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Do you know?

Can you recall?

2.1 Introduction:
In XIth Std. we discussed the behaviour of 

solids under the action of a force. Among three 
states of matter, i.e., solid, liquid and gas, a 
solid nearly maintains its fixed shape and 
volume even if a large force is applied to it. 
Liquids and gases do not have their own shape 
and they take the shape of the containing 
vessel. Due to this, liquids and gases flow under 
the action of external force. A fluid means a 
substance that can flow. Therefore, liquids and 
gases, collectively, are called fluids. A fluid 
either has no rigidity or its rigidity is very low.

In our daily life, we often experience 
the  pressure exerted by a fluid at rest and in 
motion. Viscosity and surface tension play 
an important role in nature. We will try to 
understand such properties in this chapter. 
2.2 Fluid: 

Any substance that can flow is a 
fluid. A fluid is a substance that deforms 
continually under the action of an external 
force. Fluid is a phase of matter that 
includes liquids, gases and plasmas.  

1. How important are fluids in our life? 
2. What is atmospheric pressure? 
3. Do you feel excess pressure while 

swimming under water? Why? 

A fluid flows under the action of a force 
or a pressure gradient. Behaviour of a fluid 
in motion is normally complicated. We can 
understand fluids by making some simple 
assumptions. We introduce the concept of an 
ideal fluid to understand its behaviour. An 
ideal fluid has the following properties: 
1. It is incompressible: its density is constant.
2. Its flow is irrotational:  its flow is smooth, 

there are no turbulences in the flow. 
3. It is nonviscous: there is no internal friction 

in the flow, i.e., the fluid has no viscosity. 
(viscosity is discussed in section 2.6.1)

4. Its flow is steady: its velocity at each point 
is constant in time.
It is important to understand the difference 

between a solid and a fluid. Solids can be 
subjected to shear stress (tangential stress) as 
shown in Fig. 2.1 and normal stress, as shown 
in Fig.2.2. 

Plasma is one of the four fundamental states 
of matter. It consists of a gas of ions, free 
electrons and neutral atoms.

Fig. 2.2: Normal stress.

Fig. 2.1: Shear stress.

Solids oppose the shear stress either by 
developing a restoring force, which means that 
the deformations are reversible, or they require 
a certain initial stress before they deform and 
start flowing. (We have studied this behavior 
of solids (elastic behaviour) in XIth Std).

Ideal fluids, on the other hand, can only 
be subjected to normal, compressive stress 
(called pressure). Most fluids offer a very 

2. Mechanical Properties of Fluids

We shall discuss mechanical properties 
of only liquids and gases in this Chapter. The 
shear modulus of a fluid is zero.  In simpler 
words, fluids are substances which cannot 
resist any shear force applied to them. Air, 
water, flour dough, toothpaste, etc., are some 
common examples of fluids. Molten lava is 
also a fluid. 

(a) Compressive   (b) Tensile
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Use your brain power

Remember this
Remember this

weak resistance to deformation. Real fluids 
display viscosity and so are capable of being 
subjected to low levels of shear stress.

 Figure 2.4 shows a fluid exerting normal 
forces on a vertical surface and Fig. 2.5 shows 
fluid exerting normal forces on a horizontal 
surface.

Fig. 2.3: Forces acting on a small surface dA 
within a fluid at rest.

The Fig. 2.3 shows a small surface of 
area dA at rest within a fluid. The surface does 
not accelerate, so the surrounding fluid exerts 
equal normal forces dF on both sides of it.
Properties of Fluids:
1. They do not oppose deformation, they get 

permanently deformed. 
2. They have ability to flow. 
3. They have ability to take the shape of the 

container.
A fluid exhibits these properties because 

it cannot oppose a shear stress when in 
static equilibrium. 

2.2.1 Fluids at Rest:
The branch of physics which deals 

with the properties of fluids at rest is called 
hydrostatics. In the next few sections we will 
consider some of the properties of fluids at rest.
2.3 Pressure:

A fluid at rest exerts a force on the surface 
of contact. The surface may be a wall or the 
bottom of an open container of the fluid. The 
normal force (F) exerted by a fluid at rest per 
unit surface area (A) of contact is called the 
pressure (p) of the fluid.
 P

F

A
=                   --- (2.1)

Fig. 2.5: Fluid exerts force on horizontal surface. 

Fig. 2.4: Fluid exerts force on vertical surface.

 Thus, an object having small weight 
can exert high pressure if its weight acts on a  
small surface area. For example, a force of  
10 N acting on 1 cm2 results in a pressure of 
105 N m-2. On the other hand, the same force of 
10 N while acting on an area of 1 m2, exerts a 
pressure of only 10 N m-2. 

1 N weight is about 100 g mass, if  
g =10 m s-2.

The SI unit of pressure is N/m2. Also,  
1 N/m2 = 1 Pascal (Pa). The dimension of 
pressure is [L-1M1T-2]. Pressure is a scalar 
quantity. Other common units of measuring 
pressure of a gas are bar and torr. One torr is 
one mm of mercury column.
1 bar = 105 Nm-2 

1 hectapascal (hPa) = 100 Pa

The term fluid includes both the liquid and gas 
phases. It is commonly used, as a synonym 
for liquid only, without any reference to gas. 
For example, ‘brake fluid’ is hydraulic oil 
and will not perform its required function if 
there is gas in it! This colloquial use of the 
term is also common in the fields of medicine 
and nutrition, e.g., “take plenty of fluids”.

A student of mass 50 kg is standing on both 
feet. Estimate the pressure exerted by the 
student on the Earth. Assume reasonable 
value to any other quantity you need. Justify 
your assumption. You may use g = 10 m s-2

By what factor will it change if the student 
lies on back?

Can you tell?
Why does a knife have a sharp edge, 

and a needle has a sharp tip?
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A vessel is filled with a liquid. Let us 
calculate the pressure exerted by an imaginary 
cylinder of cross sectional area A inside the 
container. Let the  density of the fluid be ρ, and 
the height of the imaginary cylinder be h as 
shown in the Fig. 2.6. The liquid column exerts 
a force F = mg, which is its weight, on the 
bottom of the cylinder. This force acts in the 
downward direction. Therefore, the pressure p 
exerted by the liquid column on the bottom of 
cylinder is, 

 
P

F

A
= 

        ∴ P
mg

A
= 

Now, m = (volume of cylinder) x (density of 
liquid)
               = (Ah) × ρ = Ahρ

        � �
� �

    P
Ah g

A

�

 p = hρg           --- (2.2)
Thus, the pressure p due to a liquid of 

density ρ at rest, and at a depth h below the 
free surface is hρg. 

Note that the pressure dose not depend 
on the area of the imaginary cylinder used to 
derive the expression. 

The concept of pressure is useful in dealing 
with fluids, i.e., liquids and gases. As fluids 
do not have definite shape and volume, it 
is convenient to use the quantities pressure 
and density rather than force and mass when 
studying hydrostatics and hydrodynamics.

Fig. 2.6: Pressure due to a liquid column.

2.3.1 Pressure Due to a Liquid Column:
Example 2.1: Two different liquids of 
density ρ

1 
and ρ

2
 exert the same pressure at 

a certain point. What will be the ratio of the 
heights of the respective liquid columns? 
Solution: Let h

1
 be the height of the liquid of 

density ρ
1
. Then the pressure exerted by the 

liquid of density ρ
1
 is p

1
 = h

1
ρ

1
g. Similarly, 

let h
2
 be the height of the liquid of density 

ρ
2
. Then the pressure exerted by the liquid 

of density ρ
2
 is p

2
 = h

2
ρ

2
g.

Both liquids exert the same pressure, 
therefore we write,
  p

1
 = p

2

   ∴h
1
ρ

1
g = h

2
ρ

2
g or,

h

h
1

2

2

1

�
�
�

Alternate method:
For a given value of p = hρg = constant, 
as g is constant. So the hight is inversely 
proportional to the density of the fluid ρ. In 
this case, since pressure is constant, height 
is inversely proportional to density of the 
liquid.
Example 2.2: A swimmer is swimming in 
a swimming pool at 6 m below the surface 
of the water. Calculate the pressure on the 
swimmer due to water above. (Density of 
water = 1000 kg/m3, g = 9.8 m/s2)
Solution: Given,
h = 6 m, ρ = 1000 kg/m3, g = 9.8 m/s2

p = hρg = 6 × 1000 × 9.8 = 5.88 × 104 N/m2 

(Which is nearly 0.6 times the atmospheric 
pressure!)

2.3.2 Atmospheric Pressure:
Earth's atmosphere is made up of a fluid, 

namely, air. It exerts a downward force due 
to its weight. The pressure due to this force 
is called atmospheric pressure. Thus, at any 
point, the atmospheric pressure is the weight of 
a column of air per unit cross section starting 

1. As p = hρg, the pressure exerted by a 
fluid at rest is independent of the shape  
and size of the container.

2. p = hρg is true for liquids as well as for 
gases.
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from that point and extending to the top of the 
atmosphere. Clearly, the atmospheric pressure 
is highest at the surface of the Earth, i.e., at the 
sea level, and decreases as we go above the 
surface as the height of the column of air above 
decreases. The atmospheric pressure at sea 
level is called normal atmospheric pressure. 
The density of air in the atmosphere decreases 
with increase in height and becomes negligible 
beyond a height of about 8 km so that the 
height of air column producing atmospheric 
pressure at sea level can be taken to be 8 km. 

The region where gas pressure is less than 
the atmospheric pressure is called vacuum. 
Perfect or absolute vacuum is when no matter, 
i.e., no atoms or molecules are present. 
Usually, vacuum refers to conditions when the 
gas pressure is considerably smaller than the 
atmospheric pressure.   
2.3.3 Absolute Pressure and Gauge Pressure:

Consider a tank filled with water as shown 
in Fig. 2.7. Assume an imaginary cylinder of 
horizontal base area A and height x

1
- x

2
 = h. 

x
1
 and x

2
 being the heights measured from a 

reference point, height increasing upwards:  
x

1
 > x

2
. The vertical forces acting on the 

cylinder are: 
1. Force F1

���
 acts downwards at the top surface 

of the cylinder, and is due to the weight of 
the  water column above the cylinder.

2. Force F2

���
 acts upwards at the bottom 

surface of the cylinder, and is due to the 
water below the cylinder.

3. The gravitational force on the water 
enclosed in the cylinder is mg, where m is 
the mass of the water in the cylinder. As 
the water is in static equilibrium, the forces 
on the cylinder are balanced. The balance 
of these forces in magnitude is written as, 

 F
2
= F

1
+ mg      --- (2.3)

p
1
and  p

2  
are  the pressures at the top and 

bottom surfaces of the cylinder respectively 
due to the fluid. 

 
Using Eq. (2.1) we can write 

 F
1
 = p

1
A, and F

2
 = p

2
A    --- (2.4)

Also, the mass m of the water in the cylinder 
can be written as,
     m = density × volume = ρV
 ∴m = ρA(x

1
-x

2
)    --- (2.5)

To find the pressure p at a depth h below 
the liquid surface, let the top of an imaginary 
cylinder be at the surface of the liquid. Let 
this level be x

1
. Let x

2
 be some point at depth h 

below the surface as shown in Fig. 2.8. Let p
0 

be the atmospheric pressure at the surface, i.e., 
at x

1
. Then, substituting x

1
 = 0, p

1
 = p

0
, x

2
 = -h, 

and p
2
 = p in Eq. (2.6) we get,

  p = p
0
+ hρg      --- (2.7)

The above equation gives the total 
pressure, or the absolute pressure p, at a depth 
h below the surface of the liquid. The total 
pressure p, at the depth h is the sum of:
1. p

0
, the pressure due to the atmosphere, 

which acts on the surface of the  
liquid, and

2. hρg, the pressure due to the liquid at depth 
h. 

