
1

Can you recall?

1.1 Introduction:
Circular motion is an essential part of our 

daily life. Every day we come across several 
revolving or rotating (rigid) objects. During 
revolution, the object (every particle in the 
object) undergoes circular motion about some 
point outside the object or about some other 
object, while during rotation the motion is about 
an axis of rotation passing through the object.
1.2 Characteristics of Circular Motion: 
 1)  It is an accelerated motion: As the 

direction of velocity changes at every 
instant, it is an accelerated motion. 

 2)  It is a periodic motion: During the motion, 
the particle repeats its path along the same 
trajectory. Thus, the motion is periodic in 
space.

1.2.1 Kinematics of Circular Motion: 
As seen in XIth Std, in order to describe 

a circular motion, we use the quantities 
angular displacement 



θ , angular velocity





�
�

�
d

dt
 and angular acceleration 





�
�

�
d

dt
which are analogous to displacement  


s , velocity 




v =
ds

dt
 and acceleration 





a
dv

dt
=  

used in translational motion.
Also, the tangential velocity is given by 

 


v � �� r  where 


ω  is the angular velocity.
Here, the position vector r



 is the radius 
vector from the centre of the circular motion. 
The magnitude of v



 is v = ω r.
Direction of ω  is always along the axis of 

rotation and is given by the right-hand thumb 
rule. To know the direction of 



ω , curl the fingers 

If T is period of circular motion or periodic 
time and n is the frequency, � �

�
� �2

2
n

TUniform circular motion: During circular 
motion if the speed of the particle remains 
constant, it is called Uniform Circular Motion 
(UCM). In this case, only the direction of its 
velocity changes at every instant in such a way 
that the velocity is always tangential to the 
path. The acceleration responsible for this is  
the centripetal or radial acceleration 

 

a rr � ��
2

For UCM, its magnitude is constant and it 
is �a r

r
� � �� �2

2v
v . It is always directed 

towards the centre of the circular motion 
(along −r ), hence called centripetal. 

1. What is circular motion?
2. What is the concept of centre of mass?
3. What are kinematical equations of 

motion?
4. Do you know real and pseudo forces, 

their origin and applications?

Illustration: Circular motion of any particle 
of a fan rotating uniformly.
Non-uniform circular motion: When a fan is 
switched ON or OFF, the speeds of particles 
of the fan go on increasing or decreasing 
for some time, however their directions are 
always tangential to their circular trajectories.  

1. Rotational Dynamics

of the right hand along the sense of rotation, 
with the thumb outstretched. The outstretched 
thumb then gives the direction of 



ω . 

Fig. 1.1: Directions of angular velocity.

Fig. 1.2: Directions of linear velocity and 
acceleration.
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Do you know?

During this time, it is a non-uniform circular 
motion. As the velocity is still tangential, the 
centripetal or radial acceleration 



a r  is still 
there. However, for non-uniform circular 
motion, the magnitude of ar

 is not constant. 
The acceleration responsible for changing 

the magnitude of velocity is directed along 
or opposite to the velocity, hence always 
tangential and is called as tangential 
acceleration 



aT . 
As magnitude of tangential velocity 



v  
is changing during a non-uniform circular 
motion, the corresponding angular velocity 



ω  
is also changing at every instant. This is due to 

the angular acceleration 




�
�

�
d

dt
Though the motion is non-uniform, the 

particles are still in the same plane. Hence, 
the direction of 



α  is still along the axis of 
rotation. For increasing speed, it is along the 
direction of 



ω  while during decreasing speed, 
it is opposite to that of 



ω . 

If the angular acceleration 


α  is constant 
and along the axis of rotation, all 



 

� � �,� �and�  
will be directed along the axis. This makes it 
possible to use scalar notation and write the 
kinematical equations of motion analogous to 
those for translational motion as given in the 
Table 1.1 at the end of the topic. 

Fig. 1.3: Direction of angular acceleration.

If the angular acceleration 


α  is along 
any direction other than axial, it will have 
a component perpendicular to the axis. 
Thus, it will change the direction of 



ω also, 
which will change the plane of rotation as 


ω  is always perpendicular to the plane of 1.2.2 Dynamics of Circular Motion 
(Centripetal Force and Centrifugal Force):
i) Centripetal force (CPF): As seen above,  
the acceleration responsible for circular 
motion is the centripetal or radial acceleration 
 

a rr � ��
2 . The force providing this 

acceleration is the centripetal or radial force, 
CPF� �m r� 2

always change only the direction of 


ω  and 
never its magnitude thereby continuously 
changing the plane of rotation. (This is 
similar to an acceleration 



a  perpendicular 
to velocity v



 changing only its direction).

rotation. 
If 



α  is 
constant in 
m a g n i t u d e , 
but always 
perpendicular 
to 



ω , it will 

Example 1.1 : A fan is rotating at 90 rpm. 
It is then switched OFF. It stops after  21 
rotations. Calculate the time taken by it to 
stop assuming that the frictional torque is 
constant.
Solution: 

n n0 0 090 1 5 2 3� � � � �� . � ��� �rpm rps
rad

s
� � �

 
The angle through which the blades of 
the fan move while stopping is θ  = 2πN 
= 2π (21) = 42 π rad, ω  = 0 (fan stops). 
Using equations analogous to kinematical 
equations of motion
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Remark: One can also use the unit 
‘revolution’ for angle and get rid of π 
throughout (for such data). In this case, 
�0 �  1.5 rps and � �  21 rev.
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Remember this

Activity

It must be understood that centrifugal 
force is a non-real force, but NOT an 
imaginary force. Remember, before the merry-
go-round reaches its uniform speed, you were 
really experiencing an outward pull (because, 
centrifugal force is greater than the resultant 
force towards the centre). A force measuring 
instrument can record it as well. 

On reaching the uniform speed, in the 
frame of reference of merry-go-round, this 
centrifugal force exactly balances the resultant 
of all the real forces. The resultant force in 
that frame of reference is thus zero. Thus, only 
in such a frame of reference we can say that 
the centrifugal force balances the centripetal 
force. It must be remembered that in this case, 
centrifugal force means the ‘net pseudo force’ 
and centripetal force means the ‘resultant of 
all the real forces’.

There are two ways of writing force 
equation for a circular motion: 

Resultant force � �m r� 2   or 

m r� 2 0
 � � � �� real�forces  

 (i) The word centripetal is NOT the name 
or type of that force (like gravitational 
force, nuclear force, etc). It is the 
adjective or property of that force 
saying that the direction of this force 
is along the radius and towards centre 
(centre seeking). 

 (ii) While performing circular or rotational 
motion, the resultant of all the real 
forces acting upon the body is (or, must 
be) towards the centre, hence we call 
this resultant force to be centripetal 
force. Under the action of this resultant 
force, the direction of the velocity is 
always maintained tangential to the 
circular track. 

      The vice versa need not be true, 
i.e., the resultant force directed towards 
the centre may not always result into a 
circular motion. (In the Chapter 7 you 
will know that during an s.h.m. also the 
force is always directed to the centre of 
the motion). For a motion to be circular, 
correspondingly matching tangential 
velocity is also essential.

 (iii) Obviously, this discussion is in an 
inertial frame of reference in which 
we are observing that the body is 
performing a circular motion.

 (iv) In magnitude, centripetal force

        �� � �mr
mv

r
mv� �2

2  

ii) Centrifugal force (c.f.f.): 
Visualize yourself on a merry-go-round 

rotating uniformly. If you close your eyes, you 
will not know that you are performing a circular 
motion but you will feel that you are at rest. In 
order to explain that you are at rest, you need 
to consider a force equal in magnitude to the 
resultant real force, but directed opposite, i.e., 
away from the centre. This force, �� �m r� 2  is 
the centrifugal (away from the centre) force. It 
is a pseudo force arising due to the centripetal 
acceleration of the frame of reference. 

Attach a suitable mass to spring balance so 
that it stretches by about half is capacity. 
Now whirl the spring balance so that the 
mass performs a horizontal motion. You will 
notice that the balance now reads more mass 
for the same mass. Can you explain this?

1.3 Applications of Uniform Circular Motion: 
1.3.1 Vehicle Along a Horizontal Circular 
Track:

Figure 1.4 shows vertical section of a car 
on a horizontal circular track of radius r. Plane 
of figure is a vertical plane, perpendicular to 
the track but includes only centre C of the 
track. Forces acting on the car (considered 
to be a particle) are (i) weight mg, vertically 
downwards, (ii) normal reaction N, vertically 
upwards that balances the weight mg and (iii) 
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Do you know?

force of static friction f
s
 between road and the 

tyres. This is static friction because it prevents 
the vehicle from outward slipping or skidding. 
This is the resultant force which is centripetal. 

1.3.2 Well (or Wall) of Death: (मौत का कुआँ): 
This is a vertical cylindrical wall of radius 

r inside which a vehicle is driven in horizontal 
circles. This can be seen while performing 
stunts. 

