity of the bob, vertically 
below the point of suspension O. If now the 
pendulum is displaced through a small angle
θ (called angular amplitude) and released, it 
begins to oscillate on either side of the mean 
(equilibrium) position in a single vertical 
plane. We shall now show that the bob 
performs S.H.M. about the mean position for 
small angular amplitude θ . 

Fig. 5.9: Energy in S.H.M.

Example 5.9: The total energy of a particle 
of mass 200 g, performing S.H.M. is 10-2 J. 
Find its maximum velocity and period if the 
amplitude is 7 cm.
Solution:

 E m A E m vmax� � � � � �
1

2

1

2
2 2 2� ���� ��    

∴ 
    

vmax =
2E

m

 � �
�

�
�

vmax

2 10

0 2
0 3162

2

.
. � /m s

 v
vmax

max

� � � � ��
� �

A
T

A T
A2 2

1 391�� � � . �s

5.12 Simple Pendulum: 
An ideal simple pendulum is a heavy 

particle suspended by a massless, inextensible, 
flexible string from a rigid support. 

A practical simple pendulum is a small 
heavy (dense) sphere (called bob) suspended 
by a light and inextensible string from a rigid 
support.

Fig.5.10: Simple pendulum.

In the displaced position (extreme 
position), two forces are acting on the bob. 
(i) Force T' due to tension in the string, directed 
along the string, towards the support and 
(ii) Weight mg, in the vertically downward 
direction.  
At the extreme positions, there should not be 
any net force along the string. The component 
of mg can only balance the force due to 
tension. Thus, weight mg is resolved into two 
components;
(i) The component mg cosθ   along the string, 
which is balanced by the tension T ' and 
(ii) The component mg sinθ  perpendicular 
to the string is the restoring force acting on 
mass m tending to return it to the equilibrium 
position.                 

Rigid support
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  ∴Restoring force, F = - mg sinθ         --- (5.26)
As θ is very small (θ <10°), we can write 
sinθ ≅ θ c  � �F mg�–� �
From the Fig. 5.10, the small angle � , ��

x

L

 ∴ F mg
x

L
� �                           --- (5.27)

As m, g and L are constant, F ∝- x
Thus, for small displacement, the 

restoring force is directly proportional to the 
displacement and is oppositely directed. 

Hence the bob of a simple pendulum 
performs linear S.H.M. for small amplitudes. 
From Eq. (5.15), the period T of oscillation of 
a pendulum from can be given as, 

        �
2�
�

 
         =

2π
acceleration per unit displacement� � � ��

Using Eq. (5.27), F mg
x

L
� �

∴ ma mg
x

L
� �

∴  a g
x

L
� �   � � � � � ����� ���

a

x

g

L

g

L
in�magnitude

Substituting in the expression for T, we get,

          T
L

g
� 2�            --- (5.28)

The Eq. (5.28) gives the expression for the 
time period of a simple pendulum. However, 
while deriving the expression the following 
assumptions are made. 
 (i)  The amplitude of oscillations is very 

small (at least 20 times smaller than the 
length).

 (ii)  The length of the string is large and
 (iii) During the oscillations, the bob moves 

along a single vertical plane. 
  Frequency of oscillation n of the simple 

pendulum is 
          n

T

g

L
� �

1 1

2�
     --- (5.29)

From the Eq. (5.28), we can conclude the 
following for a simple pendulum. 
 (a)  The period of a simple pendulum is 

directly proportional to the square root of 
its length.  

 (b) The period of a simple pendulum is 
inversely proportional to the square root 
of acceleration due to gravity.

 (c)  The period of a simple pendulum does not 
depend on its mass. 

 (d)  The period of a simple pendulum does 
not depend on its amplitude (for small 
amplitude). 

These conclusions are also called the 'laws of 
simple pendulum'.
 5.12.1 Second’s Pendulum: 

A simple pendulum whose period is two 
seconds is called second’s pendulum.

Period�T
L

g
� 2�

 � �For�a�second s pendulum �' , 2 2�
L

g
s

where L
s
 is the length of second’s pendulum, 

having period T = 2s.

                � �� �L
g

s � 2    --- (5.30)

Using this relation, we can find the length 
of a second’s pendulum at a place, if we know 
the acceleration due to gravity at that place. 
Experimentally, if L

s 
is known, it can be used 

to determine acceleration due to gravity g at 
that place.

