

6 FUNCTIONS

Let's Study

- Function, Domain, Co-domain, Range
- Types of functions
- Representation of function
- Basic types of functions
- Piece-wise defined and special functions

6.1 Function

Definition : A function (or mapping) f from a set A to set B ($f: A \rightarrow B$) is a relation which associates for each element x in A, a unique (exactly one) element y in B.

Then the element *y* is expressed as y = f(x).

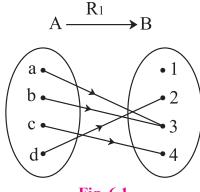
y is the image of x under f.

f is also called a map or transformation.

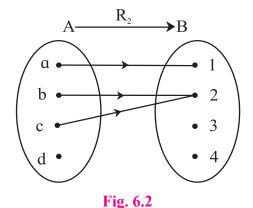
If such a function exists, then A is called the **domain** of f and B is called the **co-domain** of f.

Illustration:

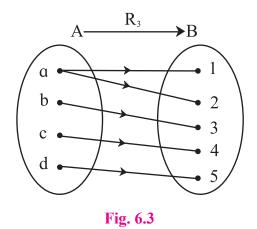
Examine the following relations which are given by arrows of line segments joining elements in A and elements in B.



Since, every element from A is associated to exactly one element in B, R_1 is a well defined function.



 R_2 is not a function because element 'd' in A is not associated to any element in B.



 R_3 is not a function because element *a* in A is associated to two elements in B.

The relation which defines a function f from domain A to co-domain B is often given by an algebraic rule.

For example, A = Z, the set of integers and B = Q the set of rational numbers and the function *f* is given by $f(n) = \frac{n}{7}$ here $n \in Z$, $f(n) \in Q$.

6.1.1 Types of function

One-one or **One to one** or **Injective function**

Definition : A function $f : A \rightarrow B$ is said to be one-one if different elements in A have different images in B. The condition is also expressed as

$$f(a) = f(b) \Rightarrow a = b$$
 [As $a \neq b \Rightarrow f(a) \neq f(b)$]

Onto or Surjective function

Definition: A function $f: A \rightarrow B$ is said to be onto if every element y in B is an image of some x in A (or y in B has preimage x in A)

The image of A can be denoted by f(A).

 $f(A) = \{ y \in B \mid y = f(x) \text{ for some } x \in A \}$

f(A) is also called the **range** of f.

Note that $f: A \to B$ is onto if f(A) = f.

Also range of $f = f(A) \subset$ co-domain of f.

Illustration:

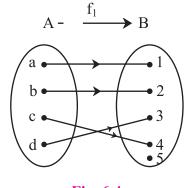


Fig. 6.4

 f_1 is one-one, but not onto as element 5 is in B has no pre image in A

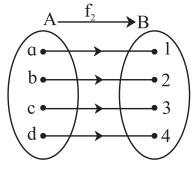


Fig. 6.5

 f_2 is one-one, and onto

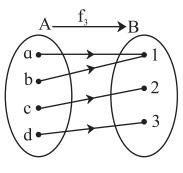
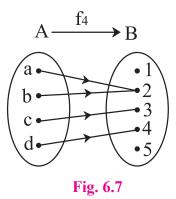


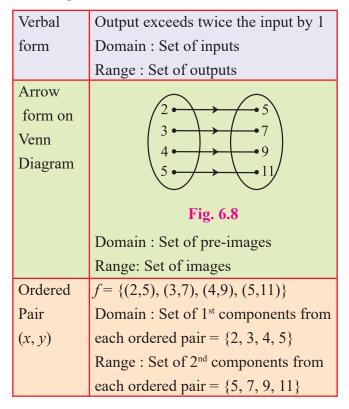
Fig. 6.6

 f_3 is onto but not one-one as f(a) = f(b) = 1but $a \neq b$.



 f_{A} is neither one-one, nor onto

6.1.2 Representation of Function



Rule /	y = f(x) = 2x + 1			
Formula	Where $x \in N$, $1 < x < 6$			
	f(x) read as 'f of x' or 'function of x'			
	Domain : Set of values of x for			
	which $f(x)$ is defined			
	Range : Set of values of y for which			
	f(x) is defined			
Tabular	x y			
Form	2 5			
	3 7			
	4 9			
	5 11			
	Domain : x values			
	Range: <i>y</i> values			
Graphical	1			
form	11 • (5, 11)			
	10-			
	9 • (4, 9)			
	8-			
	7 • (3, 7)			
	6+			
	5 • (2, 5)			
	4			
	3+			
	2			
	1+			
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
	Fig. 6.9			
	Domain: Projection of graph on			
	<i>x</i> -axis. Range: Projection of graph on <i>y</i> -axis.			