As shown in the Fig. 1.5, the forces acting 
on the vehicle (assumed to be a point) are (i) 
Normal reaction N acting horizontally and 

 (i)  In the discussion till now, we had 
assumed the vehicle to be a point. 
In reality, if it is a four wheeler, the 
resultant normal reaction is due to all 
the four tyres. Normal reactions at all 
the four tyres are never equal while 
undergoing circular motion. Also, the 
centrifugal force acts through the centre 
of mass, which is not at the ground level, 

Use your brain power

 (I)  Obtain the condition for not toppling 
for a four-wheeler. On what factors 
does it depend, and in what way? Think 
about the normal reactions – where are 
those and how much are those! What 
is the recommendation on loading the 
vehicle for not toppling easily? If a 
vehicle topples while turning, which 
wheels leave the contact? Why? How 
does it affect the tyres? What is the 
recommendation for this?

 (II) Determine the angle to be made with 
the vertical by a two wheeler rider while 
turning on a horizontal track.

Hint: For both (I) and (II) above, find the 
torque that balances the torque due 
to centrifugal force and torque due to 
static friction force.

 (III)We have mentioned about static friction 
between road and the tyres. Why is it 
static? What about the kinetic friction 
between road and the tyres?

(IV) What do you do if your vehicle is 
trapped on a slippery or a sandy road? 
What is the physics involved?

Fig. 1.4: Vehicle on a horizontal road.

While working in the frame of reference 
attached to the vehicle, it balances the 
centrifugal force. 

� � � �mg N f mr
m

rs�and� � 2
2v

� � �
f

N

r

g rg
s � 2 2v

For a given track, radius r is constant. For 
given vehicle, mg = N is constant. Thus, as the 
speed v increases, the force of static friction f

s
 

also increases. However, f
s
 has an upper limit 

f Ns max s� � � � . , where µs  is the coefficient of 
static friction between road and tyres of the 
vehicle. This imposes an upper limit to the 
speed v.
At the maximum possible speed v

s
,  we can 

write
     
 

f

N rg
rgs max

s
max

max s

� �
� � � �� �

v
v

2

but above it. Thus, the frictional force 
and the centrifugal force result into a 
torque which may topple the vehicle 
(even a two wheeler).

 (ii) For a two wheeler, it is a must for 
the rider to incline with respect to the 
vertical to prevent toppling.



5

Remember this

towards the centre, (ii) Weight mg acting 
vertically downwards, and (iii) Force of static 
friction f

s
 acting vertically upwards between 

vertical wall and the tyres. It is static friction 
because it has to prevent the downward 
slipping. Its magnitude is equal to mg, as this 
is the only upward force.

Normal reaction N is thus the resultant 
centripetal force (or the only force that can 
balance the centrifugal force). Thus, in 
magnitude,
 
 

N mr
m

r
mg fs� � �� 2

2v
and�

Force of static friction f s  is always less than 
or equal to µs N.

 
 

� � � �
�

�
�

�

�
�

� � � �

f N mg
m

r

g
r

rg

s s s

s

s

� �

�
�

v

v
v

2

2
2

 
 
 

� �vmin
s

rg

�

due to the weight. What about a four-
wheeler?

 (iv) In this case, the angle made by the road 
surface with the horizontal is 90°, i.e., if 
the road is banked at 90°, it imposes a 
lower limit on the turning speed. In the 
previous sub-section we saw that for an 
unbanked (banking angle 0) road there 
is an upper limit for the turning speed. 
It means that for any other banking 
angle (0 < θ  < 90°), the turning speed 
will have the upper as well as the lower 
limit.

Fig. 1.5: Well of death.

 (i)  N should always be equal to 
m

r

v2

 

   
� � �N

m

r

mg
min

min

s

v2

�  
 (ii)  In this case, f

s
 = µ

s
N is valid only for the 

minimum speed as f
s
  should always be 

equal to mg.
 (iii) During the derivation, the vehicle is 

assumed to be a particle. In reality, it 
is not so. During revolutions in such 
a well, a two-wheeler rider is never 
horizontal, else, the torque due to her/
his weight will topple her/him. Think 
of the torque that balances the torque 

Example 1.2: A motor cyclist (to be treated 
as a point mass) is to undertake horizontal 
circles inside the cylindrical wall of a well 
of inner radius 4 m. Coefficient of static 
friction between the tyres and the wall is 
0.4. Calculate the minimum speed and 
frequency necessary to perform this stunt. 
(Use g = 10 m/s2)
Solution:  

 
v  min � �

�
� �rg

s�
4 10

0 4
10 1

.
�m s

 and 

n
rmin

min rev � �
� �

� �v
 

2

10

2 4
0 4 1

� �
. � s

1.3.3 Vehicle on a Banked Road: 
As seen earlier, while taking a turn on 

a horizontal road, the force of static friction 
between the tyres of the vehicle and the road 
provides the necessary centripetal force (or 
balances the centrifugal force). However, the 
frictional force is having an upper limit. Also, 
its value is usually not constant as the road 
surface is not uniform. Thus, in real life, we 
should not depend upon it, as far as possible. 
For this purpose, the surfaces of curved roads 
are tilted with the horizontal with some angle 
θ . This is called banking of a road or the road 
is said to be banked.

Figure 1.6 Shows the vertical section of 
a vehicle on a curved road of radius r banked 
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Use your brain power

at an angle θ  with the horizontal. Considering 
the vehicle to be a point and ignoring friction 
(not eliminating) and other non-conservative 
forces like air resistance, there are two forces 
acting on the vehicle, (i) weight mg, vertically 
downwards and (ii) normal reaction N, 
perpendicular to the surface of the road. As 
the motion of the vehicle is along a horizontal 
circle, the resultant force must be horizontal 
and directed towards the centre of the track. It 
means, the vertical force mg must be balanced. 
Thus, we have to resolve the normal reaction 
N along the vertical and along the horizontal. 
Its vertical component Ncosθ  balances weight 
mg. Horizontal component Nsinθ  being 
the resultant force, must be the necessary 
centripetal force (or balance the centrifugal 
force). Thus, in magnitude,

N mg

N mr
m

r rg

cos �

sin tan

�

� � �

�

� � � �

  

v v

and� 

2
2 2

  
--- (1.1)

(a) Most safe speed: For a particular road, r 
and θ  are fixed. Thus, this expression gives 
us the expression for the most safe speed (not 
a minimum or a maximum speed) on this road 
as v s rg� tan�
(b) Banking angle: While designing 
a road, this expression helps us in 
knowing the angle of banking as 

 
� �

�

�
�

�

�
�

�tan 1
2v

rg      
--- (1.2)

(c) Speed limits: Figure 1.7 and 1.8 show 
vertical section of a vehicle on a rough 
curved road of radius r, banked at an angle  
θ . If the vehicle is running exactly at the speed 
v s rg� tan� , the forces acting on the vehicle 

are (i) weight mg acting vertically downwards 
and (ii) normal reaction N acting perpendicular 
to the road. As seen above, only at this speed, 
the resultant of these two forces (which is 
Nsinθ ) is the necessary centripetal force (or 
balances the centrifugal force). In practice, 
vehicles never travel exactly with this speed. 
For speeds other than this, the component of 
force of static friction between road and the 
tyres helps us, up to a certain limit. 

Fig 1.6: Vehicle on a banked road.

As a civil engineer, you are given contract 
to construct a curved road in a ghat. In order 
to obtain the banking angle θ , you need to 
decide the speed limit. How will you decide 
the values of speed v and radius r ?

For speeds v1 � rg tan� , m

r
N

v1
2

� sin�   

(or N sinθ   is greater than the centrifugal force 
m

r

v1
2

). In this case, the direction of force of 

static friction f
s
 between road and the tyres 

is directed along the inclination of the road, 

upwards (Fig. 1.7). Its horizontal component 

is parallel and opposite to Nsinθ . These two 

Fig 1.7: Banked road : lower speed limit.

Fig 1.8: Banked road : upper speed limit.
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Use your brain power

forces take care of the necessary centripetal 
force (or balance the centrifugal force).

� � �mg f Ns sin cos� �  and 

m

r
N f

v1
2

� �sin cos� �s

For minimum possible speed, f
s
 is 

maximum and equal to µ
s
N. Using this in the 

equations above and solving for minimum 
possible speed, we get

     v v
min min1 1

� � � �
�

�
�

�
�

�

�
�rg

tan

tan

� �
� �

s

s
 --- (1.3)

For � �s � tan ,v
min

 = 0. This is true for most 
of the rough roads, banked at smaller angles.

(d) For speeds v2 � rg tan� , 
m

r
N

v2
2

� sin�  

(or N sinθ is less than the centrifugal force 
m

r

v2
2

). In this case, the direction of force 

of static friction f
s
 between road and the 

tyres is directed along the inclination of the 
road, downwards (Fig. 1.8). Its horizontal 
component is parallel to Nsinθ . These two 
forces take care of the necessary centripetal 
force (or balance the centrifugal force).