Fig. 2.7: Pressure due to an imaginary cylinder 
of fluid.

Substituting Eq. (2.4) and Eq. (2.5) in Eq. (2.3) 
we get,
 p

2
A = p

1
A + ρAg (x

1
- x

2
)

 p
2
 = p

1
 + ρg (x

1
- x

2
)          --- (2.6)

This equation can be used to find the 
pressure inside a liquid (as a function of 
depth below the liquid surface) and also the 
atmospheric pressure (as a function of altitude 
or height above the sea level). 

Fig. 2.8. Pressure at a depth h below the surface 
of a liquid.
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Can you tell?

In general, the difference between the 
absolute pressure and the atmospheric pressure 
is called the gauge pressure. Using Eq. (2.7), 
gauge pressure at depth h below the liquid 
surface can be written as, 
 p - p

0
 = hρg     --- (2.8)

Eq. (2.8) is also applicable to levels above 
the liquid surface. It gives the pressure at a 
given height above a liquid surface, in terms 
of the atmospheric pressure p

0 
(assuming that 

the atmospheric density is uniform up to that 
height). 

To find the atmospheric pressure at a 
distance d above the liquid surface as shown 
in Fig. 2.9, we substitute x

1
 = d, p

1
 = p, x

2
 = 0, 

p
2
 = p

0
 and ρ = ρ

air 
in Eq. (2.6) we get,

 p = p
o
 - dρ

air 
g   --- (2.9)

Fig. 2.9: Change of atmospheric pressure  
with height.

Fig. 2.10: Hydrostatic paradox.

base of the vessel B and the liquid from vessel 
C would rise into the vessel B. However, 
it is never observed. Equation 2.2 tells that 
the pressure at a point depends only on the 
height of the liquid column above it. It does 
not depend on the shape of the vessel. In this 
case, height of the liquid column is the same 
for all the vessels. Therefore, the pressure of 
liquid column in each vessel is the same and 
the system is in equilibrium. That means the 
liquid in vessel C does not rise in to vessel B.

2.3.4 Hydrostatic Paradox:
Consider the inter connected vessels 

as shown in Fig. 2.10 (a). When a liquid is 
poured in any one of the vessels, it is noticed 
that the level of liquids in all the vessels is the 
same. This observation is somewhat puzzling. 
It was called 'hydrostatics paradox' before 
the principle of hydrostatics were completely 
understood. 

One can feel that the pressure of the base 
of the vessel C would be more than that at the 

Consider Fig. 2.10 (b). The arrows indicate 
the forces exerted against the liquid by the walls 
of the vessel. These forces are perpendicular to 
walls of the vessel at each point. These forces 
can be resolved into vertical and horizontal 
components. The vertical components act in 
the upward direction. Weight of the liquid in 
section B is not balanced and contibutes the 
pressure at the base. Thus, it is no longer a 
paradox!
2.3.5 Pascal’s Law:

Pascal’s law states that the pressure 
applied at any point of an enclosed fluid at 
rest is transmitted equally and undiminished to 
every point of the fluid and also on the walls of 
the container, provided the effect of gravity is 
neglected.

The figures show three containers filled 
with the same oil. How will the pressures at 
the bottom compare?  

(a)      (b)       (c)

(a)                (b)    

Experimental proof of Pascal’s law.
Consider a vessel with four arms A, B, C, 
and D fitted with frictionless, water tight 
pistons and filled with incompressible fluid 
as shown in the figure given. Let the area of 
cross sections of A, B, C, and D be a, 2a, 3a, 
and a/2 respectively. If a force F is applied 
on the piston A, the pressure exerted on the 
liquid is p = F/a. It is observed that the other 
three pistons B, C, and D move outward. 
In order to keep these three pistons B, C, 
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Observe and discuss

Blow air in to a flat balloon using a cycle 
pump. Discuss how Pascal’s principle is 
applicable here.

Fig. 2.11 Hydraulic Lift.

Fig. 2.12 Hydraulic brake system (schematic).

and D in their original positions, forces 2F, 
3F, and F/2 respectively are required to be 
applied on the pistons. Therefore, pressure 
on the pistons B, C, and D is:

Applications of Pascal’s Law:
i) Hydraulic lift: Hydraulic lift is used to lift a 
heavy object using a small force. The working 
of this machine is based on Pascal’s law.

  on B, p
F

a

F

aB = =� �
2

2
 

  on C, p
F

a

F

aC = =� �
3

3
  and

  on D,  p
F

a

F

aD = =�
/

/
�

2

2

i.e.  p
B
 = p

C
 = p

D
 = p, this indicates that the 

pressure applied on piston A is transmitted 
equally and undiminished to all parts of the 
fluid and the walls of the vessel. 

As shown in Fig. 2.11, a tank containing  
a fluid is fitted with two pistons S

1
 and S

2
 . S

1
 

has a smaller area of cross section, A
1
 while 

S
2
 has a much larger area of cross section,  

A
2
 (A

2
 >> A

1
). If we apply a force F

1
 on the 

smaller piston S
1
 in the downward direction it 

will generate pressure p = (F
1
/A

1
) which will be 

transmitted undiminished to the bigger piston 
S

2
. A force F

2
 = pA

2
 will be exerted upwards 

on it.  

 F F
A

A2 1
2

1

�
�

�
�

�

�
�    --- (2.10)

Thus, F
2
 is much larger than F

1
. A heavy 

load can be placed on S
2
 and can be lifted up 

or moved down by applying a small force on 
S

1
. This is the principle of a hydraulic lift.

ii) Hydraulic brakes: Hydraulic brakes are 
used to slow down or stop vehicles in motion. 
It is based on the same principle as that of a 
hydraulic lift.

Figure 2.12 shows schematic diagram 
of a hydraulic brake system. By pressing the 
brake pedal, the piston of the master cylinder 
is pushed in forward direction. As a result, 
the piston in the slave cylinder which has a 
much larger area of cross section as compared 
to that of the master cylinder, also moves in 
forward direction so as to maintain the volume 
of the oil constant. The slave piston pushes the 
friction pads against the rotating disc, which 
is connected to the wheel. Thus, causing a 
moving vehicle to slow down or stop. 

The master cylinder has a smaller area of 
cross section A

1
 compared to the area A

2
 of the 

slave cylinder. By applying a small force F
1
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to the master cylinder, we generate pressure 
p = (F

1
/A

1
). This pressure is transmitted 

undiminished throughout the system. The force 
F

2
 on slave cylinder is then,

 
           

F PA
F

A
A F

A

A2 2
1

1
2 1

2

1

� � � �
�

�
�

�

�
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This is similar to the principle used in 
hydraulic lift. Since area A

2 
is greater than A

1
, 

F
2
 is also greater than F

1
. Thus, a small force 

applied on the brake pedal gets converted into 
large force and slows down or stops a moving 
vehicle.

 2.3.6 Measurement of Pressure:
Instruments used to measure pressure are 

called pressure meters or pressure gauges or 
vacuum gauges. Below we will describe two 
instruments which are commonly used to 
measure pressure.   

i) Mercury Barometer: An instrument that 
measures atmospheric pressure is called a 
barometer. One of the first barometers was 
invented by the Italian scientist Torricelli. 
The barometer is in the form of a glass tube 
completely filled with mercury and placed 
upside down in a small dish containing 
mercury. Its schematic diagram is shown in 
Fig. 2.13.

Example 2.3: A hydraulic brake system 
of a car of mass 1000 kg having speed of 
50 km/h, has a cylindrical piston of radius 
of 0.5 cm. The slave cylinder has a radius 
of 2.5 cm. If a constant force of 100 N is 
applied on the brake what distance the car 
will travel before coming to stop? 
Solution: Given,
F

1
 = 100 N, A

1
 = π (0.5 × 10-2)2  m2, 

A
2
 = π (2.5 × 10-2)2  m2, F

2
 = ?

By Pascal’s Principle, 

 

F

A
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2
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Acceleration of the car = 

a = F
2
 /m = 2500/1000 = 2.5 m/s2. Using 

Newton's equation of motion,

v2 = u2 -2as where final velocity v = 0,  
u = 50 km/h

s �
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�
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�
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Caution: 
Use of mercury is not advised in a 
laboratory because mercury vapours are 
hazardous for life and for environment.

Fig. 2.13: Mercury 
barometer.

1. A glass tube of about 1 meter length and 
a diameter of about 1 cm is filled with 
mercury up to its brim. It is then quickly 
inverted into a small dish containing 
mercury. The level of mercury in the glass 
tube lowers as some mercury spills in the 
dish. A gap is created between the surface 
of mercury in the glass tube and the closed 
end of the glass tube. The gap does not 
contain any air and it is called Torricelli’s 
vacuum. It does contain some mercury 
vapors.

2. Thus, the pressure at the upper end of the 
mercury column inside the tube is zero, i.e. 
pressure at point such as A is P

A
= zero.

3. Let us consider a point C on the mercury 
surface in the dish and another point B 
inside the tube at the same horizontal level 
as that of the point C.

4. The pressure at C is equal to the 
atmospheric pressure p

0 
because it is open 

to atmosphere. As points B and C are at the 
same horizontal level, the pressure at B is 
also equal to the atmospheric pressure P

o
, 

i.e. P
B
= P

o
.

5. Suppose the point B is at a depth h below 
the point A and ρ is the density of mercury 
then,     

        P
B
= P

A
 + hρg    --- (2.11)

Torricelli’s vacuum
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Can you tell?

Do you know?

Remember this

Can you recall?

The atmospheric pressure is generally 
expressed as the length of mercury column in 
a mercury barometer. 
P

atm
= 76 cm of Hg = 760 mm of Hg =760 

Torr.

p
A
 = 0 (there is vacuum above point A) and  

p
B
 = p

0
, therefore, p

0
 = hρg, where h is the length 

of mercury column in the mercury barometer. 

The pressure at point A is atmospheric 
pressure p

0 
because this arm is open to 

atmosphere. To find the pressure at point C, 
which is exposed to the pressure of the gas 
in the container, we consider a point B in the 
open arm of the manometer at the same level 
as point C. The pressure at the points B and C 
is the same, i.e.,
 p

C
 = p

B    
--- (2.12)

The pressure at point B is,
 p

B
 = p

o
 + hρg   --- (2.13)

where, ρ is the density of the liquid in the 
manometer, h is the height of the liquid column 
above point B, and g is the acceleration due 
to gravity. According to Pascal’s principle, 

pressure at C is the same as at D, i.e., inside 
the chamber. Therefore, the pressure p in the 
container is,
 p = p

C    

Using Eq. (2.12) and Eq. (2.13) we can write,
 p = p

0
 + hρg   --- (2.14)

As the manometer measures the gauge 
pressure of the gas in the container D, we can 
write the gauge pressure in the container D as
 p - p

0
 = hρg

2.4 Surface Tension:

A liquid at rest shows a very interesting 
property called surface tension. We have 
seen that water spider walks on the surface 
of steady water, greased needle floats on the 
steady surface of water, rain drops and soap 
bubbles always take spherical shape, etc. 
All these phenomena arise due to surface 
tension. Surface tension is one of the important 
properties of liquids. 

Fig. 2.14 Open tube 
manometer.

What will be the normal atmospheric 
pressure in bar and also in torr?