6.1.3 Graph of a function:

If the domain of function is in R, we can show the function by a graph in xy plane. The graph consists of points (*x*,*y*), where y = f(x).

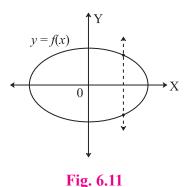
Vertical Line Test

Given a graph, let us find if the graph represents a function of x i.e. f(x)

A graph represents function of x, only if no vertical line intersects the curve in more than one point.

Fig. 6.10

Since every *x* has a unique associated value of *y*. It is a function.

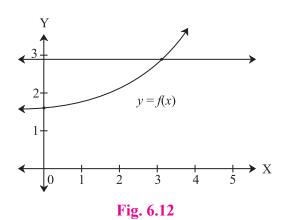


This graph does not represent a function as vertical line intersects at more than one point some x has more than one values of y.

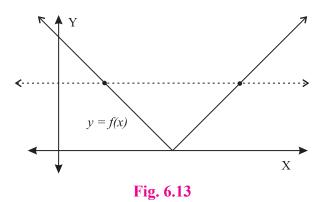
Horizontal Line Test:

If no horizontal line intersects the graph of a function in more than one point, then the function is one-one function.

Illustration:



The graph is a one-one function as a horizontal line intersects the graph at only one point.



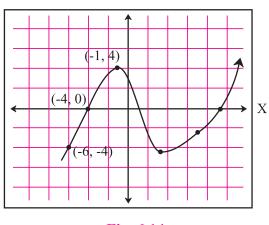
The graph is a one-one function

6.1.4 Value of funcation : f(a) is called the value of funcation f(x) at x = a

Evaluation of function:

Ex. 1) Evaluate
$$f(x) = 2x^2 - 3x + 4$$
 at
 $x = 7 \& x = -2t$
Solution : $f(x)$ at $x = 7$ is $f(7)$
 $f(7) = 2(7)^2 - 3(7) + 4$
 $= 2(49) - 21 + 4$
 $= 98 - 21 + 4$
 $= 81$
 $f(-2t) = 2(-2t)^2 - 3(-2t) + 4$
 $= 2(4t^2) + 6t + 4$
 $= 8t^2 + 6t + 4$

Ex. 2) Using the graph of y = g(x), find g(-4) and g(3)



Solution : From graph when x = -4, y = 0so g(-4) = 0From graph when x = 3, y = -5 so g(3) = -5

Function Solution:

Ex. 3) If $t(m) = 3m^2 - m$ and t(m) = 4, then find m Solution : As

t (m) = 4 $3m^{2} - m = 4$ $3m^{2} - m - 4 = 0$ $3m^{2} - 4m + 3m - 4 = 0$ m (3m - 4) + 1 (3m - 4) = 0 (3m - 4) (m + 1) = 0Therefore, $m = \frac{4}{3}$ or m = -1

Ex. 4) From the graph below find x for which f(x) = 4

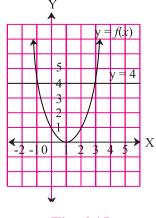
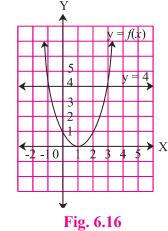


Fig. 6.15

Solution : To solve f(x) = 4 i.e. y = 4

Find the values of x where graph intersects line y = 4



Therefore, x = -1 and x = 3.

Function from equation:

Ex. 5) (Activity) From the equation 4x + 7y = 1 express

- i) y as a function of x
- ii) x as a function of y

Solution : Given equation is 4x + 7y = 1

i) From the given equation

 $7y = \square$ $y = \square =$ function of x So $y = f(x) = \square$

ii) From the given equation $4x = \square$ $x = \square =$ function of y So $x = g(y) = \square$

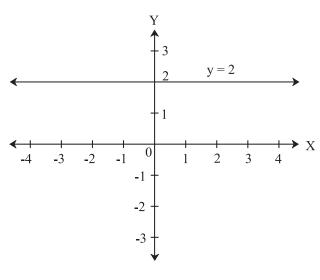
6.1.5 Some Basic Functions

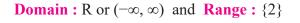
(Here $f: \mathbb{R} \to \mathbb{R}$ Unless stated otherwise)

1) Constant Function

Form : $f(x) = k, k \in R$

Example : Graph of f(x) = 2

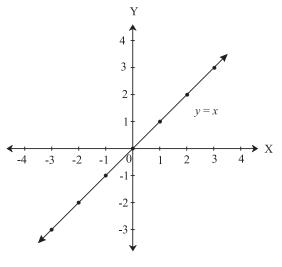




2) Identity function

If $f : \mathbb{R} \to \mathbb{R}$ then identity function is defined by f(x) = x, for every $x \in \mathbb{R}$.