� � �mg N fcos sin� �s
 and 

m

r
N f

v
s

2
2

� �sin cos� �

For maximum possible speed, f s  is 
maximum and equal to µs N . Using this in the 
equations above, and solving for maximum 
possible speed, we get

   v v
max max

s

s
2 1

� � � �
�

�
�

�
�

�

�
�rg

tan

tan

� �
� �

  --- (1.4)
 

If µs  = cot θ  , v
max

 = ∞. But ( µs )
max

 = 1. 

Thus, for θ ≥ 45°, v
max

 = ∞. However, for 

heavily banked road, minimum limit may 
be important. Try to relate the concepts used 
while explaining the well of death.

(e) For µs  = 0, both the equations 1.3 and 1.4 
give us v � rg tan�  which is the safest speed  
on a banked road as we don’t take the help of 
friction.

Example 1.3: A racing track of radius of 
curvature 9.9 m is banked at tan .−1 0 5
. Coefficient of static friction between 
the track and the tyres of a vehicle is 0.2. 
Determine the speed limits with 10 % 
margin. (Take g = 10 m/s2)
Solution: 

      

v

       

min �
�

�
�

�
�

�

�
�

� �
�

� �

rg s

s

tan

tan

. �
. .

. .

� �
� �1

9 9 10
0 5 0 2

1 0 2 0 55

27 5 196

� �
�

�
��

�

�
��

� �       . � /m s

Allowed v
min

  should be 10% higher than 
this.

       

�� � � �

�

v

                     

min allowed

m

s

5 196
110

100

5 716

.

.

       

v

       

max �
�

�
�

�
�

�

�
�

� �
�

� �

rg s

s

tan

tan

. �
. .

. .

� �
� �1

9 9 10
0 5 0 2

1 0 2 0 55

77 8 775

� �
�

�
��

�

�
��

� �        . � /m s

Allowed v
max

  should be 10% lower than 
this.

∴ vmax allowed
m s� � � � �8 775

90

100
7 896. . 
 /

• If friction is zero, can a vehicle move on 
the road? Why are we not considering 
the friction in deriving the expression 
for the banking angle? 

• What about the kinetic friction between 
the road and the tyres? 

1.3.4 Conical Pendulum: 
A tiny mass (assumed to be a point object 

and called a bob) connected to a long, flexible, 
massless, inextensible string, and suspended 
to a rigid support is called a pendulum. If the 
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Activity

string is made to oscillate in a single vertical 
plane, we call it a simple pendulum (to be 
studied in the Chapter 5). 

We can also revolve the string in such a 
way that the string moves along the surface of 
a right circular cone of vertical axis and the 
point object performs a (practically) uniform 
horizontal circular motion. In such a case the 
system is called a conical pendulum. 

Figure 1.9 shows the vertical section of 
a conical pendulum having bob (point mass) 
of mass m and string of length L. In a given 
position B, the forces acting on the bob are (i) 
its weight mg directed vertically downwards 
and (ii) the force T

0
 due to the tension in the 

string, directed along the string, towards 
the support A. As the motion of the bob is a 
horizontal circular motion, the resultant force 
must be horizontal and directed towards the 
centre C of the circular motion. For this, all 
the vertical forces must cancel. Hence, we 
shall resolve the force T

0
 due to the tension. 

If  θ  is the angle made by the string with the 
vertical, at any position (semi-vertical angle 
of the cone), the vertical component T

0
 cos

θ  balances the weight mg. The horizontal 
component T

0
 sinθ then becomes the resultant 

force which is centripetal.
� � �T mr0

2sin� �centripetal�force �   --- (1.5)
Also, T

0
 cosθ  = mg      --- (1.6)

Dividing eq (1.5) by Eq. (1.6), we get,

 
�

�
�

2 �
g

r

sin

cos  
Radius r of the circular motion is r L� sin� . 
If T is the period of revolution of the bob,

 
�

�
�

� �
2

T

g

L cos  
   
 � �Period�

cos
T

L

g
2�

�
    --- (1.7)

Frequency of revolution, 

           n
T

g

L
� �

1 1

2� �cos
    --- (1.8)

In the frame of reference attached to the 

bob, the centrifugal force should balance the 
resultant of all the real forces (which we call 
CPF) for the bob to be at rest.
∴ T

0
 sinθ  = mrω 2 --- (in magnitude). This is 

the same as the Eq. (1.5)

  A stone is tied to a string and whirled 
such that the stone performs horizontal 
circular motion. It can be seen that the string 
is NEVER horizontal. 

Fig. 1.9 (a): In an inertial frame

Fig. 1.9 (b): In a non- inertial frame

Remember this

 (i)  For a given set up, L and g  are constant. 
Thus, both period and frequency 
depend upon θ . 

 (ii) During revolutions, the string can 
NEVER become horizontal. This can 
be explained in two different ways.

 (a)  If the string becomes horizontal, 
the force due to tension will also be 
horizontal. Its vertical component will 
then be zero. In this case,  nothing will 
be there to balance mg. 

 (b)  For horizontal string, θ = 90°. This will 
indicate the frequency to be infinite 
and the period to be zero, which are 
impossible. Also, in this case, the tension 

T
mg

0 � cos�
 in the string and the kinetic 

  energy � �
1

2

1

2
2 2 2m mrv �  of the bob 

will be infinite.
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Activity

1.4 Vertical Circular Motion:
Two types of vertical circular motions are 

commonly observed in practice: 
 (a) A controlled vertical circular motion such 

as a giant wheel or similar games. In this 
case the speed is either kept constant or 
NOT totally controlled by gravity. 

 (b) Vertical circular motion controlled only 
by gravity. In this case, we initially 
supply the necessary energy (mostly) at 
the lowest point. Then onwards, the entire 
kinetics is governed by the gravitational 
force. During the motion, there is 
interconversion of kinetic energy and 
gravitational potential energy. 

Example 1.4: A merry-go-round usually 
consists of a central vertical pillar. At the 
top of it there are horizontal rods which can 
rotate about vertical axis. At the end of this 
horizontal rod there is a vertical rod fitted 
like an elbow joint. At the lower end of 
each vertical rod, there is a horse on which 
the rider can sit. As the merry-go-round is 
set into rotation, these vertical rods move 
away from the axle by making some angle 
with the vertical. 

The figure above shows vertical section 
of a merry-go-round in which the ‘initially 
vertical’ rods are inclined with the vertical 
at θ  = 370, during rotation. Calculate the 
frequency of revolution of the merry-go-
round. (Use g = π2 m/s2 and sin 37° = 0.6)
Solution: Length of the horizontal rod,  
H = 2.1 m
Length of the ‘initially vertical’ rod, 
V =  1.5 m, θ  = 37° 
∴ Radius of the horizontal circular motion 
of the rider = H + V sin 37° =  3.0 m 
If T is the tension along the inclined rod, 
T cos θ  = mg and T sinθ  = mrω 2 = 4π2 mrn2 

 

� �

� � � � ��

tan ��

tan
���� � �

�
�

�
�

4

4

1

4
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rn

g

n
r

grev�s as

Example 1.5: Semi-vertical angle of the 
conical section of a funnel is 370. There is a 
small ball kept inside the funnel. On rotating 
the funnel, the maximum speed that the ball 
can have in order to remain in the funnel is 2 
m/s. Calculate inner radius of the brim of the 
funnel. Is there any limit upon the frequency 
of rotation? How much is it? Is it lower or 
upper limit? Give a logical reasoning. (Use  
g = 10 m/s2 and sin 370 = 0.6) 

Solution: N mg N
m

r
sin � � cos� �� �and

v2

 
    

� � � �

� � �

tan �
tan

tan
. �

�
�

�

rg
r

g

r
g

v

v

vmax

2

2

2

0 3max m

    
v � �r rn� �2

Using a funnel and a marble or a ball bearing 
try to work out the situation in the above 
question. Try to realize that as the marble 
goes towards the brim, its linear speed 
increases but its angular speed decreases. 
When nearing the base, it is the other way.

If we go for the lower 
limit of the speed (while 
rotating), 
v � � �0 0r , but the 
frequency n increases. 
Hence a specific upper 

limit is not possible in the case of frequency. 
Thus, the practical limit on the frequency of 
rotation is its lower limit. It will be possible 
for r r= max  

� � � �n
rmin

max

vmax

2

1

0 3
1

� �.
� /rev s
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realized with minimum possible energy),   
TA = 0  �� � �vA min

rg              --- (1.10) 
Lowermost position (B): Force due to the 
tension, T

B
 is vertically upwards, i.e., towards 

the centre, and opposite to mg. In this case also 
their resultant is the centripetal force. If v

B
 is 

the speed at the lowermost point, we get,
 
          

T mg
m

rB
B� �

v2

                        
--- (1.11)

While coming down from the uppermost to 
the lowermost point, the vertical displacement 
is 2r and the motion is governed only by 
gravity. Hence the corresponding decrease in 
the gravitational potential energy is converted 
into the kinetic energy.