1. You must have blown soap bubbles in 
your childhood. What is their shape?

2. Why does a greased razor blade float 
on the surface of water?

3. Why can a water spider walk 
comfortably on the surface of still 
water?

4. Why are free liquid drops and bubbles 
always spherical in shape?

1. When we write on paper, the ink sticks 
to the paper.

2. When teacher writes on a board, chalk 
particles stick to the board.

3. Mercury in a glass container does not 
wet its surface, while water in a glass 
container wets it. 

ii) Open tube manometer: A manometer 
consists of a U – shaped tube partly filled with 
a low density liquid such as water or kerosene. 
This helps in having a larger level difference 
between the level of liquid in the two arms of 
the manometer. Figure 2.14 shows an open 
tube manometer. One arm of the manometer 
is open to the atmosphere and the other is 
connected to the container D of which the 
pressure p is to be measured.

2.4.1 Molecular Theory of Surface Tension:
All the above observations can be 

explained on the basis of different types of 
forces coming into play in all these situations. 
We will try to understand the effect of these 
forces and their relation to the surface tension 
in liquids.
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Remember this

To understand surface tension, we need 
to know some terms in molecular theory 
that explain the behaviour of liquids at their 
surface.
a) Intermolecular force: Matter is made up 
of molecules. Any two molecules attract each 
other. This force between molecules is called 
intermolecular force. There are two types of 
intermolecular forces - i) Cohesive force and 
ii) Adhesive force.
 i)  Cohesive force: The force of attraction 

between the molecules of the same 
substance is called cohesive force or 
force of cohesion. The force of attraction 
between two air molecules or that between 
two water molecules is a cohesive force. 
Cohesive force is strongest in solids and 
weakest in gases. This is the reason why 
solids have a definite shape and gases do 
not. Small droplets of liquid coalesce into 
one and form a drop due to this force.

 ii)  Adhesive force: The force of attraction 
between the molecules of different 
substances is called adhesive force or 
force of adhesion. The force of attraction 
between glass and water molecule is a 
force of adhesion.

b) Range of molecular force: The maximum 
distance from a molecule up to which the 
molecular force is effective is called the range 
of molecular force. Intermolecular forces 
are effective up to a distance of the order of 
few nanometer (10-9 m) in solids and liquids. 
Therefore, they are short range forces.
c) Sphere of influence: An imaginary sphere 
with a molecule at its center and radius equal 
to the molecular range is called the sphere of 
influence of the molecule. The spheres around 
molecules A, B or C are shown in Fig. 2.15 (a) 
and (b). The intermolecular force is effective 
only within the sphere of influence.
d) Surface film: The surface layer of a 
liquid with thickness equal to the range of 
intermolecular force is called the surface film. 
This is the layer shown between XY and X′Y′ 
in Fig. 2.15 (b).

(f) Surface tension on the basis of molecular 
theory: As shown in Fig. 2.15 (b), XY is the 
free surface of liquid and X′Y′ is the inner 
layer parallel to XY at distance equal to the 
range of molecular force. Hence, the section  
XX′-Y′Y near the surface of the liquid acts as 
the surface film. Consider three molecules A, 
B, and C such that molecule A is deep inside 
the liquid, molecule B within surface film and 
molecule C on the surface of the liquid.

As molecule A is deep inside the liquid, its 
sphere of influence is also completely inside 
the liquid. As a result, molecule A is acted 
upon by equal cohesive forces in all directions. 
Thus, the net cohesive force acting on molecule 
A is zero. 

Molecule B lies within the surface layer 
and below the free surface of the liquid. A 
larger part of its sphere of influence is inside 
the liquid and a smaller part is in air. Due to 
this, a strong downward cohesive force acts on 
the liquid molecule. The adhesive force acting 
on molecule B due to air molecules above it 
and within its sphere of influence is weak. It 
points upwards. As a result, the molecule B 
gets attracted inside the liquid.

Fig. 2.15:   (a)  sphere of influence and  
(b) surface film.

(a)
(b)

While studying pressure, we considered both 
liquids and gases. But as gases do not have 
a free surface, they do not exhibit surface 
tension. 

(e) Free surface of a liquid: It is the surface 
of a fluid which does not experience any shear 
stress. For example, the interface between 
liquid water and the air above. In Fig. 2.15 (b), 
XY is the free surface of the liquid.
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Use your brain power

The same holds for molecule C which lies 
exactly on the free surface of the liquid.  Half 
of the sphere of influence is in air and half in 
the liquid. The number of air molecules within 
the sphere of influence of the molecule C, 
above the free surface of the liquid is much less 
than the number of liquid molecules within the 
sphere of influence that lies within the liquid. 
This is because, the density of air is less than 
that of a liquid. The adhesive force trying to 
pull the molecule above the liquid surface is 
much weaker than the cohesive force that tries 
to pull the molecule inside the liquid surface. 
As a result, the molecule C also gets attracted 
inside the liquid.

Thus, all molecules in the surface film 
are acted upon by an unbalanced net cohesive 
force directed into the liquid. Therefore, the 
molecules in the surface film are pulled inside 
the liquid. This minimizes the total number of 
molecules in the surface film. As a result, the 
surface film remains under tension. The surface 
film of a liquid behaves like a stretched elastic 
membrane. This tension is known as surface 
tension. The force due to surface tension acts 
tangential to the free surface of a liquid.
2.4.2 Surface Tension and Surface Energy:
a) Surface Tension: As seen previously, the 
free surface of a liquid in a container acts as 
a stretched membrane and all molecules on 
the surface film experience a stretching force. 
Imagine a line PQ of length L drawn tangential 
to the free surface of the liquid, as shown in 
Fig. 2.16. 

This force per unit length is the surface 
tension. Surface tension T is defined as, the 
tangential force acting per unit length on both 
sides of an imaginary line drawn on the free 
surface of liquid.

   T
F

L
=     --- (2.15)

SI unit of surface tension is N/m. Its dimensions 
are, [L0M1T-2].

Fig. 2.16: Force of surface tension.

Prove that, equivalent S.I. unit of surface 
tension is J/m2.

Example 2.4: A beaker of radius 10 cm 
is filled with water. Calculate the force 
of surface tension on any diametrical line 
on its surface. Surface tension of water is 
0.075 N/m.
Solution: Given,
 L = 2 × 10 = 20 cm = 0.2 m
 T = 0.075 N/m
We have,

  
T

F

L
= 

∴F = TL = 0.075 × 0.2 = 0.015 
     = 1.5 × 10-2 N

All the molecules on this line experience 
equal and opposite forces tangential to surface 
as if they are tearing the surface apart due 
to the cohesive forces of molecules lying on 
either side. 

Table 2.1 – Surface tension of some liquids at 20oC.

Sr. 
No.

Liquid S.T. 
(N/m)

S.T. 
(dyne/cm)

1 Water 0.0727 72.7
2 Mercury 0.4355 435.5
3 Soap 

solution
0.025 25

4 Glycerin 0.0632 63.2

b) Surface Energy: We have seen that a 
molecule inside the volume of a liquid (like 
molecule A in Fig 2.15) experiences no net 
cohesive force and the molecules B and C 
experience net inward cohesive force. Thus, 
work has to be done to bring any molecule from 
inside the liquid into the surface film. Clearly, 
the surface molecules possess extra potential 
energy as compared to the molecules inside 
the liquid. The extra energy of the molecules 
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Remember this

opposite to F) applied isothermally (gradually 
and at constant temperature), to the arm 
QR, so that it pulls the arm away and tries 
to increase the surface area of the film. The 
arm QR moves to Q′R′ through a distance dx. 
Therefore, the work done against F, the force 
due to surface tension, is given by

  dw = F ′dx
Using Eq. (2.16),
  dw = T (2Ldx)

But, 2Ldx = dA, increase in area of the two 
surfaces of the film. Therefore,  dw = T(dA).

This work done in stretching the film is 
stored in the area dA of the film as its potential 
energy. This energy is called surface energy. 
        ∴ Surface energy = T (dA)        --- (2.17)

Thus, surface tension is also equal to the 
surface energy per unit area. 

in the surface layer is called the surface energy 
of the liquid. As any system always tries to 
attain a state of minimum potential energy, the 
liquid tries to reduce the area of its surface film.  
Energy has to be spent in order to increase the 
surface area of a liquid.     

 1) Molecules on the liquid surface 
experience net inward pull. In spite of 
this if they remain at the surface, they 
possess higher potential energy. As a 
universal property, any system tries to 
minimize its potential energy. Hence 
liquid surface tries to minimize its 
surface area. 

 2)  When a number of droplets coalesce 
and form a drop, there is reduction 
in the total surface area. In this case, 
energy is released to the surrounding.

Fig. 2.17: Surface energy of a liquid

Example 2.5: Calculate the work done 
in blowing a soap bubble to a radius of  
1 cm. The surface tension of soap solution is  
2.5 × 10-2 N/m.
Solution: Given 
 T = 2.5 × 10-2 N/m
Initial radius of bubble = 0 cm
Final radius of bubble, r = 1 cm = 0.01 m
Initial surface area of soap bubble = 0
(A soap bubble has two surfaces, outer 
surface and inner surface).
Final surface area of soap bubble is,  
A = 2 × (4πr 2) = 8πr 2

∴change in area  = dA = A – 0 = 8πr2  
       = 0.002514 m2

∴ work done = T × dA
           = 2.5 × 10-2 × 0.251 × 10-2

           = 6.284 × 10-5 J 

c) Relation between the surface energy 
and surface tension: Consider a C shaped 
frame of wire P′PSS′. It is fitted with a movable 
arm QR as shown in Fig. 2.17. This frame is 
dipped in a soap solution and then taken out. A 
film of soap solution will be formed within the 
boundaries PQRS of the frame.

Each arm of the frame experiences an 
inward force due to the film. Under the action 
of this force, the movable arm QR moves 
towards side PS so as to decrease the area 
of the film. If the length of QR is L, then this 
inward force F acting on it is given by

F = (T) × (2L)    --- (2.16)
Since the film has two surfaces, the upper 

surface and the lower surface, the total length 
over which surface tension acts on QR is 
2L. Imagine an external force F′ (equal and 

Try this

Take a ring of about 5 cm in diameter. Tie 
a thin thread along the diameter of the ring. 
Keep the thread slightly loose. Dip the ring 
in a soap solution and take it out. A soap 
film is formed on either side of thread. 
Break the film on any one side of the thread. 
Discuss the result.
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Do you know?

2.4.3 Angle of Contact:
When a liquid surface comes in contact 

with a solid surface, it forms a meniscus, 
which can be either convex (mercury-glass) or 
concave (water glass), as shown in Fig. 2.18. 
The angle of contact, θ , between a liquid and 
a solid surface is defined as the angle between 
the tangents drawn to the free surface of the 
liquid and surface of the solid at the point of 
contact, measured within the liquid.

• when we observe the level of water in a 
capillary, we note down the level of the 
tangent to the meniscus inside the water. 

• When we observe the level of mercury 
in a capillary we note down the level of 
the tangent to the meniscus above the 
mercury column.

Fig. 2.18 (a): Concave meniscus due to liquids 
which partially wet a solid surface.

Fig. 2.19 (a): Acute angle of contact.

Figure 2.19 (a) shows the acute angle of 
contact between a liquid surface (e.g., kerosene 
in a glass bottle). Consider a molecule such as 
A on the surface of the liquid near the wall of 
the container. The molecule experiences both 
cohesive as well as adhesive forces. In this case, 
since the wall is vertical, the net adhesive force  
( AP
� ���

) acting on the molecule A is horizontal, 
Net cohesive force ( AC  

� ���
) acting on molecule is 

directed at nearly 45o to either of the surfaces. 
Magnitude of adhesive force is so large that 
the net force ( AR

� ���
) is directed inside the solid.