Identity function is given in the graph below.

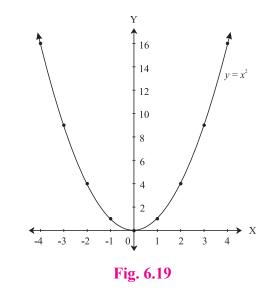


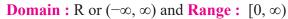
Domain : R or $(-\infty, \infty)$ and **Range :** R or $(-\infty, \infty)$ [Note : Identity function is also given by I (x) = x].

3) Power Functions : $f(x) = ax^n$, $n \in N$

(Note that this function is a multiple of n^{th} power of x)

i) Square Function Example : $f(x) = x^2$



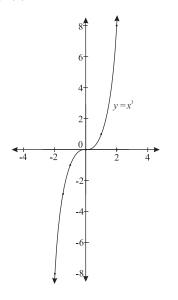


Properties:

- 1) Graph of $f(x) = x^2$ is a parabola opening upwards and with vertex at origin.
- 2) Graph is symmetric about y axis .
- 3) The graph of even powers of x looks similar to square function. (verify !) e.g. x^4 , x^6 .
- 4) $(y k) = (x h)^2$ represents parabola with vertex at (h, k)
- 5) If $-2 \le x \le 2$ then $0 \le x^2 \le 4$ (see fig.) and if $-3 \le x \le 2$ then $0 \le x^2 \le 9$ (see fig).

ii) Cube Function

Example : $f(x) = x^3$



Domain : R or $(-\infty, \infty)$ and **Range :** R or $(-\infty, \infty)$

Properties:

1) The graph of odd powers of x (more than 1) looks similar to cube function. e.g. x^5 , x^7 .

4) **Polynomial Function**

 $f(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n$

is polynomial function of degree n, if $a_0 \neq 0$, and a_i s are real.

i) Linear Function

Form : $f(x) = ax + b \ (a \neq 0)$

Example : $f(x) = -2x + 3, x \in R$

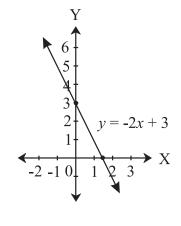


Fig. 6.21

Domain : R or $(-\infty, \infty)$ and **Range :** R or $(-\infty, \infty)$

Properties :

1) Graph of f(x) = ax + b is a line with slope

a', *y*-intercept '*b*' and *x*-intercept
$$\left(-\frac{b}{a}\right)$$

2) Function : is increasing when slope is positive and deceasing when slope is negative.

ii) Quadratic Function

Form : $f(x) = ax^2 + bx + c \ (a \neq 0)$

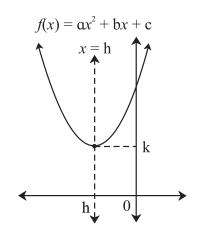
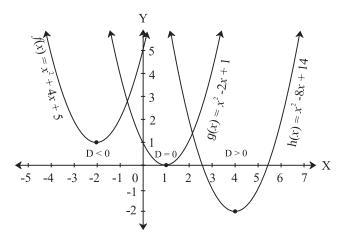


Fig. 6.22

Domain : R or $(-\infty, \infty)$ and **Range :** $[k, \infty)$ **Properties :**

1) Graph of $f(x) = ax^2 + bx + c$ and where a > 0 is a parabola.



Consider, $y = ax^2 + bx + c$

$$= a\left(x^{2} + \frac{b}{a}x + \frac{b^{2}}{4a^{2}}\right) + c - \frac{b^{2}}{4a}$$
$$= a\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2} - 4ac}{4a}$$
$$\left(y + \frac{b^{2} - 4ac}{4a}\right) = a\left(x + \frac{b}{2a}\right)^{2}$$

With change of variable

$$\mathbf{X} = x + \frac{b}{2a}, \mathbf{Y} = y + \frac{b^2 - 4ac}{4a}$$

this is a parabola $Y = aX^2$

This is a parabola with vertex

$$\left(-\frac{b}{2a}, \frac{b^2-4ac}{4a}\right)$$
 or $\left(\frac{-b}{2a}, \frac{-D}{4a}\right)$ where

 $D = b^2 - 4ac$ and the parabola is opening upwards. There are three possibilities.