� � � � �

� � �

mg r m m

rg

2
1

2

1

2

4

2 2

2 2

v v

v v

B A

B A

��

     
--- (1.12)

Using this in the eq (1.11), and using �� � �vA min
rg min 

from Eq. (1.10) we get,
       vB min

� � � 5rg                            --- (1.13)
Subtracting eq (1.9) from eq (1.11) , we can 
write, 

         
T T mg

m

rB A B A� � � �� �2 2 2v v
    

--- (1.14)

Using eq (1.12) and rearranging, we get,
          T T mgB A� � 6                           --- (1.15)
Positions when the string is horizontal (C 
and D): Force due to the tension is the only 
force towards the centre as weight mg is 
perpendicular to the tension. Thus, force due 
to the tension is the centripetal force used to 
change the direction of the velocity and weight 
mg is used only to change the speed.
Using similar mathematics, it can be shown 
that
             T T T T mgC A D A� � � � 3    and    
             v vDC min min

� � �� � �� 3rg

Arbitrary positions: Force due to the tension 
and weight are neither along the same line, 
nor perpendicular. Tangential component of 
weight is used to change the speed. It decreases 
the speed while going up and increases it while 
coming down.

Fig 1.10: Vertical circular motion.

1.4.1 Point Mass Undergoing Vertical 
Circular Motion Under Gravity: 
Case I: Mass tied to a string: 

The figure 1.10 shows a bob (treated as 
a point mass) tied to a (practically) massless, 
inextensible and flexible string. It is whirled 
along a vertical circle so that the bob performs 
a vertical circular motion and the string rotates 
in a vertical plane. At any position of the bob, 
there are only two forces acting on the bob:  

(a) its weight mg, vertically downwards, which 
is constant and (b) the force due to the tension 
along the string, directed along the string and 
towards the centre. Its magnitude changes 
periodically with time and location.

As the motion is non uniform, the resultant 
of these two forces is not directed towards 
the center except at the uppermost and the 
lowermost positions of the bob. At all the other 
positions, part of the resultant is tangential and 
is used to change the speed.
Uppermost position (A): Both, weight mg and 
force due to tension T

A
 are downwards, i.e., 

towards the centre. In this case, their resultant 
is used only as the centripetal force. Thus, if 
v

A
 is the speed at the uppermost point, we get, 

 
mg T

m

r
� �A

Av2       
--- (1.9)

 
Radius r of the circular motion is the 

length of the string. For minimum possible 
speed at this point (or if the motion is to be 

A

B



11

Remember this
1.4.2 Sphere of Death  (मृत्‍यु गोल): 

This is a popular show in a circus. During 
this, two-wheeler rider (or riders) undergo 
rounds inside a hollow sphere. Starting with 
small horizontal circles, they eventually 
perform revolutions along vertical circles. The 
dynamics of this vertical circular motion is 
the same as that of the point mass tied to the 
string, except that the force due to tension T is 
replaced by the normal reaction force N.

If you have seen this show, try to visualize 
that initially there are nearly horizontal circles. 
The linear speed is more for larger circles but 
angular speed (frequency) is more for smaller 
circles (while starting or stopping). This is as 
per the theory of conical pendulum.
1.4.3 Vehicle at the Top of a Convex Over-
Bridge: 

Case II: Mass tied to a rod: Consider a bob 
(point mass) tied to a (practically massless and 
rigid) rod and whirled along a vertical circle. 
The basic difference between the rod and the 
string is that the string needs some tension at 
all the points, including the uppermost point. 
Thus, a certain minimum speed, Eq. (1.10), is 
necessary at the uppermost point in the case 
of a string. In the case of a rod, as the rod is 
rigid, such a condition is not necessary. Thus 
(practically) zero speed is possible at the 
uppermost point. 
Using similar mathematics, it is left to the 
readers to show that 

v lowermost min
rg rg� � � �4 2

v
min

 at the rod horizontal position = 2rg
 T T mglowermost uppermost� � 6

Fig. 1.11: Vehicle on a convex over-bridge.

Figure shows a vehicle at the top of a 
convex over bridge, during its motion (part 
of vertical circular motion). Forces acting on 
the vehicle are (a) Weight mg and (b) Normal 
reaction force N, both along the vertical line 
(topmost position). The resultant of these two 
must provide the necessary centripetal force 
(vertically downwards) if the vehicle is at the 
uppermost position. Thus, if v is the speed at 
the uppermost point, 

 mg N
m

r
� �

v2

As the speed is increased, N goes on 
decreasing. Normal reaction is an indication 
of contact. Thus, for just maintaining contact, 
N = 0. This imposes an upper limit on the speed 
as vmax = rg

1. Equation (1.15) is independent of v and r.

2. T
A
 can never be exactly equal to zero in 

the case of a string, else, the string will 
slack. ∴ T

B
 > 6 mg.

3. None of the parameters (including the 
linear and angular accelerations) are 
constant during such a motion. Obviously, 
kinematical equations given in the table1 
are not applicable.

4. We can determine the position vector or 
velocity at any instant using the energy 
conservation. But as the function of the 
radius vector is not integrable (definite 
integration is not possible), theoretically 
it is not possible to determine the period 
or frequency. However, experimentally 
the period can be measured. 

5. Equations (1.10) and (1.13) give only 
the respective minimum speeds at the 
uppermost and the lowermost points. Any 
higher speeds obeying the equation (1.14) 
are allowed.

6. In reality, we have to continuously 
supply some energy to overcome the air 
resistance.
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Use your brain power

Do you know?

• What is expected to happen if one travels 
fast over a speed breaker? Why?

• How does the normal force on a concave 
suspension bridge change when a vehicle 
is travelling on it with constant speed?

Example 1.6: A tiny stone of mass 20 g is 
tied to a practically massless, inextensible, 
flexible string and whirled along vertical 
circles. Speed of the stone is 8 m/s when 
the centripetal force is exactly equal to the 
force due to the tension. 
Calculate minimum and maximum kinetic 
energies of the stone during the entire circle. 

Let θ  = 0 be the angular position of the 
string, when the stone is at the lowermost 
position. Determine the angular position of 
the string when the force due to tension is 
numerically equal to weight of the stone. 
Use g = 10 m/s2 and length of the string = 
1.8 m
Solution: When the string is horizontal, the 
force due to the tension is the centripetal 
force. Thus, vertical displacements of the 
bob for minimum and maximum energy 
positions are radius r each. 

If  K.E.
max

 and K.E.
min

 are the respective 
kinetic energies at the uppermost and the 
lowermost points,

 

K E ����

K E

max

min

. . ��

. . �

� � � �

� � � �

1

2
8

1

2
8

2

2

m mgr

m mgr
 

and

∴ 1

2
0 02 8 0 02 10 1 8

2
. . . . . �� �� � � � � �� �� �K E min

                     �� �K E Jmin. . . �0 28

K E max. . . . .� � �� � � � �� �� �1

2
0 02 8 0 02 10 1 8

2

 
� � �K E J�max max. . �

1

2
12mv

∴ v  m s-1
max

max(K .E.)
= =

2
10

m
  

at the lowermost position, for which θ  = 0.

T mg
m

r
� �cos�

v2

  --- at any angle θ , 

where the speed is v.
Thus, if T = mg, we get, 

 

mg mg
m

r

rg

� �

� �� � �

cos ��

cos

�

�

v

v

2

21    --- (A)
Vertical displacement at the angular 

position θ  is r 1�� �cos� .  Thus, the energy 
equation at this position can be written as
 
        

1

2
10

1

2
1

2 2m m mg r� � � � �� ��� ��v cos�

By using Eq. A, we get      

        50
1

2
1 1� �� � � �� �rg rgcos cos� �  

        � � �� �50
3

2
1rg cos�

       
� �

�
� �cos �'� �

23

27
148 250

 

1.5 Moment of Inertia as an Analogous 
Quantity for Mass:

In XIth Std. we saw that angular 
displacement, angular velocity and 
angular acceleration respectively replace 
displacement, velocity and acceleration for 
various kinematical equations. Also, torque is 
an analogous quantity for force. Expressions of 
linear momentum, force (for a fixed mass) and 
kinetic energy include mass as a common term. 
In order to have their rotational analogues, we 
need a replacement for mass.

If we open a door (with hinges), we give a 
certain angular displacement to it. The efforts 

Roller coaster is a common event in the 
amusement parks. During this ride, all 
the parts of the vertical circular motion 
described above can be experienced. The 
major force that we experience during this is 
the normal reaction force. Those who have 
experienced this, should try to recall the 
changes in the normal reaction experienced 
by us during various parts of the track.
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needed for this depend not only upon the mass 
of the door, but also upon the (perpendicular) 
distance from the axis of rotation, where we 
apply the force. Thus, the quantity analogous 
to mass includes not only the mass, but also 
takes care of the distance wise distribution of 
the mass around the axis of rotation. To know 
the exact relation, let us derive an expression 
for the rotational kinetic energy which is the 
sum of the translational kinetic energies of all 
the individual particles.

If I m ri i�� 2
 replaces mass m and angular 

speed ω  replaces linear speed v, rotational 

K.E. ��
1

2
2I�  is analogous to translational 

K.E. =
1

2
2mv . Thus, I is defined to be the 

rotational inertia or moment of inertia (M.I.) 
of the object about the given axis of rotation. 
It is clear that the moment of inertia of an 
object depends upon (i) individual masses and 
(ii) the distribution of these masses about the 
given axis of rotation. For a different axis, it 
will again depend upon the mass distribution 
around that axis and will be different if there is 
no symmetry.