For equilibrium or stability of a liquid 
surface, the net force ( AR

� ���
) acting on the 

molecule A must be normal to the liquid surface  
at all points. For the resultant force AR

� ���
 to 

be normal to the tangent, the liquid near the 
wall should pile up against the solid boundary 
so that the tangent AT to the liquid surface 
is perpendicular to AR. Thus, this makes the 
meniscus concave. Obviously, such liquid 
wets that solid surface.  
ii) Convex meniscus - obtuse angle of 
contact: 

Figure 2.19 (b) shows the obtuse angle 
of contact between a liquid and a solid 
(e.g., mercury in a glass bottle). Consider a 
molecule such as A on the surface of the liquid 

When the angle of contact is acute, the 
liquid forms a concave meniscus Fig. 2.18 (a)  
at the point of contact. When the angle of  
contact is obtuse, it forms a convex meniscus  
Fig. 2.18 (b). For example, water-glass interface 
forms a concave meniscus and mercury-glass 
interface forms a convex meniscus.

Fig. 2.18 (b): Convex meniscus due to liquids 
which do not wet a solid surface.

a) Shape of meniscus:
i) Concave meniscus - acute angle of contact:

Remember this

The work done, under isothermal condition, 
against the force of surface tension to 
change the surface area of a liquid is stored 
as surface energy of liquid.

This difference between the shapes of 
menisci is due to the net effect of the cohesive 
forces between liquid molecules and adhesive 
forces between liquid and solid molecules as 
discussed below.
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Can you tell?

near the wall of the container. The molecule 
experiences both cohesive as well as adhesive 
forces. In this case also, the net adhesive force  
( AP
� ���

) acting on the molecule A is horizontal 
since the wall is vertical. Magnitude of 
cohesive force is so large that the net force  
( AR
� ���

) is directed inside the liquid.

iv) Angle of contact 900 and conditions for 
convexity and concavity: 

Consider a hypothetical liquid having 
angle of contact 900 with a given solid 
container, as shown in the Fig. 2.19 (d). In this 
case, the net cohesive force AC  

� ���
 is exactly at 

450 with either of the surfaces and the resultant 
force AR

� ���
 is exactly vertical (along the solid 

surface). 

For this to occur, AP
AC� ���

=
2

 where, AC is 

the magnitude of the net cohesive force. From 
this we can write the conditions for acute and 
obtuse angles of contact:

For acute angle of contact, AP
AC� ���

>
2

, and for 

obtuse angle of contact, AP
AC� ���

<
2

.

How does a water proofing agent work?

Fig. 2.19 (b): Obtuse angle of contact.

Figure 2.19 (c) shows the angle of 
contact between a liquid (e.g. highly pure 
water) which completely wets a solid 
(e.g. clean glass) surface. The angle  
of contact in this case is almost zero (i.e.,  
θ →  00). In this case, the liquid molecules near 
the contact region, are so less in number that 
the cohesive force is negligible, i.e., AC

� ���
=�0  

and the net adhesive force itself is the resultant 
force, i.e., AP AR

� ��� � ���
=  . Therefore, the tangent 

AT  is along the wall within the liquid and the 
angle of contact is zero.

Fig. 2.19 (d): Acute angle equal to 900.

For equilibrium or stability of a liquid 
surface, the net force ( AR

� ���
) acting on all 

molecules similar to molecule A must be 
normal to the liquid surface at all points. The 
liquid near the wall should, therefore, creep 
inside against the solid boundary. This makes 
the meniscus convex so that its tangent AT is 
normal to AR. Obviously, such liquid does not 
wet that solid surface.
iii) Zero angle of contact : 

Fig. 2.19 (c):  Angle of contact equal to zero.

b) Shape of liquid drops on a solid surface: 
When a small amount of a liquid is 

dropped on a plane solid surface, the liquid 
will either spread on the surface or will form 
droplets on the surface. Which phenomenon 
will occur depends on the surface tension of 
the liquid and the angle of contact between 
the liquid and the solid surface. The surface 
tension between the liquid and air as well as 
that between solid and air will also have to be 
taken in to account. 

Let θ  be the angle of contact for the given 
solid-liquid pair.
T

1
 = Force due to surface tension at the liquid-

        solid interface,
T

2
 = Force due to surface tension at the air-

        solid interface,
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T
3
 = Force due to surface tension at the air-

        liquid interface. 
As the force due to surface tension is 

tangential to the surfaces in contact, directions 
of T

1
, T

2
 and T

3
 are as shown in the Fig. 2.20.

For equilibrium of the drop,

    T T T cos2 1 3� � � , cos
T T

T
� �

�
� 2 1

3

     --- (2.18)

From this equation we get the following cases:
 1)  If T

2 
> T

1
 and (T

2
-T

1
) < T

3
, cosθ  is positive  

and the angle of contact θ  is acute as 
shown in Fig. 2.20 (a).

 3)  If (T
2
 – T

1
) = T

3
, cosθ  = 1 and θ  is nearly 

equal to zero.
 4)  If (T

2
 – T

1
) >T

3
 or T

2
> (T

1
 + T

3
), cosθ > 1 

which is impossible. The liquid spreads 
over the solid surface and drop will not be 
formed.

c) Factors affecting the angle of contact: 
The value of the angle of contact depends on 
the following factors,  
 i)  The nature of the liquid and the solid in 

contact.
 ii) Impurity : Impurities present in the liquid 

change the angle of contact.
 iii) Temperature of the liquid : Any increase 

in the temperature of a liquid decreases its 
angle of contact. For a given solid-liquid 
surface, the angle of contact is constant at 
a given temperature.

Table 2.2 – Angle of contact for pair of  
liquid - solid in contact.

Sr. 
No.

Liquid - solid in contact Angle of 
contact

1 Pure water and clean glass 0°
2 Chloroform with clean 

glass
00

3 Organic liquids with clean 
glass

00

4 Ether with clean glass 160

5 Kerosene with clean glass 260

6 Water with paraffin 1070

7 Mercury with clean glass 1400

2.4.4 Effect of impurity and temperature on 
surface tension: 
a) Effect of impurities: 
 i)  When soluble substance  such as common 

salt (i.e., sodium chloride) is dissolved 
in water, the surface tension of water 
increases. 

 ii)  When a sparingly soluble substance such 
as  phenol or a detergent is mixed with 
water, surface tension of water decreases. 
For example, a detergent powder is mixed 
with water to wash clothes. Due to this, 
the surface tension of water decreases and 
water makes good contact with the fabric 
and is able to remove tough stains.

 iii) When insoluble impurity is added 
into water, surface tension of water 
decreases. When impurity gets added 
to any liquid, the cohesive force of that 
liquid decreases which affects the angle 
of contact and hence the shape of the 
meniscus. If mercury gathers dust then 
its surface tension is reduced. It does not 
form spherical droplets unless the dust is 
completely removed.

b) Effect of temperature: In most liquids, 
as temperature increases surface tension 
decreases. For example, it is suggested that 
new cotton fabric should be washed in cold 
water. In this case, water does not make good 
contact with the fabric due to its higher surface 
tension. The fabric does not lose its colour 
because of this. 

Fig. 2.20 (a):  Acute angle of contact. 

 2)  If T
2 

< T
1
 and (T

2
 – T

1
) < T

3
, cosθ  is 

negative, and the angle of contact θ  is 
obtuse as shown in Fig. 2.20(b).

Fig. 2.20 (b): Obtuse angle of contact. 

Solid
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downward force 


f A . This develops greater 
pressure at point B, which is inside the liquid 
and on the concave side of the meniscus. Thus, 
the pressure on the concave side i.e., inside the 
liquid is greater than that on the convex side 
i.e., outside the liquid. 
c) Concave liquid surface: 

Hot water is used to remove tough stains 
on fabric because of its lower surface tension. 

In the case of molten copper or molten 
cadmium, the surface tension increases with 
increase in its temperature. 

The surface tension of a liquid becomes 
zero at critical temperature. 
2.4.5 Excess pressure across the free  surface 
of a liquid: 

Every molecule on a liquid surface 
experiences forces due to surface tension 
which are tangential to the liquid surface at 
rest. The direction of the resultant force of 
surface tension acting on a molecule on the 
liquid surface depends upon the shape of that 
liquid surface. This force also contributes in 
deciding the pressure at a point just below the 
surface of a liquid.

Figures 2.21 (a), (b) and (c) show surfaces 
of three liquids with different shapes and their 
menisci. Let 



f A  be the downward force due to 
the atmospheric pressure. All the three figures 
show two molecules A and B. The molecule A 
is just above, and the molecule B is just below 
it (inside the liquid). Level difference between 
A and B is almost zero, so that it does not 
contribute anything to the pressure difference. 
In all the three figures, the pressure at the point 
A is the atmospheric pressure p.
a) Plane liquid surface:

Figure 2.21 (a) shows planar free surface 
of the liquid. In this case, the resultant force 
due to surface tension, 



fT  on the molecule at B 
is zero. The force 



f A  itself decides the pressure 
and the pressure at A and B is the same. 

Fig. 2.21 (a): Plane surface.
b) Convex liquid surface: 

Surface of the liquid in the Fig.2.21 (b) 
is upper convex. (Convex, when seen from 
above).  In this case, the resultant force due 
to surface tension, 



fT  on the molecule at B 
is vertically downwards and adds up to the 

Fig. 2.21 (b) : Convex surface.

Surface of the liquid in the Fig. 2.21 (c) 
is upper concave  (concave, when seen from 
above). In this case, the force due to surface 
tension 



fT , on the molecule at B is vertically 
upwards. The force 



f A  due to atmospheric 
pressure acts downwords. Forces 



f A  and 


fT  
thus, act in opposite direction. Therefore, 
the net downward force responsible for the 
pressure at B is less than 



f A . This develops a 
lesser pressure at point B, which is inside the 
liquid and on the convex side of the meniscus. 
Thus, the pressure on the concave side i.e., 
outside the liquid, is greater than that on the 
convex side, i.e., inside the liquid.
2.4.6 Explanation of formation of drops and 
bubbles: 

Liquid drops and small bubbles are 
spherical in shape because the forces of 
surface tension dominate the gravitational 
force. These force always try to minimize the 
surface area of the liquid. A bubble or drop 
does not collapse because the resultant of the 
force due to external pressure and the force of 
surface tension is smaller than the pressure 
inside a bubble or inside a liquid drop.  

Fig. 2.21 (c): Concave Surface.
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Consider a spherical drop as shown in 
Fig. 2.22. Let p

i
 be the pressure inside the drop 

and p
0
 be the pressure out side it. As the drop is 

spherical in shape, the pressure, p
i
, inside the 

drop is greater than p
0
, the pressure outside. 

Therefore, the excess pressure inside the drop 
is p

i
- p

0
.

surface and the outer surface. For a bubble,  
Eq. (2.19) charges to dA = 2(8πr∆r). Hence, total 
increase in the surface area of a soap bubble, 
while increasing its radius by ∆r, is 2(8πr∆r)
The work done by this excess pressure is  
 dW = (p

i
 – p

0
) 4πr 2∆r = T(16πr∆r)

 ∴ (p
i
 – p

0
) = 

4T

r
   --- (2.24)

Fig. 2.22. Excess pressure inside a liquid drop.

Brain teaser: 
1. Can you suggest any method to measure 

the surface tension of a soap solution? 
Will this method have any commercial 
application?