Example 5.10: The period of oscillations of 
a simple pendulum increases by 10%, when 
its length is increased by 21 cm. Find its 
initial length and initial period.

Solution: ����T
l

g
� 2�

  ∴ 
100

110
1

2

=
l

l

  ∴ 
10

11 0 21
1

1

�
�

l

l .

  ∴ 1 21 0 21 11 1 1. . � �l l l� � � � m

 ∴ Period T
l

g
� �2 2

1

9 8
� �

.
 

  

                 = 2.007 s (π = 3.142)
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Activity

When you perform the experiment to 
determine the period of simple pendulum, it 
is recommended to keep the amplitude very 
small. But how small should it be? And why?

To find this it would be better to 
measure the time period for different angular 
amplitudes. 

Let T
L

g0 2� �  be the period for (ideally) 

very small angular amplitude and Tθ  be 

the period at higher angular amplitude  

θ . Experimentally determined values of the 

ratio 
T

T
θ

0

 are as shown in the table below.

θ 20° 45° 50° 70° 90°

T

T
θ

0
1.02 1.04 1.05 1.10 1.18

  It shows that the error in the time 
period is about 2% at amplitude of 20°, 5% 
at amplitude of 50°, 10% at amplitude of 
70° and 18% at amplitude of 90°. Thus, the 
recommended maximum angular amplitude 
is less than 20°. It also helps us in restricting 
the oscillations in a single vertical plane.

Example 5.11: In summer season, a 
pendulum clock is regulated as a second’s 
pendulum and it keeps correct time. During 
winter, the length of the pendulum decreases 
by 1%. How much will the clock gain or 
lose in one day. (g = 9.8 m/s2) 
Solution: In summer, with period T

s
 = 2 s, 

the clock keeps correct time. Thus, in a day 
of 86400 seconds, the clock’s pendulum 

should perform 86400

2
43200=  oscillations, 

to keep correct time.
L Lw s� ���1 0 99%� . less�than�summer  

T
L

g
� 2�

  

� � � � � �

� �

T L
T

T

L

L

T

T

w

s

w

s

w

w

  � �� .

� . �

2
0 99

1 99�s

With this period, the pendulum will now 

perform 
86400

1 99
43417

.
=  oscillations per 

day. Thus, it will gain 43417 - 43200 = 217 
oscillations, per day.
Per oscillations the clock refers to 2 second. 
Thus, the time gained, per day = 217 × 2  
= 434  second = 7 minutes, 14 second.

Conical pendulum Simple pendulum
1 Trajectory and the plane of the motion of 

the bob is a horizontal circle
Trajectory and the plane of motion of the 
bob is part of a vertical circle.

2 K.E. and gravitational P.E. are constant. K.E. and gravitational P.E. are interconverted 
and their sum is conserved.

3 Horizontal component of the force due to 
tension is the necessary centripetal force 
(governing force).

Tangential component of the weight is the 
governing force for the energy conversions 
during the motion.

4 Period,

       T
L

g
� 2�

�cos
Period,

        
T

L

g
� 2�

5 String always makes a fixed angle with the 
horizontal and can never be horizontal.

With large amplitude, the string can be 
horizontal at some instances.

6 During the discussion for both, we have ignored the stretching of the string and the energy 
spent for it. However, the string is always stretched otherwise it will never have tension 
(except at the extreme positions of the simple pendulum). Also, non-conservative forces 
like air resistance are neglected.
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5.13: Angular S.H.M. and its Differential 
Equation:  

Figure 5.11 shows a metallic disc attached 
centrally to a thin wire (preferably nylon or 
metallic wire) hanging from a rigid support. If 
the disc is slightly twisted about the axis along 
the wire, and released, it performs rotational 
motion partly in clockwise and anticlockwise 
(or opposite) sense. Such oscillations are called 
angular oscillations or torsional oscillations.

This motion is governed by the restoring 
torque in the wire, which is always opposite 
to the angular displacement. If its magnitude 
happens to be proportional to the corresponding 
angular displacement, we can call the motion 
to be angular S.H.M.