During this discussion, for simplicity, we 
assumed the object to be consisting of a finite 
number of particles. In practice, usually, it 
is not so. For a homogeneous rigid object of 
mathematically integrable mass distribution, 
the moment of inertia is to be obtained by 
integration as I r dm� � 2 . If integrable mass 
distribution is not known, it is not possible to 
obtain the moment of inertia theoretically, but 
it can be determined experimentally.

Fig. 1.12: A body of N particles.

Fig. 1.13: Moment of Inertia of a ring. 

Figure 1.12 shows a rigid object rotating 
with a constant angular speed ω  about an 
axis perpendicular to the plane of paper. 
For theoretical simplification let us consider 
the object to be consisting of N particles 
of masses m

1
, m

2
, …..m

N
 at respective 

perpendicular distances r
1
, r

2
, …..r

N
 from the 

axis of rotation. As the object rotates, all these 
particles perform UCM with the same angular 
speed ω , but with different linear speeds 
v  v   v1 1 2 2� � �� �r r r� � �,� , � N N .

Translational K.E. of the first particle is  

 K E v. .1 1 1
2

1 1
2 21

2

1

2
� �m m r �

Similar will be the case of all the other 
particles. Rotational K.E. of the object, is 
the sum of individual translational kinetic 
energies. Thus, rotational K.E.

� � ���
1

2

1

2

1

21 1
2 2

2 2
2 2 2 2m r m r m r� � �N N

�

� � ��� � �

Rotational�K E �. .

1

2

1

21 1
2

2 2
2 2 2 2m r m r m r IN N � �

Where I m r m r m r m rN N i i
i

N

� � ��� �
�
�1 1

2
2 2

2 2 2

1

 

1.5.1 Moment of Inertia of a Uniform Ring: 
An object is called a uniform ring if 

its mass is (practically) situated uniformly 
on the circumference of a circle (Fig 1.13). 
Obviously, it is a two dimensional object of 
negligible thickness. If it is rotating about its 
own axis (line perpendicular to its plane and 
passing through its centre), its entire mass M 
is practically at a distance equal to its radius 
R form the axis. Hence, the expression for the 
moment of inertia of a uniform ring of mass M 
and radius R is I = MR2.
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1.5.2 Moment of Inertia of a Uniform Disc:
Disc is a two dimensional circular object 

of negligible thickness. It is said to be uniform 
if its mass per unit area and its composition is 
the same throughout. The ratio � � �

m

A

mass

area
 

is called the surface density. 
Consider a uniform disc of mass M and 

radius R rotating about its own axis, which is 
the line perpendicular to its plane and passing 

through its centre � ��
�
M

R2
. 

As it is a uniform circular object, it can 
be considered to be consisting of a number 
of concentric rings of radii increasing from 
(practically) zero to R. One of such rings of 
mass dm is shown by shaded portion in the 
Fig. 1.14.

of inertias of objects of several integrable 
geometrical shapes can be derived. Some of 
those are given in the Table 3 at the end of the 
topic.
1.6 Radius of Gyration: 

As stated earlier, theoretical calculation 
of moment of inertia is possible only for 
mathematically integrable geometrical shapes. 
However, experimentally we can determine 
the moment of inertia of any object. It depends 
upon mass of that object and how that mass 
is distributed from or around the given axis 
of rotation. If we are interested in knowing 
only the mass distribution around the axis of 
rotation, we can express moment of inertia 
of any object as I MK= 2 , where M is mass 
of that object. It means that the mass of that 
object is effectively at a distance K from the 
given axis of rotation. In this case, K is defined 
as the radius of gyration of the object about 
the given axis of rotation. In other words, if K 
is radius of gyration for an object, �I MK= 2  is 
the moment of inertia of that object. Larger the 
value of K, farther is the mass from the axis.

Consider a uniform ring and a uniform 
disc, both of the same mass M and same 
radius R. Let I

r
 and I

d
 be their respective 

moment of inertias.
If K

r
 and K

d
  are their respective radii 

of gyration, we can write, 
    I

r
 = MR2 = MKr

2  ∴K
r
 = R and 

   I
d
 =

1

2
 MR2 = MKd

2  ∴ K
d
 = 

R

2
 ∴ K

d 
<K

r

It shows mathematically that K is 
decided by the distribution of mass. In a 
ring the entire mass is distributed at the 
distance R, while for a disc, its mass is 
distributed between 0 and R. Among any 
objects of same mass and radius, ring has 
the largest radius of gyration and hence 
maximum M.I.

1.7 Theorem of Parallel Axes and Theorem 
of Perpendicular Axes:

Expressions of moment of inertias of 

Fig .1.14: Moment of Inertia of a disk. 
Width of this ring is dr, which is so small 

that the entire ring can be considered to be 
of average radius r. (In practical sense, dr is 
less than the least count of the instrument that 
measures r, so that r is constant for that ring). 

Area of this ring is A = 2πr.dr �
.

�� ��
�
dm

r dr2
  

∴ dm = 2πσr.dr. 
As it is a ring, this entire mass is at a 

distance r from the axis of rotation. Thus, the 
moment of inertia of this ring is I

r
 = dm (r2) 

Moment of inertia (I) of the disc can now 
be obtained by integrating I

r 
from r = 0 to  

r = R.

� � � � � � � � �� � � �I I dm r r dr r r dr
R

r

R R R

0 0

2

0

2

0

32 2�� �� �
 

� �
�

�
�

�

�
� �

�
�
�

�
�
�
�

�
�

�

�
� �I

R M

R

R
MR2

4
2

4

1

2

4

2

4
2�� �

�
�

 
Using similar method, expressions for moment 
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Use your brain power

regular geometrical shapes given in the table 3 
are about their axes of symmetry. These are 
derived by integration. However, every time 
the axis need not be the axis of symmetry. In 
simple transformations it may be parallel or 
perpendicular to the symmetrical axis. For 
example, if a rod is rotated about one of its 
ends, the axis is parallel to its axis of symmetry. 
If a disc or a ring is rotated about its diameter, 
the axis is perpendicular to the central axis. 
In such cases, simple transformations are 
possible in the expressions of moment of 
inertias. These are called theorem of parallel 
axes and theorem of perpendicular axes.
1.7.1 Theorem of Parallel Axes: 

In order to apply this theorem to any 
object, we need two axes parallel to each other 
with one of them passing through the centre of 
mass of the object. 

  � � � � �� �
� � �

�
� � �

DC NC

DC NC

2 2

2 2

2

2

.

( ) .

h h dm

dm h dm h dm

Now, � �� � � �DC C

2
dm I dm M�and . 

NC is the distance of a point from the 
centre of mass. Any mass distribution is 
symmetric about the centre of mass. Thus, 
from the definition of the centre of mass, 

� �NC.dm 0 . 
� � �I I M hO C . 2  
This is the mathematical form of the 

theorem of parallel axes. 
It states that, “The moment of inertia (I

O
) 

of an object about any axis is the sum of its 
moment of inertia (I

C
) about an axis parallel to 

the given axis, and passing through the centre 
of mass and the product of the mass of the 
object and the square of the distance between 
the two axes (Mh2).”

Figure 1.15 shows an object of mass M. 
Axis MOP is any axis passing through point 
O. Axis ACB is passing through the centre 
of mass C of the object, parallel to the axis 
MOP, and at a distance h from it (∴ h = CO). 
Consider a mass element dm located at point 
D. Perpendicular on OC (produced) from point 
D is DN. Moment of inertia of the object about 
the axis ACB is I dmC DC� �( )2 , and about 
the axis MOP it is I dmO DO� � ��

2 .

� � � � � � � � � �� �
� � � � �

� �

�

I dm dmO DO DN NO

DN NC NC CO

2 2 2

2 2 2        [ ] . . ��� �� �CO
2

dm

Fig. 1.15: Theorem of parallel axes.

1.7.2 Theorem of Perpendicular Axes:
This theorem relates the moment of 

inertias of a laminar object about three 
mutually perpendicular and concurrent axes, 
two of them in the plane of the object and 
the third perpendicular to the object. Laminar 
object is like a leaf, or any two dimensional 
object, e.g., a ring, a disc, any plane sheet, etc.

Fig. 1.16: Theorem of perpendicular axes.

In Fig. 1.15, the point D is chosen such that 
we have to extend OC for the perpendicular 
DN to fall on it. What will happen to the final 
expression of I

0
, if point D is so chosen that 

the perpendicular DN falls directly on OC?