2. What happens to surface tension under 
different gravity (e.g. Space station or 
lunar surface)?

Example 2.6: What should be the diameter 
of a water drop so that the excess pressure 
inside it is 80 N/m2? (Surface tension of 
water = 7.27 × 10-2 N/m)
Solution: Given
 p

i
 – p

o
 = 80 N/m2

 T = 7.27 × 10-2 N/m
We have,
(p

i
 – p

o
) = 

2T

r

∴ r = 
2 2 7 27 10

80
1 818 10

2
3T

i op p�
�

� �
� �

�
�

�
�

� . � �
. m

∴d = 2r = 3.636 × 10-3 mm

Let the radius of the drop increase from 
r to r + ∆r, where ∆r is very small, so that 
the pressure inside the drop remains almost 
constant.

Let the initial surface area of the drop be 
A

1
 = 4πr 2, and the final surface area of the 

drop be A
2
 = 4π (r+∆r)2.

∴A
2
 = 4π(r2 + 2r∆r + ∆r 2)

∴A
2
 = 4πr2 + 8πr∆r + 4π∆r 2

As ∆r is very small, ∆r 2 can be neglected,  
∴ A

2
 = 4πr 2 + 8πr∆r

Thus, increase in the surface area of the drop is 
 dA = A

2
 – A

1
 = 8πr∆r   --- (2.19)

Work done in increasing the surface area 
by dA is stored as excess surface energy.
 ∴dW = TdA= T (8πr∆r)     --- (2.20)

This work done is also equal to the product 
of the force F which causes increase in the area 
of the drop and the displacement ∆r which is 
the increase in the radius of the bubble.
 ∴ dW = F∆r    --- (2.21)

The excess force is given by,
(Excess pressure) × (Surface area)

 ∴F = (p
i
 – p

0
) 4πr 2  --- (2.22)

Equating Eq. (2.20) and Eq. (2.21), we get,
 T(8πr∆r) = (p

i
 – p

0
) 4πr 2∆r

 ∴(p
i
 – p

0
) = 

2T

r
  --- (2.23)

This equation gives the excess pressure 
inside a drop. This is called Laplace’s law of a 
spherical membrane.

In case of a soap bubble there are two  
free surfaces in contact with air, the inner 

Remember this

The gravitational force acting on a 
molecule, which is its weight, is also one 
of the forces acting within the sphere of 
influence near the contact region. However, 
within the sphere of influence, the cohesive 
and adhesive forces are so strong that the 
gravitational force can be neglected in the 
above explanation. 

2.4.7 Capillary Action:
A tube having a very fine bore ( ~  1 mm) 

and open at both ends is called a capillary 
tube. If one end of a capillary tube is dipped in 
a liquid which partially or completely wets the 
surface of the capillary (like water in glass) 
the level of liquid in the capillary rises. On the 
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than that on the convex side.
 ∴p

B 
> p

A

As the points A and C are at the same level, the 
pressure at both these points is the same, and it 
is the atmospheric pressure.
 ∴p

A
 = p

C    
--- (2.25)

Between the points C and D, the surface is 
plane.
 ∴p

C
 = p

D
= p

A   
--- (2.26)

∴p
B 

> p
D. 

But the points B and D are at the 
same horizontal level. Thus, in order to 
maintain the same pressure, the mercury in the 
capillary rushes out of the capillary. Because 
of this, there is a drop in the level of mercury 
inside the capillary as shown in Fig. 2.23 (b). 

other hand, if the capillary tube is dipped in 
a liquid which does not wet its surface (like 
mercury in glass) the level of liquid in the 
capillary drops. 

The phenomenon of rise or fall of a liquid 
inside a capillary tube when it is dipped in the 
liquid is called capillarity. Capillarity is in 
action when, 
• Oil rises up the wick of a lamp.
• Cloth rag sucks water. 
• Water rises up the crevices in rocks.
• Sap and water rise up to the top most 

leaves in a tree.
• Blotting paper absorbs ink.

When a capillary is dipped in a liquid, 
two effects can be observed, a) The liquid 
level can rise in the capillary (water in a glass 
capillary), or b) The liquid level can fall in the 
capillary (mercury in glass capillary). Here we 
discuss a qualitative argument to explain the 
capillary fall.
a) Capillary fall:

Consider a capillary tube dipped in a 
liquid which does not wet the surface, for 
example, in mercury. The shape of mercury 
meniscus in the capillary is upper convex. 
Consider the points A, B, C, and D such that, 
(see Fig. 2.23 (a)).
 i)  Point A is just above the convex surface 

and inside the capillary.
 ii)  Point B is just below the convex surface 

inside the capillary.
 iii) Point C is just above the plane surface 

outside the capillary.
 iv) Point D is just below the plane surface 

and outside the capillary, and below the 
point C.

b) Capillary rise:
Refer to Fig. 2.24 (a) and Fig. 2.24 (b) and 

explain the rise of a liquid inside a capillary. 

Fig. 2.23 (a) : Capillary just immersed in mercury.

Fig. 2.23 (b): Capillary in mercury, drop in level.

Fig. 2.24 (a): Capillary just immersed in water.

Expression for capillary rise or fall:
Method (I): Using pressure difference

The pressure due to the liquid (water) 
column of height h must be equal to the 
pressure difference 2T/R due to the concavity.

 ∴hρg = 
2T

R
   --- (2.27)

Let p
A
, p

B
, p

C
, and p

D
 be the values of 

the pressures at the points A, B, C, and D 
respectively. As discussed previously, the 
pressure on the concave side is always greater 

Fig. 2.24 (b): Capillary in water after rise in level.
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where, ρ is the density of the liquid and g is 
acceleration due to gravity.

Let r be the radius of the capillary tube 
and θ be the angle of contact of the liquid as 
shown in Fig. 2.25 (a). 

Example 2.7: A capillary tube of radius  
5 × 10-4 m is immersed in a beaker filled 
with mercury. The mercury level inside the 
tube is found to be 8 × 10-3 m below the level 
of reservoir. Determine the angle of contact 
between mercury and glass. Surface tension 
of mercury is 0.465 N/m and its density is  
13.6 × 103 kg/m3. (g = 9.8 m/s2)
Solution: Given,
 r = 5 × 10-4 m
 h = −8 × 10-3 m
 T = 0.465 N/m
 g = 9.8 m/s2

 ρ = 13.6 × 103 kg/m3

we have,
 T = 

hr g�
�2cos

            ∴0.465 

= 
� � � � � � �� �8 10 5 10 13 6 10 9 8

2

3 4 3� � � � � � � . � � � � .

�cos� 

� �
� � � �

�

�

cos� �
� . � . � �

� .

40 9 8 13 6 10

2 0 465

4

 
�� �cos� 0 5732. 

 ∴cos(π�� ) = 0.5732

 ∴1800��  = 550 2′
 ��  = 1240 58′

Fig. 2.25 (a): Forces acting at 
the point of contact.

Then radius of curvature R of the meniscus 
is given by R

r
��

cos� 

 
� �h g

T

r
�

�
�
2 cos

 � �h
T

r g
�
2 cos�
�

   --- (2.28)

The above equation gives the expression 
for capillary rise (or fall) for a liquid. Narrower 
the tube, the greater is the height to which the 
liquid rises (or falls).

If the capillary tube is held vertical in 
a liquid that has a convex meniscus, then 
the angle of contact θ  is obtuse. Therefore,  
cosθ  is negative and so is h. This means 
that the liquid will suffer capillary fall or 
depression.
b) (Method II): Using forces: 

Rise of water inside a capilary is against 
gravity. Hence, weight of the liquid column 
must be equal and opposite to the proper 
component of force due to surface tension at 
the point of contact. 

The length of liquid in contact inside the 

Fig 2.25 (b): Forces acting on liquid inside a capillary.

Ignoring the liquid in the concave 
meniscus, the volume of the liquid in the 
capillary rise is V r h� � 2 .
∴Mass of the liquid in the capillary rise,   
    m r h� � �2

∴Weight of the liquid in the capillary (rise or 
fall), w r h g� � �2     --- (2.30)
This must be equal and opposite to the vertical 
component of the force due to surface tension. 
Thus, equating right sides of equations (2.29) 
and (2.30), we get,

 � � � �r h g T r2 2� � �� cos

 � �h
Tcos

r g
�
2 �
�

In terms of capillary rise, the expression 
for surface tension is, 

 T
rh g

�
�
�2cos

     --- (2.31)

The same expression is also valid for 
capillary fall discussed earlier.  

capillary is the circumference 2π r . Thus, the 
force due to surface tension is given by, 
 f

T
 = (surface tension) ×  (length in contact) 

     = T × 2πr
Direction of this force is along the tangent, 

as shown in the Fig. 2.25 (b). 
Vertical component of this force is

 f T rT v
� � � � �2� �cos   --- (2.29)
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Do you know?
Steady flow: Measurable property, such as 
pressure or velocity of the fluid at a given 
point is constant over time.     

Einstein's first ever published 
scientific article deals with capillary 
action? Published in German in 1901, 
it was entitled Folegerungen aus den 
capillaritatserscheinungen (conclusions 
drawn from the phenomena of capillarity).

2.5 Fluids in Motion:
We come across moving fluids in our day 

to day life. The flow of water through our taps, 
the flow of cooking gas through tubes, or the 
flow of water through a river or a canal can 
be understood using the concepts developed in 
this section. 

The branch of Physics which deals with 
the study of properties of fluids in motion is 
called hydrodynamics. As the study of motion 
of real fluid is very complicated, we shall limit 
our study to the motion of an ideal fluid. We 
have discussed an ideal fluid in the beginning 
of this Chapter. Study of a fluid in motion is 
very important. 

Consider Fig. 2.26 which shows a pipe 
whose direction and cross sectional area 
change arbitrarily. The direction of flow of the 
fluid in pipe is as shown. We assume an ideal 
fluid to flow through the pipe. We define a few 
terms used to describe flow of a fluid. 

Fig. 2.26: Flow lines and flow tube.

Flow line: It is the path of an individual particle 
in a moving fluid as shown in Fig. 2.26.
Streamline: It is a curve whose tangent at 
any point in the flow is in the direction of the 
velocity of the flow at that point. Streamlines 
and flow lines are identical for a steady flow. 
Flow tube: It is an imaginary bundle of flow 
lines bound by an imaginary wall. For a steady 
flow, the fluid cannot cross the walls of a flow 
tube. Fluids in adjacent flow tubes cannot mix. 
Laminar flow/Streamline flow: It is a steady 
flow in which adjacent layers of a fluid 
move smoothly over each other as shown in  
Fig. 2.27 (a).  A steady flow of river can be 
assumed to be a laminar flow. 
Turbulent flow: It is a flow at a very high 
flow rate so that there is no steady flow and the 
flow pattern changes continuously as shown in  
Fig. 2.27 (b). A flooded river flow or a tap 
running very fast is a turbulent flow. 

Table 2.3 Streamline Flow and Turbulent Flow

Streamline flow Turbulent flow
1) The smooth flow of a fluid, with velocity 
smaller than certain critical velocity (limiting 
value of velocity) is called streamline flow or 
laminar flow of a fluid.

1) The irregular and unsteady flow of a fluid 
when its velocity increases beyond critical 
velocity is called turbulent flow.

2) In a streamline flow, velocity of a fluid at a 
given point is always constant.

2) In a turbulent flow, the velocity of a fluid 
at any point does not remain constant.

3) Two streamlines can never intersect, i.e., they 
are always parallel.

3) In a turbulent flow, at some points, the 
fluid may have rotational motion which 
gives rise to eddies.