Angular S.H.M. is defined as the oscillatory 
motion of a body in which the torque for 
angular acceleration is directly proportional 
to the angular displacement and its direction is 
opposite to that of angular displacement. 
The time period T of angular S.H.M. is given 
by, 
 

T ��
2�
�  

              

�
2�

angular�acceleration�per�unit�

angular�displacement

5.13.1 Magnet Vibrating in Uniform 
Magnetic Field:

If a bar magnet is freely suspended in the 
plane of a uniform magnetic field, it remains 
in equilibrium with its axis parallel to the 
direction of the field. If it is given a small 
angular displacement θ  (about an axis passing 
through its centre, perpendicular to itself and 
to the field) and released, it performs angular 
oscillations Fig. (5.12). 

Let µ be the magnetic dipole moment 
and B the magnetic field. In the deflected 
position, a restoring torque acts on the magnet, 
that tends to bring it back to its equilibrium 
position. [Here we used the symbol µ for the 
magnetic dipole moment as the symbol m is 
used for mass]. 
The magnitude of this torque is � �   � µ Bsin
If θ  is small, sin� �� c  � �� �  µB

For clockwise angular displacement θ , 
the restoring torque is in the anticlockwise 
direction.   

Fig. 5.11: Torsional (angular) oscillations.
Thus, for the angular S.H.M. of a body, 

the restoring torque acting upon it, for angular 
displacement θ ,  is 
         � � � �  or  � �� �c             --- (5.31)

The constant of proportionality c is the 
restoring torque per unit angular displacement. 
If I is the moment of inertia of the body, the 
torque acting on the body is given by, � �     � I
Where α is the angular acceleration. Using 
this in Eq. (5.31) we get, I c� �� �

        � � �I
d

dt
c

2

2
0

�
�� �   --- (5.32)

This is the differential equation for 
angular S.H.M. From this equation, the 
angular acceleration α  can be written as, 

 �
� �

� � �
d

dt

c

I

2

2

 Since c and I are constants, the angular 
acceleration α  is directly proportional to 
θ  and its direction is opposite to that of the 
angular displacement. Hence, this oscillatory 
motion is called angular S.H.M.

Fig. 5.12: Magnet vibrating in a uniform 
magnetic field.
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                ∴   τ    � ��I µB� �
where I  is the moment of inertia of the bar 
magnet and α  is its angular acceleration.

          � � ��
�
�

�
�
�� �

µB

I
   --- (5.33)

Since µ, B and I are constants, Eq. (5.33) 
shows that angular acceleration is directly 
proportional to the angular displacement and 
directed opposite to the angular displacement. 
Hence the magnet performs angular S.H.M.
The period of vibrations of the magnet is given 
by

 
       

T �

�

2

2

�
angular�acceleration�per�unit�

angular�displacement

  
��
�
�  

       � �T
I

µB
2�    --- (5.34)

5.14 Damped Oscillations:

Example 5.12: A bar magnet of mass 120 g, 
in the form of a rectangular parallelepiped, 
has dimensions l = 40 mm, b = 10 mm and  
h = 80 mm. With the dimension h  vertical, 
the magnet performs angular oscillations 
in the plane of a magnetic field with period 
π s. If its magnetic moment is 3.4 A m2, 
determine the influencing magnetic field.

Solution: T
I

B
� 2�

�
 � �� �

�
2

I

B
  

      
� �B

I4

�

For a bar magnet, moment of inertia 

I M
l b

�
��

�
�

�

�
�

2 2

12
�

� �
��

�
�

�
�
��

� �

�

�

I 0 12
1600 100

12
10

1 7 10

6

5 2

.

.     �A�m

� �
� �

� �
�

� �B
4 1 7 10

3 4
2 10

5
5 2.