For a > 0,

- i) If $D = b^2 4ac = 0$, the parabola touches x-axis and $y \ge 0$ for all x. e.g. $g(x) = x^2 - 2x + 1$
- ii) If $D = b^2 4ac > 0$, then parabola intersects x-axis at 2 distinct points. Here y is negative for values of x between the 2 roots and positive for large or small x.

iii) If $D = b^2 - 4ac < 0$, the parabola lies above x-axis and $y \ne 0$ for any x. Here y is positive for all values of x. e.g. $f(x) = x^2 + 4x + 5$

iii) Cubic Function

Example : $f(x) = ax^3 + bx^2 + cx + d \ (a \neq 0)$ **Domain :** R or $(-\infty, \infty)$ and **Range :** R or $(-\infty, \infty)$

> Y 3 2 1 $f(x) = x^3 - 1$ -3 -2 -1 0 1 2 3 X

Property:

1) Graph of $f(x) = x^3 - 1$

 $f(x) = (x - 1) (x^2 + x + 1)$ cuts x-axis at only one point (1,0), which means f(x) has one real root & two complex roots.

Note that, any polynomial of odd degree must have at least one real root, because the complex roots appear in conjugate pairs.

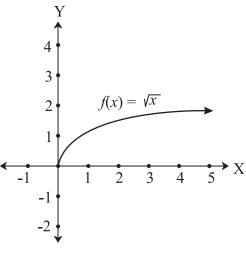
5) Radical Function

Ex: $f(x) = \sqrt[n]{x}, n \in \mathbb{N}$

1. Square root function

$$f(x) = \sqrt{x}, x \ge 0$$

(Since square root of negative number is not a real number, so the domain of \sqrt{x} is restricted to positive values of *x*).



Domain : $[0, \infty)$ and **Range :** $[0, \infty)$

Note :

- 1) If x is positive, there are two square roots of x. By convention \sqrt{x} is positive root and $-\sqrt{x}$ is the negattive root.
- 2) If -4 < x < 9, as \sqrt{x} is only deifned for $x \ge 0$, so $0 \le \sqrt{x} < 3$.
- **Ex. 6 :** Find the domain and range of $f(x) = \sqrt{9 x^2}$.
- Soln. : $f(x) = \sqrt{9 x^2}$ is defined for $9 - x^2 \ge 0$, i.e. $x^2 - 9 \le 0$ i.e. (x - 3)(x + 3) ≤ 0

Therefore [-3, 3] is domain of f(x). (Verify !)

To find range, let $\sqrt{9-x^2} = y$

Since square root is always positive, so $y \ge 0$...(I)

Also, on squaring we get $9 - x^2 = y^2$

Since, $3 \le x \le 3$

i.e. $0 \le x^2 \le 9$

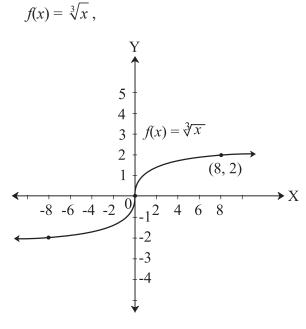
i.e. $0 \ge -x^2 \ge -9$

i.e. $9 \ge 9 - x^2 \ge 9 - 9$

i.e. $9 \ge 9 - x^2 \ge 0$ i.e. $3 \ge \sqrt{9 - x^2} \ge 0$ $\therefore 3 \ge y \ge 0$...(II)

From (I) and (II), $y \in [0,3]$ is range of f(x).

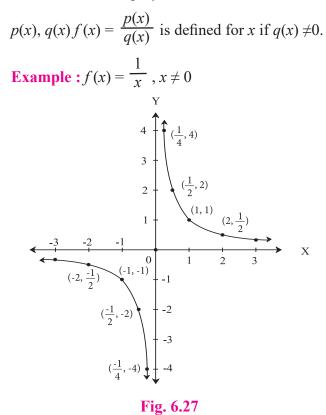
2. Cube root function

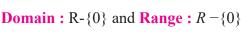


Domain : R and **Range :** R **Note :** If $-8 \le x \le 1$ then $-2 \le \sqrt[3]{x} \le 1$. **Ex. 7 :** Find the domain $f(x) = \sqrt{x^3 - 8}$. **Soln. :** f(x) is defined for $x^3 - 8 \ge 0$ i.e. $x^3 - 2^3 \ge 0$, $(x - 2)(x^2 + 2x + 4) \ge 0$ In $x^2 + 2x + 4$, a = 1 > 0 and $D = b^2 - 4ac$ $= 2^2 - 4 \times 1 \times 4 = -12 < 0$ Therefore, $x^2 + 2x + 4$ is a positive quadratic. i. e. $x^2 + 2x + 4 > 0$ for all xTherefore $x - 2 \ge 0$, $x \ge 2$ is the domain. i.e. Domain is $x \in [2, \infty)$

6) Rational Function

Definition: Given polynomials





Properties:

- As x → 0 i.e. (As x approaches 0) f (x) → ∞ or f (x) → -∞, so the line x = 0 i.e y-axis is called vertical asymptote.(A straight line which does not intersect the curve but as x approaches to ∞ or -∞ the distance between the line and the curve tends to 0, is called an asymptote of the curve.)
- 2) As As $x \to \infty$ or $x \to -\infty$, $f(x) \to 0$, y = 0 the line i.e *y*-axis is called horizontal asymptote.
- 3) The domain of rational function $f(x) = \frac{p(x)}{q(x)}$ is all the real values of except the zeroes of q(x).
- Ex. 8 : Find domain and range of the function $f(x) = \frac{6-4x^2}{4x+5}$

Solution : f(x) is defined for all $x \in R$ except when denominators is 0.

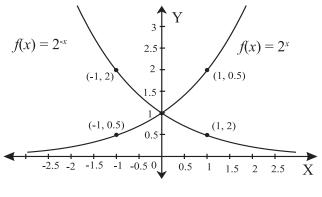
Since,
$$4x + 5 = 0 \Rightarrow x = -\frac{5}{4}$$
.
So Domain of $f(x)$ is $R - \left\{-\frac{5}{4}\right\}$.
To find the range, let $y = \frac{6-4x^2}{4x+5}$
i.e. $y(4x+5) = 6 - 4x^2$
i.e. $4x^2 + (4y)x + 5y - 6 = 0$.
This is a quadratic equation in x with y as constant.
Since $x \in R - \{-5/4\}$, i.e. x is real, we get
Solution if, $D = b^2 - 4ac \ge 0$
i.e. $(4y)^2 - 4(4)(5y - 6) \ge 0$
 $16y^2 - 16(5y - 6) \ge 0$
 $y^2 - 5y + 6 \ge 0$
 $(y - 2) (y - 3) \ge 0$
Therefore $y \le 2$ or $y \ge 3$ (Verify!)
Range of $f(x)$ is $(-\infty, 2] \cup [3,\infty)$

7) Exponential Function

Form : $f(x) = a^x$ is an exponential function with base *a* and exponent (or index) $x, a \neq 0$,

$$a > 0$$
 and $x \in R$.

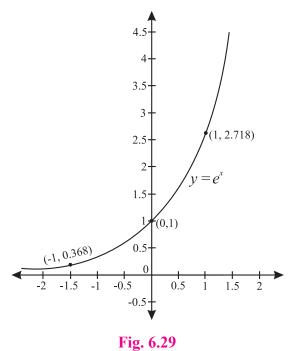
Example : $f(x) = 2^x$ and $f(x) = 2^{-x}$



Domain: R and **Range :** $(0, \infty)$

Properties:

- 1) As $x \to -\infty$, then $f(x) = 2^x \to 0$, so the graph has horizontal asymptote (y = 0)
- 2) By taking the natural base $e ~(\approx 2.718)$, graph of $f(x) = e^x$ is similar to that of 2^x in appearance



- 3) For a > 0, $a \neq 1$, if $a^x = a^y$ then x = y. So a^x is one-one function. (check graph for horizontal line test).
- $\begin{array}{ll} \mbox{4)} & r>1, \, m>n \Longrightarrow r^m>r^n \mbox{ and } \\ & r<1, \, m>n \Longrightarrow r^m < r^n \end{array}$

Ex. 9 : Solve $5^{2x+7} = 125$.

Solution : As $5^{2x+7} = 125$

i.e :
$$5^{2x+7} = 5^3$$
, $\therefore 2x + 7 = 3$

and
$$x = \frac{3-7}{2} = \frac{-4}{2} = -2$$

Ex. 10 : Find the domain of $f(x) = \sqrt{6 - 2^x - 2^{3-x}}$

Solution : Since \sqrt{x} is defined for $x \ge 0$

$$f(x)$$
 is defined for $6 - 2^x - 2^{3-x} \ge 0$

i.e.
$$6 - 2^x - \frac{2^3}{2^x} \ge 0$$

i.e.
$$6 \cdot 2^{x} - (2^{x})^{2} - 8 \ge 0$$

i.e. $(2^{x})^{2} - 6 \cdot 2^{x} + 8 \le 0$
i.e. $(2^{x} - 4)(2^{x} - 2) \le 0$
 $2^{x} \ge 2$ and $2^{x} \le 4$ (Verify !)
 $2^{x} \ge 2^{1}$ and $2^{x} \le 2^{2}$
 $x \ge 1$ and $x \le 2$ or $1 \le x \le 2$
Doamin is [1,2]

8) Logarithmic Function:

Let, a > 0, $a \neq 1$, Then logarithmic function $\log_a x$, $y = \log_a x$ if $x = a^y$.

for x > 0, is defined as

$$y = \log_a x \iff a^y = x$$

log arithmic form $\Leftrightarrow a^y = x$

Properties:

- 1) As $a^0 = 1$, so $\log_a 1 = 0$ and as $a^1 = a$, so $\log_a a = 1$
- 2) As $a^x = a^y \Leftrightarrow x = y$ so $\log_a x = \log_a y \Leftrightarrow x = y$
- 3) Product rule of logarithms.