4) Streamline flow over a plane surface can be 
assumed to be divided into a number of plane 
layers. In a flow of liquid through a pipe of 
uniform cross sectional area, all the streamlines 
will be parallel to the axis of the tube.

4) A flow tube loses its order and particles 
move in random direction.
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Fig. 2.28: Viscous flow. Different layers flow with 
different velocities. The central layer flows the 

fastest and the outermost layers flow the slowest.

Fig. 2.27 (a): Streamline flow.

Fig. 2.27 (b): Turbulent flow.

less than 1000, the flow of a fluid is streamline 
while for R

n 
greater than 2000, the flow of 

fluid is turbulent. When R
n 

is between 1000 
and 2000, the flow of fluid becomes unsteady, 
i.e., it changes from a streamline flow to a 
turbulent flow.
2.6.1 Viscosity:

When we pour water from a glass, it flows 
freely and quickly. But when we pour syrup 
or honey, it flows slowly and sticks to the 
container. The difference is due to fluid friction. 
This friction is both within the fluid itself and 
between the fluid and its surroundings. This 
property of fluids is called viscosity. Water 
has low viscosity, whereas syrup or honey has 
high viscosity. Figure 2.28 shows a schematic 
section of viscous flow and Fig. 2.29 that of a 
non viscous flow. Note that there is no dragging 
force in the non-viscous flow, and all layers are 
moving with the same velocity. 

Fig. 2.29: Non-viscous flow. Different layers 
flow with the same velocity.

Activity

Can you tell?

What would happen if two streamlines 
intersect?

Identify some examples of streamline flow 
and turbulent flow in every day life. How 
would you explain them? When would 
your prefer a stream line flow?

2.6 Critical Velocity and Reynolds number:
The flow of a fluid, whether streamline 

or turbulent, is differentiated on the basis 
of velocity of the flow. The velocity beyond 
which a streamline flow becomes turbulent is 
called critical velocity. 

According to Osborne Reynolds (1842 - 
1912), critical velocity is given by 

 vc
nR

d
��

�
�

,    --- (2.32)

where,
 v

c
= critical velocity of the fluid

 R
n
= Reynolds number

 η = coefficient of viscosity
 ρ = density of fluid
 d = diameter of tube
From Eq. (2.32) equation for Reynolds number 
can be written as,

 R
d

n
c��

v �
�

    --- (2.33)

Reynolds number is a pure number. It has 
no unit and dimensions. It is found that for R

n
  

Viscosity of such fluid is zero. The only 
fluid that is almost non-viscous is liquid 
helium at about 2K. In this section, we will 
study viscosity of a fluid and how it affects the 
flow of a fluid. 

If we observe the flow of river water, it 
is found that the water near both sides of the 
river bank flows slow and as we move towards 
the center of the river, the water flows faster 
gradually. At the centre, the flow is the fastest. 
From this observation it is clear that there is 
some opposing force between two adjacent 
layers of fluids which affects their relative 
motion.
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Viscosity is that property of fluid, by virtue 
of which, the relative motion between different 
layers of a fluid experience a dragging force. 
This force is called the viscous drag. This is 
shown schematically in Fig. 2.30. 

The coefficient of viscosity can be 
defined as the viscous force per unit area per 
unit velocity gradient. S.I. unit of viscosity is  
Ns/m2.

Fig. 2.30: Change in velocity of layer as its 
distance from a referee layer changes.

In liquids, the viscous drag is due to short 
range molecular cohesive forces, and in gases 
it is due to collisions between fast moving 
molecules. In both liquids and gases, as long 
as the relative velocity between the layers is 
small, the viscous drag is proportional to the 
relative velocity. However, in a turbulent flow, 
the viscous drag increases rapidly and is not 
proportional to relative velocity but proportional 
to higher powers of relative velocity.
Velocity gradient: The rate of change of 
velocity (dv) with distance (dx) measured 
from a stationary layer is called velocity 
gradient (dv/dx).
2.6.2 Coefficient of viscosity:

According to Newton’s law of viscosity, 
for a streamline flow, viscous force (f) acting 
on any layer is directly proportional to the 
area (A) of the layer and the velocity gradient  
(dv/dx) i.e.,

     f A
d

dx
� �� �

�
�

�
�
�

v

 � � �
�
�

�
�
�f A

d

dx
� ��

v
   --- (2.34) 

where η is a constant, called coefficient of 
viscosity of the liquid. From Eq. (2.34) we can 
write,

 
� � ��

�
�
�

�
�
�

f

A
d
dx
v

    --- (2.35)

Note: ‘A’ in this expression is not the cross 
sectional area, it is the area of the layer, 
parallel to the direction of the flow. 

Use your brain power

CGS unit of viscosity is Poise. Find the 
relation between Poise and the SI unit of 
viscosity.

A Microsopic View of Viscosity:
Viscosity of a fluid can be explained 

on the basic of molecular motion as follow. 
Consider the laminar flow between plats 
X and Y as shown in the figure. Plate X is 
stationary and plate Y moves with a velocity 
v

0
. Layers a, b, and c move with velocity, 

v-dv, v, and v + dv respectively.  Consider 
two adjacent layers, b and c. The velocity 
of the fluid is equal to mean velocity of the 
molecules contained in that layer. Thus,  
the mean velocity of the molecules in 
layer b is v, while the molecules in layers 
c have a slightly greater mean velocity  
v + dv. As you will learn in the next 
chapter, each molecule possesses a random 
velocity whose magnitude is usually larger 
than that of the mean velocity. As a result, 
molecules are continually transferred in 
large numbers between the two layers. On 
the average, molecules passing from layer 

c to layer b will be moving too fast for 
their 'new' layer by an amount dv and will 
slow down as a result of collisions with the 
molecules in layer b. The result is a transfer 
of momentum from faster-moving layers c 
to their neighboring slower-moving layers 
such as b and thus eventually to plate X. 
Because the original source of this transfer 
of momentum is plate Y, the overall result 
is a transfer of momentum from plate Y 
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2.7 Stokes’ Law:
In 1845, Sir George Gabriel Stokes (1819-

1903) stated the law which gives the viscous 
force acting on a spherical object falling 
through a viscous medium (see Fig. 2.31).

Example 2.8: A steel ball with radius  
0.3 mm is falling with velocity of 2 m/s at 
a time t, through a tube filled with glycerin, 
having coefficient of viscosity 0.833 Ns/m2. 
Determine viscous force acting on the steel 
ball at that time.
Solution: Given
r = 0.3 mm = 0.3 × 10-3 m, v = 2 m/s,  
η = 0.833 N s/m2.
We have, F r�� 6�� v
F = 6 × 3.142 × 0.833 x 0.3 × 10-3 × 2
Therefore,   F = 9.422 × 10-3 N

to plate X. If there are no external forces 
applied, this momentum transfer would 
reduce speed of the plate Y to zero with 
respect to the plate X. 

Reduction in the velocity of the 
molecules in the direction of laminar flow 
is due to the fact that their directions after 
collision are random. This randomness, to be 
discussed in Chapter 3, results in an increase 
in the thermal energy of the fluid at the cost 
of its macrosopic kinetic energy. That is, the 
process is dissipative, or frictional.

In liquids there is an additional, 
stronger interaction between molecules in 
adjacent layers, due to the intermolecular 
forces that distinguish liquid from gases. 
As a result, there is a transfer of momentum 
from faster-moving layers to slower-moving 
layers, which results in a viscous drag.     

Remember this

Coefficient of viscosity of a fluid changes 
with change in its temperature. For 
most liquids, the coefficient of viscosity 
decreases with increase in their temperature. 
It probably depends on the fact that at 
higher temperatures, the molecules are 
farther apart and the cohesive forces or 
inter-molecular forces are, therefore, less 
effective. Whereas, in gases, the coefficient 
of viscosity increases with the increase 
in temperature. This is because, at high 
temperatures, the molecules move faster 
and collide more often with each other, 
giving rise to increased internal friction.

Table 2.4  Coefficient of viscosity at different 
temperatures.

Fluid Temperature
Coefficient of 

Viscosity 
Ns/m2

Air
00C 0.017 x 10-3

400C 0.019 x 10-3

Water
200C 1 x 10-3

1000C 0.3 x 10-3

Machine 
oil

160C 0.113 x 10-3

380C 0.034 x 10-3

Fig 2.31: Spherical object moving  through a 
viscous medium.

The law states that, “The viscous force 
(F

v
) acting on a small sphere falling through 

a viscous medium is directly proportional 
to the radius of the sphere (r), its velocity 
(v) through the fluid, and the coefficient of 
viscosity (η) of the fluid”. 

 � �F rv v� �
The empirically obtained constant of 
proportionality is 6π .
 � �F rv v� 6��     --- (2.36)

This is the expression for viscous force 
acting on a spherical object moving through 
a viscous medium. The above formula can be 
derived using dimensional analysis. 

2.7.1 Terminal Velocity:
Consider a spherical object falling 

through a viscous fluid. Forces experienced by 
it during its downward motion are,
1. Viscous force (F

v
), directed upwards. 

Its magnitude goes on increasing with 
increase in its velocity.
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Fig. 2.32: Forces acting on object moving 
through a viscous medium.

2. Gravitational force, or its weight (F
g
), 

directed downwards, and
3. Buoyant force or upthrust (F

u
), directed 

upwards.
Net downward force given by  

f = F
g
 - (F

v
+ F

u
), is responsible for initial increase 

in the velocity. Among the given forces, F
g
 and 

F
u
 are constant while F

v
 increases with increase  

in velocity. Thus, a stage is reached when  
the net force f becomes zero. At this stage,  
F

g
 = F

v
 + F

u
. After that, the downward velocity 

remains constant. This constant downward 
velocity is called terminal velocity. Obviously, 
now onwards, the viscous force F

v
 is also 

constant. The entire discussion necessarily 
applies to streamline flow only.  

Consider a spherical object falling under 
gravity through a viscous medium as shown in 
Fig. 2.32. Let the radius of the sphere be r, its 
mass m and density ρ. Let the density of the 
medium be σ and its coefficient of viscosity 
be η. When the sphere attains the terminal 
velocity, the total downward force acting on 
the sphere is balanced by the total upward 
force acting on the sphere.
Total downward force = Total upward force
weight of sphere (mg) = 
viscous force + buoyant to due to the medium

 

4

3
6

4

3
3 3� � �� � �r g r r g� �� �v

   

 
6

4

3

4

3
3 3�� � � � �r r g r gv � �

�
�

�
�
� �
�
�
�

�
�
��

 
6

4

3
3�� � � �r r gv ��

�
�

�
�
� �� ��

 

v

v

��
�
�

�
�
� �� ��

��
�
�

�
�
�

�� �

�

�

4

3

1

6

2

9

3

2

� � �
��

� �
�

r g
r

r g
--- (2.37)

This is the expression for the terminal velocity 
of the sphere. From Eq. (2.37) we can also write,

 �
� �

�
�� �

�
2

9

2r g

v
  --- (2.38)

The above equation gives coefficient of 
viscosity of a fluid.

Example 2.9: A spherical drop of oil falls 
at a constant speed of 4 cm/s in steady air. 
Calculate the radius of the drop. The density 
of the oil is 0.9 g/cm3, density of air is  
0.0013 g/cm3 aud the coefficient of viscosity 
of air is 1.8 × 10-4 poise, (g = 980 cm/s2)
Solution: Given,
 v = 4 cm/s 
 η  = 1.8 × 10-4 Poise
 ρ = 0. 9 g/cm3

 σ = 0.0013 g/cm3

We have,
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∴ r = 1.356 × 10-3 cm

Remember this

The velocity with which an object can 
move through a viscous fluid is always less 
than or equal to the terminal velocity in that 
fluid for that object.