M

N
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Figure 1.16 shows a rigid laminar object able 
to rotate about three mutually perpendicular 
axes x, y and z. Axes x and y are in the plane 
of the object while the z axis is perpendicular 
to it, and all are concurrent at O. Consider a 
mass element dm located at any point P. PM 
= y and PN = x are the perpendiculars drown 
from P respectively on the x and y axes. The 
respective perpendicular distances of point 
P from x, y and z axes will then be y, x and 

� y x2 2+ . If I
x
, I

y
 and I

z
 are the respective 

moments of inertia of the body about x, y and 
z axes, we can write,

� � �

� �� �
� �
�

I y m I x m

I y x m

x y

z

2 2

2 2

d d

   d

,�� ��� �and

 
� � � � �� �I y m x m I Iz x y

2 2d d  
This is the mathematical form of the 

theorem of perpendicular axes. 
It states that, “The moment of inertia 

(I
z
) of a laminar object about an axis (z) 

perpendicular to its plane is the sum of its 
moments of inertia about two mutually 
perpendicular axes (x and y) in its plane, all 
the three axes being concurrent”.

Example 1.7: A flywheel is a mechanical 
device specifically designed to efficiently 
store rotational energy. For a particular 
machine it is in the form of a uniform 20 kg 
disc of diameter 50 cm, able to rotate about 
its own axis. Calculate its kinetic energy 
when rotating at 1200 rpm. Use � 2 10� .�

Calculate its moment of inertia, in case it is 
rotated about a tangent in its plane.
Solution: (I) As the flywheel is in the form 
of a uniform disc rotating about its own 

axis, I MRz =
1

2
2

∴ Rotational kinetic energy

� � �
�
�

�
�
��

1

2

1

2

1

2
42 2 2 2I MR n� � �

∴ Rotational kinetic energy

� � � � � �� � � �M J� 2 2 2
20 10 0 25 20 5000Rn . �  

(II) Consider any two mutually perpendicular 
diameters x and y of the flywheel. If the 
flywheel rotates about these diameters, these 
three axes (own axis and two diameters) will 
be mutually perpendicular and concurrent. 
Thus, perpendicular axes theorem is 
applicable. Let I

d
 be the moment of inertia 

of the flywheel, when rotating about its 
diameter. � � �I I Id x y

Thus, according to the theorem of 
perpendicular axes,
 I MR I I Iz x y d� � � �

1

2
22

� �I MRd

1

4
2

As the diameter passes through the centre 
of mass of the (uniform) disc, I Id = C

Consider a tangent in the plane of the disc 
and parallel to this diameter. It is at the 
distance h R=  from the diameter. Thus, 
parallel axes theorem is applicable about 
these two axes.
∴ I

T,
 
parallel

 = I
o
 = I

c
 + Mh2 = I

d
 + MR2 

= 
1

4
 MR2 + MR2 = 

5

4
 MR2

∴ I
T,
 
parallel

 = 
5

4
 MR2 = 

5

4
 20 × 0.252 

                              = 1.5625 kg m2

1.8 Angular Momentum or Moment of 
Linear Momentum: 

The quantity in rotational mechanics, 
analogous to linear momentum is angular 
momentum  or moment of linear momentum. It 
is similar to the torque being moment of a force. 
If 


p  is the instantaneous linear momentum of 
a particle undertaking a circular motion, its 
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angular momentum at that instance is given by 


 

L r p� � , were 


r  is the position vector from 
the axis of rotation. 

In magnitude, it is the product of linear 
momentum and its perpendicular distance from 
the axis of rotation. ∴L = P × r sinθ , where θ  
is the smaller angle between the directions of 
P
��

 and r


. 
1.8.1 Expression for Angular Momentum in 
Terms of Moment of Inertia: 

Figure 1.12 in the section 1.5 shows a 
rigid object rotating with a constant angular 
speed ω  about an axis perpendicular to the 
plane of paper. For theoretical simplification 
let us consider the object to be consisting of 
N number of particles of masses m

1
, m

2
, ….. 

m
N
 at respective perpendicular distances r

1
, r

2
, 

…..r
N
 from the axis of rotation. As the object 

rotates, all these particles perform UCM with 
same angular speed ω , but with different linear 
speeds v

1
 = r

1
 ω , v

2
 = r

2
 ω , ..... v

N
 = r

N 
ω .

Directions of individual velocities v


1 ,  
v


2 , etc., are along the tangents to their 
respective tracks. Linear momentum of the 
first particle is of magnitude p

1
 = m

1
v

1
 = m

1
r

1 
ω .  

Its direction is along that of v


1 . 
Its angular momentum is thus of 

magnitude L p r1 1 1=  � m r1 1
2�  

Similarly, L m r2 2 2
2� � , L m r3 3 3

2� � , ……. 
L m rN N N� 2�

For a rigid body with a fixed axis of 
rotation, all these angular momenta are directed 
along the axis of rotation, and this direction 
can be obtained by using right hand thumb 
rule. As all of them have the same direction, 
their magnitudes can be algebraically added. 
Thus, magnitude of angular momentum of the 
body is given by 

L m r m r m r

m r m r m r I

N N

N N

� � ���

� � ���� � �
1 1

2
2 2

2 2

1 1
2

2 2
2 2

� � �

� �   

Where, I m r m r m rN N� � ���1 1
2

2 2
2 2  is the 

moment of inertia of the body about the given 

axis of rotation. The expression for angular 
momentum L = Iω  is analogous to the 
expression p = mv  of linear momentum, if the 
moment of inertia I  replaces mass, which is 
its physical significance.
1.9 Expression for Torque in Terms of 
Moment of Inertia:

Fig 1.17: Expression for torque.

Figure 1.17 shows a rigid object rotating 
with a constant angular acceleration α 
about an axis perpendicular to the plane 
of paper. For theoretical simplification let 
us consider the object to be consisting of N 
number of particles of masses m

1
, m

2
, ….. m

N
 

at respective perpendicular distances r
1
, r

2
, 

…..r
N
 from the axis of rotation. As the object 

rotates, all these particles perform circular 
motion with same angular acceleration α, but 
with different linear (tangential) accelerations 
a r a r a r1 1 2 2� � �� �� � �,� ,� , ,  N N  etc.
Force experienced by the first particle is 
f m a m r1 1 1 1 1� � �

As these forces are tangential, their 
respective perpendicular distances from the 
axis are r

1
, r

2
, …..r

N
.

Thus, the torque experienced by the first 
particle is of magnitude � �1 1 1 1 1

2� �f r m r

Similarly, � �2 2 2
2� m r , � �3 3 3

2� m r  …….. 
� �N N Nm r� 2

If the rotation is restricted to a single 
plane, directions of all these torques are the 
same, and along the axis. Magnitude of the 
resultant torque is then given by

� � � �

� �

� � ���

� � ��� � �
1 2

1 1
2

2 2
2 2

N

N Nm r m r m r I    
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where, I m r m r m r� � ��1 1
2

2 2
2 2

N N  is the 
moment of inertia of the object about the given 
axis of rotation.

The relation � �� I  is analogous to 
f ma=  for the translational motion if the 

moment of inertia I  replaces mass, which is 
its  physical significance.
1.10 Conservation of Angular Momentum:

In the article 4.7 of XIth Std. we have 
seen the conservation of linear momentum 
which says that linear momentum of an 
isolated system is conserved in the absence 
of an external unbalanced force. As seen 
earlier, torque and angular momentum are 
the respective analogous quantities to force 
and linear momentum in rotational dynamics. 
With suitable changes this can be transformed 
into the conservation of angular momentum. 

As seen in the section 1.8, angular 
momentum or the moment of linear momentum 
of a system is given by 



 

L r p� �            
where r  is the position vector from the axis of 
rotation and 



p  is the linear momentum.
Differentiating with respect to time, we get, 

d

d

d

d

d

d

d

d



  

 

L

t t
r p r

p

t

r

t
p� �� � � � � �  

Now, d

d
v



r

t
= �  and d

d

p

t
F

�� ��
=  . 

� �
d

d



L

t  





 

r F m� � �� �v v

Now v v
 

�� � � 0

� � �
d

d





L

t
r F

 
But 





r F×  is the moment of force or torque 
τ .

� �




�
d

d

L

t  
Thus, if 







� � � �0 0,�� � � .�
d

d

L

t
Lor constant

Hence, angular momentum  L
��

is conserved in 
the absence of external unbalanced torque 

τ .
This is the principle of conservation of angular 
momentum, analogous to the conservation of 
linear momentum.

Examples of conservation of angular 
momentum: During some shows of ballet 
dance, acrobat in a circus, sports like ice 
skating, diving in a swimming pool, etc., the 
principle of conservation of angular momentum 
is realized. In all these applications the product 
L I I n� � � �� �2  is constant (once the players 
acquire a certain speed). Thus, if the moment 
of inertia I is increased, the angular speed and 
hence the frequency of revolution n  decreases. 
Also, if the moment of inertia is decreased, the 
frequency increases.
(i) Ballet dancers: During ice ballet, the 
dancers have to undertake rounds of smaller 
and larger radii. The dancers come together 
while taking the rounds of smaller radius (near 
the centre). In this case, the moment of inertia 
of their system becomes minimum and the 
frequency increases, to make it thrilling. While 
outer rounds, the dancers outstretch their legs 
and arms. This increases their moment of 
inertia that reduces the angular speed and 
hence the linear speed. This is essential to 
prevent slipping.
(ii) Diving in a swimming pool (during 
competition): While on the diving board, the 
divers stretch their body so as to increase the 
moment of inertia. Immediately after leaving 
the board, they fold their body. This reduces 
the moment inertia considerably. As a result, 
the frequency increases and they can complete 
more rounds in air to make the show attractive. 
Again, while entering into water they stretch 
their body into a streamline shape. This allows 
them a smooth entry into the water.