For a, b, c > 0 and $a \neq 1$, $\log_a bc = \log_a b + \log_a c$ (Verify !)

- 4) Quotient rule of logarithms. For *a*, *b*, *c* > 0 and *a* \neq 1, $\log_a \frac{b}{c} = \log_a b - \log_a c$ (Verify !)
- 5) Power/Exponent rule of logarithms. For a, b, c > 0 and $a \neq 1$, $\log_a b^c = c \log_a b$ (Verify !)

6) For natural base e, $\log_e x = \ln x$ as Natural Logarithm Function.

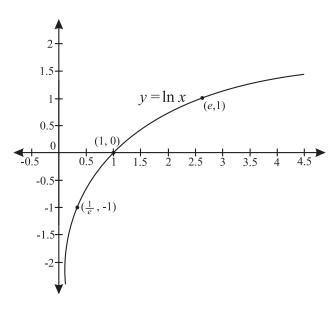


Fig. 6.30

Here domain of ln x is $(0, \infty)$ and range is $(-\infty, \infty)$.

- 8) Logarithmic inequalities:
- (i) If a > 1, 0 < m < n then $\log_a m < \log_a n$ e.g. $\log_{10} 20 < \log_{10} 30$
- (ii) If 0 > a < 1, 0 < m < n then $\log_a m > \log_a n$ e.g. $\log_{0.1} 20 > \log_{0.1} 30$
- (iii) For *a*, *m*>0 if *a* and *m* lies on the same side of unity (i.e. 1) then log_a m>0.
 e.g. log₂ 3>0, log_{0.3} 0.5>0
- (iv) For *a*, *m*>0 if *a* and *m* lies on the different sides of unity (i.e. 1) then log_a m>0.
 e.g. log_{0,2} 3<0, log₃ 0.5>0

Ex. 11 : Write log72 in terms of log2 and log3. Solution : log 72 = log(2^3 . 3^2) = log 2^3 + log 3^2 (:: Power rule)

 $= 3 \log 2 + 2 \log 3$ (:: Power rule)

Ex. 12 : Evaluate $\ln e^9 - \ln e^4$. Solution : $\ln e^9 - \ln e^4 = \log_e e^9 - \log_e e^4$ $= 9 \log_e e - 4 \log_e e$ = 9(1) - 4(1) (\therefore lne = 1) = 5

Ex. 13 : Expand
$$\log \left[\frac{x^3(x+3)}{2(x-4)^2} \right]$$

Solution : Using Quotient rule

$$= \log \left[x^{3}(x+3) \right] - \log \left[2 (x-4)^{2} \right]$$

Using Product rule

$$= [\log x^{3} + \log (x+3)] - [\log 2 + \log (x-4)^{2}]$$

Using Power rule

$$= [3\log x + \log (x+3)] - [\log 2 - 2\log (x-4)]$$
$$= 3\log x + \log (x+3) - \log 2 + 2\log (x-4)$$

Ex. 14 : Combine

 $3\ln (p + 1) - \frac{1}{2} \ln r + 5\ln(2q + 3)$ into single logarithm.

Solution : Using Power rule,

$$= \ln (p+1)^3 - \ln r^{\frac{1}{2}} + \ln(2q+3)^5$$

Using Quotient rule

$$= \ln \frac{(p+1)^3}{\sqrt{r}} + \ln(2q+3)^5$$

Using Product rule

$$= \ln\left[\frac{(p+1)^3}{\sqrt{r}}(2q+3)^5\right]$$

Ex. 15 : Find the domain of ln(x - 5).

Solution : As ln(x-5) is defined for (x-5) > 0that is x > 5 so domain is $(5, \infty)$.

Let's note:

- 1) $\log (x + y) \neq \log x + \log y$
- 2) $\log x \log y \neq \log (xy)$

3)
$$\frac{\log x}{\log y} \neq \log\left(\frac{x}{y}\right)$$

- 4) $(\log x)^n \neq n \log^n$
- 9) Change of base formula:

For a, x, b > 0 and $a, b \neq 1$, $\log_a x = \frac{\log_b x}{\log_b a}$ Note: $\log_a x = \frac{\log_x x}{\log_x a} = \frac{1}{\log_x a}$ (Verify !)