2.8 Equation of Continuity:
Consider a steady flow of an 

incompressible fluid as shown in Fig. 2.33. For 
a steady flow, the velocity of a particle remains 
constant at a given point but it can vary from 
point to point. For example, consider section 
A

1
 and A

2
 in Fig. 2.33. Section A

1
 has larger 

cross sectional area than the section A
2
. Let v

1
 

and v
2
 be the velocities of the fluid at sections 

A
1
 and A

2
 respectively.

This is because, a particle has to move 
faster in the narrower section (where there is 
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Av is the volume rate of flow of a fluid, 
i.e.,  

Av = 
d

d

V

t
. The quantity 

d

d

V

t
 is the volume 

of a fluid per unit time passing through any 
cross section of the tube of flow. It is called  
the volume flux. Similarly, ρdV/dt =dm/dt is  
called mass flux. 

Equation (2.40) is called the equation of 
continuity in fluid dynamics. The continuity 
equation says that the volume rate of flow of 
an incompressible fluid for a steady flow is 
the same throughout the flow. 

Fig. 2.33: Steady 
flow fluid.

Use your brain power

Do you know?

Example 2.10: As shown in the given figure, 
a piston of cross sectional area 2 cm2 pushes 
the liquid out of a tube whose area at the 
outlet is 40 mm2. The piston is pushed at a 
rate of 2 cm/s. Determine the speed at which 
the fluid leaves the tube.

A water pipe with a diameter of 5.0 cm is 
connected to another pipe of diameter 2.5 
cm. How would the speeds of the water flow 
compare?

When water is released from a dam, the 
amount of water is mentioned in terms of 
Thousand Million Cubic feet (TMC). One 
TMC is 109 cubic feet of water per second. 
Basic unit of measuring flow is cusec. One 
cusec is one cubic feet per sec (28.317 lit 
per sec).

Solution: Given,
 A

1
 = 2 cm2 = 2 × 10-4 m2

 v
1
 = 2 cm/s = 2 × 10-2 m/s

 A
2
 = 40 mm2 = 40 × 10-6 m2

From equation of continuity, A
1
v

1
 = A

2
v

2

Therefore, 

v
v

 m / s2
1 1

2

4 2

6

2 10 2 10

40 10
0 1� �
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�

�
� �

�

A

A
�

� � � � � �

� �
. �

less space) to accommodate particles behind 
it hence its velocity increases. When a particle 
enters a wider section, it slows down because 
there is more space. Because the fluid is 
incompressible, the particles moves faster 
through a narrow section and slow down while 
moving through wider section. If the fluid does 
not move faster in a narrow regain, it will be 
compressed to fit into the narrow space.

Consider a tube of flow as shown in  
Fig. 2.33. All the fluid that passes through 
a tube of flow must pass through any cross 
section that cuts the tube of flow. We know 
that all the fluid is confined to the tube of flow. 
Fluid can not leave the tube or enter the tube.

Consider section A
1
 and A

2
 located at 

points A and B respectively as shown in  
Fig. 2.33. Matter is neither created nor 
destroyed within the tube enclosed between 
section A

1
 and A

2
. Therefore, the mass of the 

fluid within this region is constant over time. 
That means, if mass m of the fluid enters the 
section A

1
 then equal mas of fluid should leave 

the section A
2
. 

Let the speed of the fluid which crosses 
the section EFGH at point A in time interval 
∆t be v

1
. Thus, the mass of the fluid entering 

the tube through the cross section at point A 
is ρA

1
v

1
∆t. Similarly, let the speed of the fluid 

be v
2
 at point B. The fluid crosses the section 

PQRS of area A
2
 in time interval ∆t. Thus, the 

mass of the fluid leaving the tube through the 
cross section at B is ρA

2
v

2
∆t.

As fluid is incompressible, the mass of the 
fluid entering the tube at point A is the same as 
the mass leaving the tube at B.  

Mass of the fluid in section EFGH = mass 
of fluid in section PQRS
 ρA

1
v

1
∆t = ρA

2
v

2
∆t   --- (2.39)

       A
1
v

1
 = A

2
v

2  
or,  Av = constant     --- (2.40)
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Do you know?

2.9 Bernoulli's Equation:
On observing a river, we notice that the 

speed of the water decreases in wider region 
whereas the speed of water increases in the 
regions where the river is narrow. From this 
we might think that the pressure in narrower 
regions is more than that in the wider region. 
However, the pressure within the fluid in the 
narrower parts is less while that in wider parts 
is more. 

Swiss scientist Daniel Bernoulli (1700-
1782), while experimenting with fluid inside 
pipes led to the discovery of the concept 
mentioned above. He observed, in his 
experiment, that the speed of a fluid in a narrow 
region increases but the internal pressure of a 
fluid in the same narrow region decreases. This 
phenomenon is called Bernoulli’s principle.

1. How does an aeroplane take off?
2. Why do racer cars and birds have typical 

shape?
3. Have you experienced a sideways jerk 

while driving a two wheeler when a 
heavy vehicle overtakes you?

4. Why does dust get deposited only on one 
side of the blades of a fan?

5. Why helmets have specific shape? 

energy, kinetic energy and gravitational 
potential energy.

Figure 2.34 shows flow of an ideal fluid 
through a tube of varying cross section and 
height. Consider an element of fluid that lies 
between cross sections P and R.
Let,
• v

1
 and v

2
 be the speed the fluid at the lower 

end P and the upper end R respectively.
• A

1
 and A

2
 be the cross section area of the 

fluid at the lower  end P and the upper end 
R respectively.

• P
1
 and P

2
 be the pressures of the fluid at the  

lower end P and the upper R respectively.
• d

1
 and d

2 
be the distances travelled by the 

fluid at the lower end P and the upper end 
R during the time interval dt with velocities 
v

1
 and v

2
 respectively.

• Now P
1 
A

1
 and P

2 
A

2
 are the forces acting 

on  areas  A
1
 at P and A

2
 at R respectively. 

The volume dV of the fluid passing through 
any cross section during time interval dt is 
the same; i.e.,

 dV = A
1
d

1
 = A

2
d

2
        --- (2.41)

There is no internal friction in the fluid as 
the fluid is ideal. In practice also, for a fluid like 
water, the loss in energy due to viscous force is 
negligible. So the only non-gravitational force 
that does work on the fluid element is due to the 
pressure of the surrounding fluid. Therefore, 
the net work, W, done on the element by the 
surrounding fluid during the flow from P to R 
is,

 W = P
1
A

1
d

1
 – P

2
A

2
d

2

The second term in the above equation has 
a negative sign because the force at R opposes 
the displacement of the fluid. From Eq. (2.41) 
the above equation can be written as,
 W = P

1
dV – P

2
dV

       ∴ W = (P
1
-P

2
) dV        --- (2.42)

As the work W is due to forces other than 
the conservative force of gravity, it equals the 
change in the total mechanical energy i.e., 
kinetic energy plus gravitational potential 
energy associated with the fluid element.

i.e., W = ∆K.E. + ∆P.E.   --- (2.43)
The mechanical energy for the fluid 

between sections Q and R does not change.

Fig. 2.34: Flow of fluid through a tube of 
varying cross section and height.

Bernoulli’s equation relates the speed of a 
fluid at a point, the pressure at that point and 
the height of that point above a reference level. 
It is an application of work – energy theorem 
for a fluid in flow. As Bernoulli's principle is 
consistent with the principle of conservation 
of energy, we shall derive it using pressure 
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At the beginning of the time interval 
dt, the mass and the kinetic energy 
of the fluid between P and Q is, ρ

A
1
d

1
, and 

1

2 1 1 1
2� A d� �v  respectively. At  

the end of the time interval dt, the kinetic 

energy of the fluid between section R and S is  
1

2 2 2 2
2� A d� �v . Therefore, the net change in the 

kinetic energy, ∆K.E., during time interval dt 
is,

∆K.E. = 
1

2

1

22 2 2
2

1 1 1
2� �A d A d� � � � �v  v�

∆K.E. = 
1

2

1

22
2

1
2� �d dV Vv  v� �

∆K.E. = 
1

2 2
2

1
2�d v vV �� ��    --- (2.44)

Also, at the beginning of the time interval 
dt, the gravitational potential energy of the 
mass m between P and Q is mgh

1
 = ρdVgh

1
. 

At the end of the interval dt, the gravitational 
potential energy of the mass m between R and 
S is mgh

2
 = ρdVgh

2
. Therefore, the net change 

in the gravitational potential energy, ∆P.E., 
during time interval dt is,
 ∆P.E. = ρdVgh

2 
- ρdVgh

1

 ∆P.E. = ρdVg (h
2
- h

1
)       --- (2.45)

Substituting Eq. (2.42), (2.44) and (2.45) in  
Eq. (2.43) we get,

 

P P V V

Vg h h

1 2 2
2

1
2

2

1

2
�� � � �� �

� �

d d v v

                       d

�

�

�

� 11� �

 

� �� � � �� �
� �� �

P P

g h h

1 2 2
2

1
2

2 1

1

2
�

�

�

�

v v

                  
  --- (2.46)

This is Bernoulli’s equation. It states that 
the work done per unit volume of a fluid by 
the surrounding fluid is equal to the sum of 
the changes in kinetic and potential energies 
per unit volume that occur during the flow.
Equation (2.46) can also be written as,

P v gh P v gh1 1
2

1 2 2
2

2

1

2

1

2
� � � � �� � � �� ---(2.47)

or,   P v gh� � �
1

2
2� � constant        --- (2.48)

A different way of interpreting the 
Bernoulli’s equation:

 P P g h h1 2 2
2

1
2

2 1

1

2
�� � � �� � � �� �� �� �v v

Dimensionally, pressure is energy per unit 
volume. Both terms on the right side of the 
above equation have dimensions of energy 
per unit volume. Hence, quite often, the 
left side is referred to as pressure energy 
per unit volume. The left side of equation 
is called pressure head. The first term on 
the right side is called the velocity head 
and the second term is called the potential 
head.
In other words, the Bernoulli’s principle 
is thus consistent with the principle of 
conservation of energy.

Example 2.11: The given figure shows a 
streamline flow of a non-viscous liquid 
having density 1000 kg/m3. The cross 
sectional area at point A is 2 cm2 and at 
point B is 1 cm2. The speed of liquid at the 
point A is 5 cm/s. Both points A and B are 
at the same horizontal level. Calculate the 
difference in pressure at A and B.

Solution: Given,
ρ = 1000 kg/m3, A

1
 = 2 cm2 = 2 × 10-4 m2

A
2
 = 1 cm2 = 10-4 m2, v

1
 = 5 cm/s = 5 × 10-2 

m/s and h
1
= h

2

From the equation of continuity,
A

1
v

1
 = A

2
v

2

� �v
v

2
1 1

2

�
A

A
 = 2 5 10

10

2

2

� � �� � �

�
 = 10 cm/s 

By Bernoulli’s equation,

P P V V

Vg h h

1 2 2
2

1
2

2 1

1

2
�� � � �� �

� �� �

d d v v

                    d

�

�

�

�

                    (since, h h2 1 0� � )

P P V V1 2 2
2

1
21

2
�� � � �� �d d v v� �

     

� � � �� �1

2
1000 100 25

=  500 × 75
P

1 
-

 
P

2 
= 37500 Pa = 3.75 × 104 Pa  
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Use your brain power

Does the Bernoulli’s equation change when 
the fluid is at rest? How?

Fig. 2.35: Efflux of fluid from an orifice.