Example 1.8: A spherical water balloon is 
rotating at 60 rpm. In the course of time, 
48.8 % of its water leaks out. With what 
frequency will the remaining balloon rotate 
now? Neglect all non-conservative forces.

Solution: 
m

m

V

V

R

R
1

2

1

2

1

2

3

� �
�

�
�

�

�
�  � �

�

�
�

�

�
�

R

R

m

m
1

2

1

2

1

3
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1.11 Rolling Motion:
The objects like a cylinder, sphere, 

wheels, etc. are quite often seen to perform 
rolling motion. In the case of pure rolling, 
two motions are undertaking simultaneously; 
circular motion and linear motion. Individual 
motion of the particles (except the one at the 
centre of mass) is too difficult to describe. 
However, for theory considerations we can 
consider the actual motion to be the result of 
(i) rotational motion of the body as a whole, 
about its own symmetric axis and
(ii) linear motion of the body assuming it to 
be concentrated at its centre of mass. In other 
words, the centre of mass performs purely 
translational motion.

Accordingly, the object possesses two 
types of kinetic energies, rotational and 
translational. Sum of these two is its total 
kinetic energy.

Consider an object of moment of inertia 
I, rolling uniformly. Following quantities can 
be related.
v = Linear speed of the centre of mass 
R =  Radius of the body
� �  Angular speed of rotation of the body 

� ��
v

R
 for any particle

M =  Mass of the body
K =  Radius of gyration of the body � �I MK 2

Total kinetic energy of rolling = Translational 
K.E. + Rotational K.E.

 

� � �

� � � ��
�
�

�
�
�

�

E M I

M MK
R

M

1

2

1

2

1

2

1

2

1

2
1

2 2

2 2
2

2

v

v
v

v

       

       

�

��
�

�
�

�

�
�

K

R

2

2
 --- (1.18)

It must be remembered that static friction 
is essential for a purely rolling motion. In this 
case, it prevents the sliding motion. You might 
have noticed that many a times while rolling 
down, the motion is initially a purely rolling 
motion that later on turns out to be a sliding 
motion. Similarly, if you push a sphere-like 
object along a horizontal surface, initially it 
slips for some distance and then starts rolling.
1.11.1 Linear Acceleration and Speed While 
Pure Rolling Down an Inclined Plane:

Figure 1.18 shows a rigid object of mass 
M and radius R, rolling down an inclined plane, 
without slipping. Inclination of the plane with 
the horizontal is θ .  

Fig. 1.18: Rolling along an incline.

Also,
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According to principle of conservation of 
angular momentum, I I1 1 2 2� ��
 

   

� � � �
�

�
�

�

�
� �

�

�
�

�

�
�

�
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I

I
n

m

m

n

1 1 2 2 2
1

2
1

1

2

5

3

1
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1

� �

          .225 1 3 052
5� � � � . �rps

Example 1.9: A ceiling fan having moment 
of inertia 2 kg-m2 attains its maximum 
frequency of 60 rpm in ‘2π’ seconds. 
Calculate its power rating.
Solution: 
� � � � �0 0 2 2 2 4� � � � �, � � / n rad s

�
� � �

�
�

�
�

�
�0 4 0

2
2

t
 rad/s2

� � � � � � � �
� �

P I� � � � �
�

2 2 4

16 50       �watt �watt
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 As the objects starts rolling down, its 
gravitational P.E. is converted into K.E. of 
rolling. Starting from rest, let v be the speed of 
the centre of mass as the object comes down 
through a vertical distance h. 
From Eq. (1.18), 

 
E M I M

K

R
� � � �

�

�
�

�

�
�

1

2

1

2

1

2
12 2 2

2

2
v v�

 

� � � �
�

�
�

�

�
�

� �
�

�

�
�

�

�
�

E Mgh M
K

R

gh

K
R

1

2
1

2

1

2
2

2

2

2

v

v

�

   --- (1.19)

Linear distance travelled along the plane 

is s
h

�
sin�

During this distance, the linear velocity 
has increased from zero to v. If a  is the linear 
acceleration along the plane, 

      

2 2
2

1

02 2

2

2

as u a
h gh

K
R

� � � �
�
�

�
�
� �

�
�

�
�

�

�
�

�v �
sin

�
�

 

 
� �

�
�

�
�

�

�
�

a
g

K
R

sin�

1
2

2
   --- (1.20)

For pure sliding, without friction, the 
acceleration is g sinθ  and final velocity is 

2gh . Thus, during pure rolling, the factor 

1
2

2
�

�

�
�

�

�
�

K

R
 is effective for both the expressions.

Remarks : 
I) For a rolling object, if the expression for 
moment of inertia is of the form n (MR2), the 

numerical factor n gives the value of 
K

R

2

2
 for 

that object. 

For example, for a uniform solid sphere, 

I MR MK
K

R
� � � �

2

5

2

5
2 2

2

2
�  

Similarly,
K

R

2

2
1= , for�a�ring�or�a�hollow�cylinder  

 
K 2

R2
 =

1

2
�for�a uniform disc or a solid cylinder

    
 

K 2

R2
 =

2

3
�for a thin walled hollow sphere

(II) When a rod rolls, it is actually a cylinder 
that is rolling.
(III) While rolling, the ratio ‘Translational 

K.E.: Rotational K.E.: Total K.E.’ is 

1: K

R

K

R

2

2

2

2
1: �
�

�
�

�

�
�

For example, for a hollow sphere, 
K

R

2

2

2

3
=  

Thus, for a rolling hollow sphere,

Translational K.E.: Rotational K.E.: Total 

K.E. =  1:
2

3
 : 1

2

3
3 2 5��

�
�

�
�
� � : :

Percentage wise, 60% of its kinetic energy 
is translational and 40% is rotational.

Table 1.1 : Analogous kinematical equations  
(ω

0
 is the initial angular velocity)

Equation for
translational

motion

Analogous equation 
for rotational 

motion

v
v

av �
�u

2
�

� �
av �

�0

2

a
t

u

t
u at

� �
�

� � �

dv

d

v

v

� �
� � �

� � �

� �
�

� � �

d

dt t
t

0

0

s t

u
t

ut at

� �

�
��

�
�

�
�
�

� �

v

v
av

2

1

2
2

� �

� �

� �

� �

�
��

�
�

�
�
�

� �

av

    

   

t

t

t t

0

0
2

2

1

2

v2 2 2� �u as � � ��2
0
2 2� �

Internet my friend

http://hyperphysics.phy-astr.gsu.edu/hbase/
mi.html
https://issacphysics.org
https://www.engineeringtoolbox.com
https://opentextbc.ca/physicstextbook
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Table 2: Analogous quantities between translational motion and rotational motion:

Translational motion Rotational motion

Quantity
Symbol/ 

expression
Quantity

Symbol/
expression

Inter-relation,
if possible

Linear 
displacement  s

 Angular 
displacement  θ



 






s r� ��

Linear velocity
 

v




=
ds

dt
Angular velocity

 
�

��� �
�

d

dt
 

 


v � �� r

Linear 
acceleration  

a
d

dt





=
v Angular 

acceleration  
�

��� ��
�

d

dt
 


� � �a r

Inertia or mass  m
Rotational inertia 

or moment of 
inertia

 I
 
I r dm m ri i� �� �2 2

Linear 
momentum  p m

�� �
= v

Angular 
momentum  L I

�� ��
� �  



 

L r p� �

Force
 

f
d p

dt

�� ��
= Torque

 
�
� ��
�

d L

dt  
 



� � �r f  

Work  W f s� �


 Work  W � �




� � ------

Power
 
P

dW

dt
f� � �




v Power
 
P

dW

dt
� � �

 � � ------

Table 3: Expressions for moment of inertias for some symmetric objects:

Object Axis Expression of 
moment of inertia Figure

Thin ring or
hollow cylinder Central I MR= 2

Thin ring Diameter I MR=
1

2
2

Annular ring or
thick walled 

hollow cylinder
Central I M r r� �� �1

2 2
2

1
2
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Uniform disc or 
solid cylinder Central I MR=

1

2
2

Uniform disc Diameter I MR=
1

4
2

Thin walled
hollow sphere Central I MR=

2

3
2

Solid sphere Central I MR=
2

5
2

Uniform symmetric 
spherical shell Central I M

r r

r r
�

�� �
�� �

2

5
2
5

1
5

2
3

1
3

Thin uniform rod or 
rectangular plate

Perpendicular to 
length and passing 

through centre
I ML=

1

12
2

Thin uniform rod or 
rectangular plate

Perpendicular to 
length and about 

one end
I MR=

1

3
2

Uniform plate 
or rectangular 
parallelepiped

Central I M� �
1

12
2 2( )L b
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Use g = 10 m/s2, unless, otherwise stated.
1. Choose the correct option.
 i)  When seen from below, the blades of 

a ceiling fan are seen to be revolving 
anticlockwise and their speed is 
decreasing. Select correct statement 
about the directions of its angular 
velocity and angular acceleration.