Ex. 16 : Evaluate $\frac{\log_4 81}{\log_4 9}$

Solution : By Change of base law, as the base is same (that is 4)

$$\frac{\log_4 81}{\log_4 9} = \log_9 81 = 2$$

Ex. 17 : Prove that, $2\log_b a^4 \cdot \log_c b^3 \cdot \log_a c^5 = 120$ Solution : L.H.S. = $2\log_b a^4 \cdot \log_c b^3 \cdot \log_a c^5$ = $4 \times 2\log_b a \times 3\log_c b \times 5\log_a c$

$$= 4 \times 2 \frac{\log a}{\log b} \times 3 \frac{\log b}{\log c} \times 5 \frac{\log c}{\log a}$$
$$= 120$$

Ex. 18 : Find the domain of $f(x) = \log_{x+5} (x^2 - 4)$ (b)

Solution : Since $\log_a x$ is defined for a, x > 0 and $a \neq 1$ f(x) is defined for $(x^2 - 4) > 0, x + 5 > 0, x + 5 \neq 1$.

i.e. $(x-2)(x+2) > 0, x > -5, x \neq -4$

i.e. x < -2 or x > 2 and x > -5 and $x \neq -4$

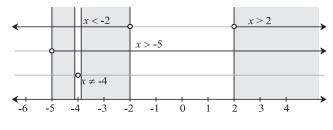


Fig. 6.31

9) Trigonometric function

The graphs of trigonometric functions are discusse in chapter 2 of Mathematics Book I.

f(x)	Domain	Range
$\sin x$	R	[-1,1]
$\cos x$	R	[-1,1]
tan x	$R - \left\{ \pm \frac{\pi}{2}, \pm \frac{3\pi}{2} \dots \right\}$	R

1) Check if the following relations are functions.

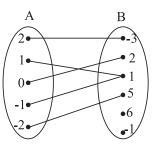


Fig. 6.32

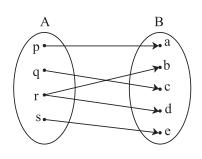


Fig. 6.33



Fig. 6.34

- 2) Which sets of ordered pairs represent functions from $A = \{1, 2, 3, 4\}$ to $B = \{-1, 0, 1, 2, 3\}$? Justify.
 - (a) $\{(1,0), (3,3), (2,-1), (4,1), (2,2)\}$
 - (b) $\{(1,2), (2,-1), (3,1), (4,3)\}$
 - (c) $\{(1,3), (4,1), (2,2)\}$
 - (d) $\{(1,1), (2,1), (3,1), (4,1)\}$
- 3) Check if the relation given by the equation represents *y* as function of *x*.
 - (a) 2x + 3y = 12(b) $x + y^2 = 9$ (c) $x^2 - y = 25$ (d) 2y + 10 = 0(e) 3x - 6 = 21
- 4) If $f(m) = m^2 3m + 1$, find (a) f(0) (b) f(-3)(c) $f\left(\frac{1}{2}\right)$ (d) f(x + 1)(e) f(-x)(f) $\left(\frac{f(2+h) - f(2)}{h}\right)$, $h \neq 0$.
- 5) Find x, if g(x) = 0 where

(a)
$$g(x) = \frac{5x-6}{7}$$
 (b) $g(x) = \frac{18-2x^2}{7}$
(c) $g(x) = 6x^2 + x - 2$
(d) $g(x) = x^3 - 2x^2 - 5x + 6$

- 6) Find x, if f(x) = g(x) where
 - (a) $f(x) = x^4 + 2x^2$, $g(x) = 11x^2$
 - (b) $f(x) = \sqrt{x} -3, g(x) = 5 x$

- 7) If $f(x) = \frac{a-x}{b-x}$, f(2) is undefined, and f(3) = 5, find *a* and *b*.
- 8) Find the domain and range of the follwoing functions.

(a)
$$f(x) = 7x^2 + 4x - 1$$

(b) $g(x) = \frac{x+4}{x-2}$
(c) $h(x) = \frac{\sqrt{x+5}}{5+x}$
(d) $f(x) = \sqrt[3]{x+1}$
(e) $f(x) = \sqrt{(x-2)(5-x)}$
(f) $f(x) = \sqrt{\frac{x-3}{7-x}}$
(g) $f(x) = \sqrt{16-x^2}$

- 9) Express the area A of a square as a function of its (a) side *s* (b) perimeter *P*.
- 10) Express the area A of circle as a function of its
 (a) radius r (b) diameter d (c) circumference
 C.
- 11) An open box is made from a square of cardboard of 30 cms side, by cutting squares of length x centimeters from each corner and folding the sides up. Express the volume of the box as a function of x. Also find its domain.