.
� � �Wb�m Tor

 

Example 5.13: Two magnets with the same 
dimensions and mass, but of magnetic 
moments µ1  = 100 A m2 and µ2  = 50 A m2 
are jointly suspended in the earth’s magnetic 
field so as to perform angular oscillations 
in a horizontal plane. When their like poles 
are joined together, the period of their 
angular S.H.M. is 5 s. Find the period of 
angular S.H.M. when their unlike poles are 
joined together.
Solution:       

 
T

I

µB
� 2�

With like poles together, the effective 
magnetic moment is µ µ1 2�� �

∴ T
I

µ µ BH
1

1 2

2�
�� �

�

With unlike poles together, the effective 
magnetic moment is µ µ1 2�� �
 
� �

�� �
T

I

µ µ BH
2

1 2

2�

∴ 
T

T

µ µ

µ µ
1

2

1 2

1 2

�
�� �
�� �

∴ 
5 1

32T
=  � � �T2 75 �8.660 s

Fig. 5.13: A damped oscillator.
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If the amplitude of oscillations of an 
oscillator is reduced by the application of an 
external force, the oscillator and its motion 
are said to be damped. Periodic oscillations 
of gradually decreasing amplitude are 
called damped harmonic oscillations and 
the oscillator is called a damped harmonic 
oscillator.

For example, the motion of a simple 
pendulum, dies eventually as air exerts a 
viscous force on the pendulum and there may 
be some friction at the support. 

Figure 5.13 shows a block of mass m that 
can oscillate vertically on a spring. From the 
block, a rod extends to vane that is submerged 
on a liquid. As the vane moves up and down, 
the liquid exerts drag force on it, and thus on the 
complete oscillating system. The mechanical 
energy of the block-spring system decreases 
with time, as energy is transferred to thermal 
energy of the liquid and vane. 

The damping force (F
d
) depends on the 

nature of the surrounding medium and is 
directly proportional to the speed v of the vane 
and the block 

� ��F bd � � � �v

Where b is the damping constant and negative 
sign indicates that Fd  opposes the velocity. 

For spring constant k, the force on the 
block from the spring is F kxs    �� . 

Assuming that the gravitational force  
on the block is negligible compared to Fd  and  
Fs , the total force acting on the mass at any 
time t  is 

F F Fd s� �
� � �ma F Fd s

� � � �ma bv kx 
� � � �ma bv kx� 0

� � � �m
d x

dt
b

dx

dt
kx

2

2
0� �   --- (5.35)

The solution of Eq. (5.35) describes the 
motion of the block under the influence of a 
damping force which is proportional to the 
speed. 

The solution is found to be of the form 

        x Ae t
bt

m� �� ��
�

2 �cos � � ��  --- (5.36)

Ae
bt

m
�� �2 � �is the amplitude of the damped 

harmonic oscillations. 

Fig. 5.14: Displacement against time graph.
As shown in the displacement against time 

graph (Fig 5.14), the amplitude decreases with 
time exponentially. The term cos � �� �� �t    
shows that the motion is still an S.H.M.

The angular frequency, � � � �
�
�

�
�
��

k

m

b

m
�

2

2

  
      
Period of oscillation, T = 

2 2

2

2

�
�

�
� ��

��
�
�

�
�
�

k
m

b
m

�

       

The damping increases the period (slows down 
the motion) and decreases the amplitude.  
5.15 Free Oscillations, Forced Oscillations 
and Resonance: 
Free Oscillations: If an object is allowed 
to oscillate or vibrate on its own, it does so 
with its natural frequency (or with one of its 
natural frequencies). For example, if the bob 
of a simple pendulum of length l  is displaced 
and released, it will oscillate only with the 

frequency n
g

l
�

1

2�
 which is called its 

natural frequency and the oscillations are 
free oscillations. However, by applying a 
periodic force, the same pendulum can be 
made to oscillate with different frequency. The 
oscillations then will be forced oscillations 
and the frequency is driver frequency or forced 
frequency.
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Consider the arrangement shown in the 
Fig. 5.15. There are four pendula tied to a 
string. Pendula A and C are of the same length, 
pendulum B is of shorter length and pendulum 
D is of longer length. Pendulum A has a solid 
rubber ball as its bob and acts as the driver 
pendulum or the source pendulum. Other three 
pendula have hollow rubber balls as their bobs 
and act as the driven pendula. As the pendula 
A and C are of the same lengths, their natural 
frequencies are the same. Pendulum B has 
higher natural frequency as its length is shorter 
than that of pendulum A. Natural frequency of 
pendulum D is less than that of pendula A and 
C. 

same natural frequency as that of the source 
absorbs maximum energy from the source. In 
such case, it is said to be in resonance with 
the source (pendulum A). For unequal natural 
frequencies on either side (higher or lower), the 
energy absorbed (hence, the amplitude) is less. 
If the activity is repeated for a set of pendula 
of different lengths and squares of their 
amplitudes are plotted against their natural 
frequencies, the plot will be similar to that 
shown in the Fig. 5.16. The peak occurs when 
the forced frequency matches with the natural 
frequency, i.e., at the resonant frequency.