  (A) Angular velocity upwards, angular 
acceleration downwards.

  (B) Angular velocity downwards, 
angular acceleration upwards.

  (C) Both, angular velocity and angular 
acceleration, upwards.

  (D)  Both, angular velocity and 
angular acceleration, downwards.

 ii)  A particle of mass 1 kg, tied to a 1.2 m 
long string is whirled to perform vertical 
circular motion, under gravity. Minimum 
speed of a particle is 5 m/s. Consider 
following statements.

 P)  Maximum speed must be 5 5  m/s.
 Q) Difference between maximum and 

minimum tensions along the string is 60 N. 
  Select correct option.
  (A) Only the statement P is correct.
  (B) Only the statement Q is correct.
  (C) Both the statements are correct.
  (D) Both the statements are incorrect.
 iii)  Select correct statement about the 

formula (expression) of moment of 
inertia (M.I.) in terms of mass M of 
the object and some of its distance 
parameter/s, such as R, L, etc.

  (A) Different objects must have different 
                expressions for their M.I.
  (B) When rotating about their central 
                   axis, a hollow right circular cone and 
               a disc have the same expression for  

      the M.I.
  (C) Expression for the M.I. for a      
                parallelepiped rotating about the 
                transverse axis passing through its 
                centre includes its depth.
  (D) Expression for M.I. of a rod and 
                that of a plane sheet is the same 
                about a transverse axis.
 iv)  In a certain unit, the radius of gyration 

of a uniform disc about its central and 
transverse axis is 2 5. . Its radius of 
gyration about a tangent in its plane (in 
the same unit) must be 

  (A) 5   (B) 2.5   
(C) 2 2 5.   (D) 12 5.

 v)   Consider following cases:
 (P)  A planet revolving in an elliptical orbit.
 (Q)  A planet revolving in a circular orbit. 

Principle of conservation of angular 
momentum comes in force in which of 
these?

Uniform solid 
right circular cone Central I MR=

3

10
2

Uniform hollow 
right circular cone Central I MR=

1

2
2

Exercises
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 (A) Only for (P)
 (B) Only for (Q)
 (C) For both, (P) and (Q)
     (D) Neither for (P), nor for (Q)
 X)  A thin walled hollow cylinder is rolling 

down an incline, without slipping. At 
any instant, the ratio ”Rotational K.E.: 
Translational K.E.: Total K.E.” is

  (A) 1:1:2 (B) 1:2:3  
(C) 1:1:1 (D) 2:1:3

2. Answer in brief.
 i)  Why are curved roads banked? 
 ii)  Do we need a banked road for a two-

wheeler? Explain.
 iii)  On what factors does the frequency 

of a conical pendulum depend? Is it 
independent of some factors?

 iv)  Why is it useful to define radius of 
gyration?

 v)  A uniform disc and a hollow right 
circular cone have the same formula 
for their M.I., when rotating about their 
central axes. Why is it so? 

 3.  While driving along an unbanked 
circular road, a two-wheeler rider has 
to lean with the vertical. Why is it so? 
With what angle the rider has to lean? 
Derive the relevant expression. Why 
such a leaning is not necessary for a four 
wheeler? 

 4.  Using the energy conservation, derive 
the expressions for the minimum speeds 
at different locations along a vertical 
circular motion controlled by gravity. 
Is zero speed possible at the uppermost 
point? Under what condition/s? Also 
prove that the difference between the 
extreme tensions (or normal forces) 
depends only upon the weight of the 
object.

 5.  Discuss the necessity of radius of 
gyration. Define it. On what factors does 
it depend and it does not depend? Can 
you locate some similarity between the 
centre of mass and radius of gyration? 

What can you infer if a uniform ring and 
a uniform disc have the same radius of 
gyration?

 6.  State the conditions under which 
the theorems of parallel axes and 
perpendicular axes are applicable. State 
the respective mathematical expressions.

 7.  Derive an expression that relates angular 
momentum with the angular velocity of 
a rigid body.

 8.  Obtain an expression relating the torque 
with angular acceleration for a rigid 
body.

 9.  State and explain the principle of 
conservation of angular momentum. Use 
a suitable illustration. Do we use it in our 
daily life? When?

 10. Discuss the interlink between 
translational, rotational and total kinetic 
energies of a rigid object that rolls 
without slipping.

 11.  A rigid object is rolling down an 
inclined plane. Derive expressions for 
the acceleration along the track and 
the speed after falling through a certain 
vertical distance.

 12.  Somehow, an ant is stuck to the rim of a 
bicycle wheel of diameter 1 m. While the 
bicycle is on a central stand, the wheel 
is set into rotation and it attains the 
frequency of 2 rev/s in 10 seconds, with 
uniform angular acceleration. Calculate 
(i) Number of revolutions completed by 
the ant in these 10 seconds. (ii) Time 
taken by it for first complete revolution 
and the last complete revolution. 

        [Ans:10 rev., t tfirst lasts � s= =10 0 5132� , . � ]

 13.  Coefficient of static friction between 
a coin and a gramophone disc is 0.5. 
Radius of the disc is 8 cm. Initially the 
centre of the coin is 2 cm away from 
the centre of the disc. At what minimum 
frequency will it start slipping from 
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there? By what factor will the answer 
change if the coin is almost at the rim? 
(use g = π2 m/s2)

             [Ans: 2.5 rev/s, n n2 1

1

2
= ]

 14.  Part of a racing track is to be designed 
for a radius of curvature of 72 m. We are 
not recommending the vehicles to drive 
faster than 216 kmph. With what angle 
should the road be tilted? At what height 
will its outer edge be, with respect to the 
inner edge if the track is 10 m wide?

        [Ans: � � � ��tan ( ) . ,� . �1 5 78 69 9 8o mh ]
 15.  The road in the example 14 above is 

constructed as per the requirements. The 
coefficient of static friction between the 
tyres of a vehicle on this road is 0.8, will 
there be any lower speed limit? By how 
much can the upper speed limit exceed in 
this case?

  [Ans: vmin kmph≅ 88� , no upper limit as 
the road is banked for � � 45o ]

 16.  During a stunt, a cyclist (considered to 
be a particle) is undertaking horizontal 
circles inside a cylindrical well of 
radius 6.05 m. If the necessary friction 
coefficient is 0.5, how much minimum 
speed should the stunt artist maintain? 
Mass of the artist is 50 kg. If she/he 
increases the speed by 20%, how much 
will the force of friction be?

     [Ans: vmin = 11  m/s, f mgs = = 500�N ]
 17.  A pendulum consisting of a massless 

string of length 20 cm and a tiny bob 
of mass 100 g is set up as a conical 
pendulum. Its bob now performs 75 rpm. 
Calculate kinetic energy and increase in 
the gravitational potential energy of the 
bob. (Use � 2 10� ) 

  [Ans: cos � �  0.8, K.E. =  0.45 J, 
� P E. .� � � 0 04  J]

 18.  A motorcyclist (as a particle) is 
undergoing vertical circles inside 
a sphere of death. The speed of the 

motorcycle varies between 6 m/s and 10 
m/s. Calculate diameter of the sphere of 
death. What are the minimum values are 
possible for these two speeds?

          [Ans: Diameter = 3.2 m, 
            (v

1
)

min
 = 4 m/s, (v

2
)

min 
= 4 5 � /m s ]

 19.  A metallic ring of mass 1 kg has moment 
of inertia 1 kg m2 when rotating about 
one of its diameters. It is molten and 
remoulded into a thin uniform disc of the 
same radius. How much will its moment 
of inertia be, when rotated about its own 
axis.

         [Ans: 1 kg m2]
 20.  A big dumb-bell is prepared by using 

a uniform rod of mass 60 g and length 
20 cm. Two identical solid thermocol 
spheres of mass 25 g and radius 10 cm 
each are at the two ends of the rod. 
Calculate moment of inertia of the dumb-
bell when rotated about an axis passing 
through its centre and perpendicular to 
the length.

            [Ans: 24000 g cm-2]
 21.  A flywheel used to prepare earthenware 

pots is set into rotation at 100 rpm. It is 
in the form of a disc of mass 10 kg and 
radius 0.4 m. A lump of clay (to be taken 
equivalent to a particle) of mass 1.6 kg 
falls on it and adheres to it at a certain 
distance x from the centre. Calculate x if 
the wheel now rotates at 80 rpm.

           [Ans: x = =
1

8
0 35� .m �m ]

 22.  Starting from rest, an object rolls down 
along an incline that rises by 3 units 
in every 5 units (along it). The object 
gains a speed of 10 m/s as it travels a 

distance of 
5

3
 m along the incline. What 

can be the possible shape/s of the object? 

      [Ans:  
K

R

2

2
1= .  Thus, a ring or 

                                             a hollow cylinder]  