Applications of Bernoulli’s equation:
a) Speed of efflux:

The word efflux means fluid out flow. 
Torricelli discovered that the speed of efflux 
from an open tank is given by a formula 
identical to that of a freely falling body.

Consider a liquid of density ‘ρ’ filled in a 
tank of large cross-sectional area A

1
 having an 

orifice of cross-sectional area A
2
 at the bottom 

as shown in Fig. 2.35. Let A
2
<<A

1
. The liquid 

flows out of the tank through the orifice. Let 
v

1
 and v

2
 be the speeds of the liquid at A

1
 and 

A
2
 respectively. As both, inlet and outlet, are 

exposed to the atmosphere, the pressure at 
these position equals the atmosphere pressure 
p

0
. If the height of the free surface above the 

orifice is h, Bernoulli’s equation gives us,

    P gh P0 1
2

0 2
21

2

1

2
� � � �� � �v v� ��        --- (2.49)

Using equation the of continuity we can write, 

v v1
2

1
2=�

A

A

Substituting v
1
 in Eq.(2.49) we get,   
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If A
2
<<A

1
, the above equation reduces to,

 v2 2=� gh    --- (2.50)

This is the equation of the speed of a 
liquid flowing out through an orifice at a depth 
‘h’ below the free surface. It is the same as that 
of a particle falling freely through the height 
‘h’ under gravity.

Example 2.12: Doors of a dam are 20 m 
below the surface of water in the dam. If 
one door is opened, what will be the speed 
of the water that flows out of the door?  
(g = 9.8 m/s2), specific gravity of mercury = 
(ρ

Hg
/ρ

w
)=13.6

Solution: Given, h = 20 m
From Toricelli’s law,

v = 2gh  = 2 9 8 20� . �× ×  = 392  
    = 19.79 m/s

b) Ventury tube:
A ventury tube is used to measure the 

speed of flow of a fluid in a tube. It has a 
constriction in the tube. As the fluid passes 
through the constriction, its speed increases 
in accordance with the equation of continuity. 
The pressure thus decreases as required by the 
Bernoulli equation. 

Fig. 2.36: Ventury tube.
The fluid of density ρ flows through the 

Ventury tube. The area of cross section is A
1
 

at wider part and A
2
 at the constriction. Let the 

speeds of the fluid at A
1
 and A

2
 be v

1
 and v

2
, 

and the pressures, be p
1
 and p

2
 respectively. 

From Bernoulli’s equation,

 
P P1 1

2
2 2

21

2

1

2
� � �� � �� �v v

 P P1 2 2
2

1
21

2
�� � � �� �� � �� v v   --- (2.51)

Figure 2.36 shows two vertical tubes connected 
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to the Ventury tube at A
1
 and A

2
. If the difference 

in height of the liquid levels in the tubes is h, 
we have,

 
p p gh1 2� �� �� ) ��

Substituting above equation in Eq. (2.51) we 
get,
 2 2

2
1
2gh � �� �v v     --- (2.52)

From the equation of continuity, A
1
v

1
 = A

2
v

2
, 

substituting v
1
 in terms of v

2
 or vice versa in 

Eq. (2.52) the rate of flow of liquid passing 
through a cross section can be calculated by 
knowing the areas A

1
and A

2
.

Example 2.13: Water flows through a tube as 
shown in the given figure. Find the difference in 
mercury level, if the speed of flow of water at 
point A is 2 m/s and at point B is 5 m/s. (g = 9.8 
m/s2, specific gravity of mercury = 13.6)
Solution: Given, v

1
 = 2 m/s, v

2
 = 5 m/s

We have, Pressure difference in water generates 
level difference for the mercury in the manometer.

∆P = 
1

2 2
2

1
2� �w h gv v�� � ��  

h = 
v v2

2
1
2

2

−�

g
 = 

25 4

2 9 8 13 6

�
� �� . .

 = 0.07878 m

= 7.878 cm

Observe and discuss

Fig. 2.37: Airflow along an aerofoil.

Observe the shape of blades of a fan and 
discuss the nature of the air flow when fan 
is switched on.

Fig. 2.38: Atomizer.

Fig. 2.39: Airflow along a roof.
c) Lifting up of an aeroplane:

The shape of cross section of wings 
of an aeroplane is as shown in Fig. 2.37. 
When an aeroplane runs on a runway, due to 
aerodynamic shape of its wings, the streamlines 
of air are crowded above the wings compared 
to those below the wings. Thus, the air above 
the wings moves faster than that below the 
wings. According to the Bernoulli’s principle, 
the pressure above the wings decreases and that 

below the wings does not change. Due to this 
pressure difference, an upward force called the 
dynamic lift acts on the bottom of the wings of 
a plane. When this force becomes greater than 
the weight of aeroplane, the aeroplane takes 
off.  
d) Working of an atomizer: 

The action of the carburetor of an 
automobile engine, paint-gun, scent-spray 
or insect-sprayer is based on the Bernoulli’s 
principle. In all these, a tube T is dipped in a 
liquid as shown in Fig. 2.38.  Air is blown at 
high speed over the tip of this tube with the help 
of a piston P in the cylinder C. This high speed 
air creates low pressure over the tube, due to 
which the liquid rises in it and is then blown off 
in very small droplets with expelled air.
e) Blowing off  of roofs by stormy wind: 

When high speed, stormy wind blows 
over a roof top, it causes low pressure p above 
the roof in accordance with the Bernoulli’s 
principle. However, the air below the roof 
(i.e. inside the room) is still at the atmospheric 
pressure p

0
. So, due to this difference in 

pressure, the roof is lifted up and is then blown 
off by the wind as shown in Fig. 2.39.
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Exercises

1) Multiple Choice Questions
 i)  A hydraulic lift is designed to lift heavy 

objects of maximum mass 2000 kg. The 
area of cross section of piston carrying 
the load is 2.25 × 10-2 m2. What is the 
maximum pressure the piston would 
have to bear?

  (A) 0.8711 × 106 N/m2                                       
  (B) 0.5862 × 107 N/m2                                            
  (C) 0.4869 × 105 N/m2                                       
  (D) 0.3271 × 104 N/m2   
 ii)  Two capillary tubes of radii 0.3 cm and 

0.6 cm are dipped in the same liquid. 
The ratio of heights through which the 
liquid will rise in the tubes is

  (A) 1:2    (B) 2:1    (C) 1:4    (D) 4:1
 iii)  The energy stored in a soap bubble of 

diameter 6 cm and T = 0.04 N/m is nearly 
  (A) 0.9 × 10-3 J    (B) 0.4 × 10-3 J    
  (C) 0.7 × 10-3 J    (D) 0.5 × 10-3 J    
 iv)  Two hail stones with radii in the ratio 

of 1:4 fall from a great height through 
the atmosphere. Then the ratio of their 
terminal velocities is

  (A) 1:2   (B) 1:12    (C) 1:16     (D) 1:8
 v)  In Bernoulli’s theorem, which of the 

following is conserved?
  (A) linear momentum   
  (B) angular momentum    
  (C) mass    
  (D) energy

2) Answer in brief. 
 i)  Why is the surface tension of paints and 

lubricating oils kept low?
 ii)  How much amount of work is done in 

forming a soap bubble of radius r?
 iii)  What is the basis of the Bernoulli’s 

principle?
 iv)  Why is a low density liquid used as 

a manometric liquid in a physics 
laboratory?

 v)  What is an incompressible fluid?
 3.  Why two or more mercury drops form a 

single drop when brought in contact with 
each other?

 4.  Why does velocity increase when water 
flowing in broader pipe enters a narrow 
pipe?

 5.  Why does the speed of a liquid increase  
and its pressure decrease when a 
liquid passes through constriction in a 
horizontal pipe?

 6.  Derive an expression of excess pressure 
inside a liquid drop.

 7. Obtain an expression for conservation 
of mass starting from the equation of 
continuity. 

 8.  Explain the capillary action.
 9.  Derive an expression for capillary rise 

for a liquid having a concave meniscus.



55

 10  Find the pressure 200 m below the 
surface of the ocean if pressure on the 
free surface of liquid is one atmosphere. 
(Density of sea water = 1060 kg/m3)

               [Ans. 21.789 × 105 N/m2]
 11.  In a hydraulic lift, the input piston had 

surface area 30 cm2 and the output piston 
has surface area of 1500 cm2. If a force 
of 25 N is applied to the input piston, 
calculate weight on output piston.                                                 
        [Ans. 1250 N]

 12.  Calculate the viscous force acting on 
a rain drop of diameter 1 mm, falling 
with a uniform velocity 2 m/s through 
air. The coefficient of viscosity of air is  
1.8 × 10-5 Ns/m2.                                                                                  

          [Ans. 3.393 × 10-7 N]
 13.  A horizontal force of 1 N is required to 

move a metal plate of area 10-2 m2 with a 
velocity of 2 × 10-2 m/s, when it rests on 
a layer of oil 1.5 × 10-3 m thick. Find the 
coefficient of viscosity of oil.                                                                    
    [Ans. 7.5 Ns/m2]

 14.  With what terminal velocity will an 
air bubble 0.4 mm in diameter rise in a 
liquid of viscosity 0.1 Ns/m2 and specific 
gravity 0.9? Density of air is 1.29 kg/m3.

  [Ans. - 0.782 × 10-3 m/s, The negative 
sign indicates that the bubble rises up]

 15.  The speed of water is 2m/s through a 
pipe of internal diameter 10 cm. What 
should be the internal diameter of nozzle 
of the pipe if the speed of water at nozzle 
is 4 m/s?

            [Ans. 7.07 × 10-2 m]
 16.  With what velocity does water flow 

out of an orifice in a tank with gauge 
pressure 4 × 105 N/m2 before the flow 
starts? Density of water = 1000 kg/m3.

      [Ans. 28.28 m/s]
 17.  The pressure of water inside the closed 

pipe is 3 × 105 N/m2. This pressure 
reduces to 2 × 105 N/m2 on opening the 

value of the pipe. Calculate the speed of 
water flowing through the pipe. (Density 
of water = 1000 kg/m3). 

      [Ans. 14.14 m/s]
 18.  Calculate the rise of water inside a 

clean glass capillary tube of radius  
0.1 mm, when immersed in water of 
surface tension 7 × 10-2 N/m. The angle 
of contact between water and glass is 
zero, density of water = 1000 kg/m3, g 
= 9.8 m/s2.

       [Ans. 0.1429 m]
 19.  An air bubble of radius 0.2 mm is situated 

just below the water surface. Calculate 
the gauge pressure. Surface tension of 
water = 7.2 × 10-2 N/m.

                [Ans. 720 N/m2]
 20.  Twenty seven droplets of water, each 

of radius 0.1 mm coalesce into a single 
drop. Find the change in surface energy. 
Surface tension of water is 0.072 N/m.

            [Ans. 1.628 × 10-7 J = 1.628 erg]
 21.  A drop of mercury of radius 0.2 cm is 

broken into 8 identical droplets. Find 
the work done if the surface tension of 
mercury is 435.5 dyne/cm.

              [Ans. 2.189 × 10-5J]
 22.  How much work is required to form 

a bubble of 2 cm radius from the 
soap solution having surface tension  
0.07 N/m. 

          [Ans. 0.7038 × 10-3 J]
 23.  A rectangular wire frame of size  

2 cm × 2 cm, is dipped in a soap solution 
and taken out. A soap film is formed, 
if the size of the film is changed to  
3 cm × 3 cm, calculate the work done in 
the process. The surface tension of soap 
film is 3 × 10-2 N/m.                                                                                                               

        [Ans. 3 × 10-5 J]  
 