Fig 5.15: Forced oscillations.
Pendulum A is now set into oscillations 

in a plane perpendicular to the plane of paper. 
In the course of time it will be observed that 
the other three pendula also start oscillating in 
the same plane. This happens due to transfer 
of the vibrational energy through the string. 
Oscillations of pedulum A are free oscillations 
and those of pendula B, C and D are forced 
oscillations of the same frequency as that of 
A. The natural frequency of pendulum C is the 
same as that of A, as its length is the same as 
that of A. 

It can also be seen that among the pendula 
B, C and D, the pendulum C oscillates with 
maximum amplitude and the other two with 
smaller amplitudes. As the energy depends 
upon the amplitude, it is clear that pendulum C 
has absorbed maximum energy from the source 
pendulum A, while the other two absorbed 
less. It shows that the object C having the 

Fig 5.16: Resonant frequency.

In the next Chapter on superposition of 
waves, you will see that most of the traditional 
musical instruments use the principle of 
resonance. In the topic AC circuits, the 
resonance in the L.C. circuits is discussed. 
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1. Choose the correct option.
 i)  A particle performs linear S.H.M. 

starting from the mean position. Its 
amplitude is A and time period is T. At 
the instance when its speed is half the 
maximum speed, its displacement x is 

  (A) 3

2
A                (B) 

2

3
A               

  (C) A
2                    (D) 

1

2
A   

 ii)  A body of mass 1 kg is performing linear 
S.H.M. Its displacement  x (cm) at  t 
(second) is given by 

  x = 6 sin (100t + π/4). Maximum kinetic 
energy of the body is 

  (A) 36 J              (B) 9 J             
  (C) 27 J              (D) 18 J 
 iii)  The length of second's pendulum on the 

surface of earth is nearly 1 m. Its length 
on the surface of moon should be [Given: 
acceleration due to gravity (g) on moon 
is 1/6 th of that on the earth’s surface]

  (A) 1/6 m             (B) 6 m              

  (C) 1/36 m           (D) 
1

6
�m

 iv) Two identical springs of constant k are 
connected, first in series and then in 
parallel. A metal block of mass m is 
suspended from their combination. The 
ratio of their frequencies of vertical 
oscillations will be in a ratio

  (A) 1:4   (B) 1:2     (C) 2:1     (D) 4:1          
 v) The graph shows variation of 

displacement of a particle performing 
S.H.M. with time t. Which of the 
following statements is correct from the 
graph?

  (A) The acceleration is maximum at 
time T.                                                                                        

  (B) The force is maximum at time 3T/4.                                                                                                
  (C) The velocity is zero at time T/2.                                                                                                     

  (D) The kinetic energy is equal to total 
energy at time T/4.

Exercises

2. Answer in brief.
 i)  Define linear simple harmonic motion.
 ii) Using differential equation of linear 

S.H.M, obtain the expression for (a) 
velocity in S.H.M., (b) acceleration in 
S.H.M. 

 iii)  Obtain the expression for the period of a 
simple pendulum performing S.H.M. 

 iv)  State the laws of simple pendulum. 
 v)  Prove that under certain conditions a 

magnet vibrating in uniform magnetic 
field performs angular S.H.M. 

 3.  Obtain the expression for the period of a 
magnet vibrating in a uniform magnetic 
field and performing S.H.M. 

 4.  Show that a linear S.H.M. is the 
projection of a U.C.M. along any of its 
diameter.

 5.  Draw graphs of displacement, velocity 
and acceleration against phase angle, 
for a particle performing linear S.H.M. 
from (a) the mean position (b) the 
positive extreme position. Deduce your 
conclusions from the graph. 

 6. Deduce the expressions for the kinetic 
energy and potential energy of a particle 
executing S.H.M. Hence obtain the 
expression for total energy of a particle 
performing S.H.M and show that the 
total energy is conserved.  State the 
factors on which total energy depends. 

 7.  Deduce the expression for period of 
simple pendulum. Hence state the factors 
on which its period depends.

 8.  At what distance from the mean position 
is the speed of a particle performing 
S.H.M. half its maximum speed. Given 
path length of S.H.M. = 10 cm. 

           [Ans: 4.33 cm]
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9.  In SI units, the differential equation 

of an S.H.M. is 
d x

dt
x

2

2
36� �� . Find its 

frequency and period.  
                [Ans: 0.9548 Hz, 1.047 s]
 10.  A needle of a sewing machine moves 

along a path of amplitude 4 cm with 
frequency 5 Hz. Find its acceleration 

1

30
�
�
�

�
�
�  s after it has crossed the mean 

position.    [Ans: 34.2 m/s2]
 11.  Potential energy of a particle performing 

linear S.H.M is 0.1 π2 x2 joule. If mass of 
the particle is 20 g, find the frequency of 
S.H.M.       [Ans: 1.581 Hz]

 12.  The total energy of a body of mass 2 kg 
performing S.H.M. is 40 J. Find its speed 
while crossing the centre of the path.  

                           [Ans: 6.324 cm/s]
 13.  A simple pendulum performs S.H.M of 

period 4 seconds. How much time after 
crossing the mean position, will the 
displacement of the bob be one third of 
its amplitude.                [Ans: 0.2163 s]

 14.  A simple pendulum of length 100 cm 
performs S.H.M. Find the restoring force 
acting on its bob of mass 50 g when the 
displacement from the mean position is 
3 cm.                         [Ans: 1.48 × 10-2 N]

 15.  Find the change in length of a second’s 
pendulum, if the acceleration due to 
gravity at the place changes from 9.75 
m/s2 to 9.80 m/s2.     
     [Ans: Decreases by 5.07 mm]

 16.  At what distance from the mean position 
is the kinetic energy of a particle 
performing S.H.M. of amplitude 8 cm, 
three times its potential energy?  

                 [Ans: 4 cm]
 17.  A particle performing linear S.H.M. 

of period 2π seconds about the mean 
position O is observed to have a speed 
of b� � /3 m s , when at a distance b 
(metre) from O. If the particle is moving 
away from O at that instant, find the 
time required by the particle, to travel a 
further distance b.                  [Ans: π/3 s]

 18.  The period of oscillation of a body of 
mass m

1
 suspended from a light spring 

is T. When a body of mass m
2
 is tied to 

the first body and the system is made to 
oscillate, the period is 2T. Compare the 
masses m

1
 and m

2
                    [Ans: 1/3]

 19.  The displacement of an oscillating 
particle is given by x a t b t� �sin cos� �  
where a, b and ω  are constants. Prove 
that the particle performs a linear S.H.M. 
with amplitude A a b� �2 2� � ��

 20. Two parallel S.H.M.s represented by  
x

1
 = 5sin (4π t + π/3) cm and  x

2 
= 3sin 

(4πt + π/4)  cm are superposed on a 
particle. Determine the amplitude and 
epoch of the resultant S.H.M.    
               [Ans: 7.936 cm, 54° 23']

 21. A 20 cm wide thin circular disc of mass 
200 g is suspended to a rigid support 
from a thin metallic string. By holding 
the rim of the disc, the string is twisted 
through 60o and released. It now performs 
angular oscillations of period 1 second. 
Calculate the maximum restoring torque 
generated in the string under undamped 
conditions. (π3 ≈ 31) 

                   [Ans: 0.04133 N m]
 22.  Find the number of oscillations 

performed per minute by a magnet is 
vibrating in the plane of a uniform field 
of 1.6 × 10-5 Wb/m2.  The magnet has 
moment of inertia 3 × 10-6 kgm2 and 
magnetic moment 3 A m2. 

               [Ans:38.19 osc/min.]
 23. A wooden block of mass m is kept 

on a piston that can perform vertical 
vibrations of adjustable frequency and 
amplitude. During vibrations, we don’t 
want the block to leave the contact 
with the piston. How much maximum 
frequency is possible if the amplitude of 
vibrations is restricted to 25 cm? In this 
case, how much is the energy per unit 
mass of the block? (g ≈ π2 ≈ 10 m s -2) 

                    [Ans: n
max

 = 1/s, E/m = 1.25 J/kg]