Let *f* be a subset of $Z \times Z$ defined by

- 12) $f = \{(ab,a+b) : a,b \in \mathbb{Z}\}$. Is f a function from \mathbb{Z} to \mathbb{Z} ? Justify.
- 14) Check the injectivity and surjectivity of the following functions.
 - (a) $f: \mathbb{N} \to \mathbb{N}$ given by $f(x) = x^2$
 - (b) $f: \mathbb{Z} \to \mathbb{Z}$ given by $f(x) = x^2$
 - (c) $f: \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^2$

(c)

- (d) $f: \mathbb{N} \to \mathbb{N}$ given by $f(x) = x^3$
- (e) $f: \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^3$
- 14) Show that if $f : A \to B$ and $g : B \to C$ are one-one, then $g \circ f$ is also one-one.
- 15) Show that if $f : A \to B$ and $g : B \to C$ are onto, then $g \circ f$ is also onto.
- 16) If $f(x) = 3(4^{x+1})$ find f(-3).
- 17) Express the following exponential equations in logarithmic form

(a)
$$2^5 = 32$$
(b) $54^0 = 1$ (c) $23^1 = 23$ (d) $9^{3/2} = 27$ (e) $3^{-4} = \frac{1}{81}$ (f) $10^{-2} = 0.01$ (g) $e^2 = 7.3890$ (h) $e^{1/2} = 1.6487$ (i) $e^{-x} = 6$

- 18) Express the following logarithmic equations in exponential form
 - (a) $\log_2 64 = 6$ (b) $\log_5 \frac{1}{25} = -2$ (c) $\log_{10} 0.001 = -3$ (d) $\log_{1/2} (-8) = 3$ (e) $\ln 1 = 0$ (f) $\ln e = 1$ (g) $\ln \frac{1}{2} = -0.693$
- 19) Find the domain of
 - (a) $f(x) = \ln (x 5)$ (b) $f(x) = \log_{10}(x^2 - 5x + 6)$
- 20) Write the following expressions as sum or difference of logarithms

(a)
$$\log\left(\frac{pq}{rs}\right)$$
 (b) $\log\left(\sqrt{x}\sqrt[3]{y}\right)$
(c) $\ln\left(\frac{a^3(a-2)^2}{\sqrt{b^2+5}}\right)$
(d) $\ln\left[\frac{\sqrt[3]{x-2}(2x+1)^4}{(x+4)\sqrt{2x+4}}\right]^2$

21) Write the following expressions as a single logarithm.

(a)
$$5\log x + 7\log y - \log z$$

(b) $\frac{1}{3}\log(x-1) + \frac{1}{2}\log(x)$
(c) $\ln(x+2) + \ln(x-2) - 3\ln(x+5)$

- 22) Given that $\log 2 = a$ and $\log 3 = b$, write $\log \sqrt{96}$ in terms of *a* and *b*.
- 23) Prove that

(a)
$$b^{\log_{b} a} = a$$
 (b) $\log_{b^{m}} a = \frac{1}{m} \log_{b} a$
(c) $a^{\log_{c} b} = b^{\log_{c} a}$

- 24) If f(x) = ax² bx + 6 and f(2) = 3 and
 f(4) = 30, find a and b
- 25) Solve for x. (a) $\log 2 + \log(x+3) - \log(3x-5) = \log 3$ (b) $2\log_{10}x = 1 + \log_{10}\left(x + \frac{11}{10}\right)$ (c) $\log_2 x + \log_4 x + \log_{16} x = \frac{21}{4}$ (d) $x + \log_{10}(1+2^x) = x \log_{10} 5 + \log_{10} 6$ 26) If $\log\left(\frac{x+y}{3}\right) = \frac{1}{2}\log x + \frac{1}{2}\log y$,

show that
$$\frac{x}{y} + \frac{y}{x} = 7$$
.

- 27) If $\log\left(\frac{x-y}{4}\right) = \log\sqrt{x} + \log\sqrt{y}$, show that $(x+y)^2 = 20 xy$
- 28) If $x = \log_a bc$, $y = \log_b ca$, $z = \log_c ab$ then prove that $\frac{1}{1+x} + \frac{1}{1+y} + \frac{1}{1+z} = 1$

6.2 Algebra of functions:

Let f and g be functions with domains A and B. Then the functions $f + g, f - g, fg, \frac{f}{g}$ are defined on $A \cap B$ as follows.

Operations
(f+g)(x) = f(x) + g(x)
(f-g)(x) = f(x) - g(x)
$(f. g)(x) = f(x) \cdot g(x)$
$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$ where $g(x) \neq 0$

Ex. 1 : If $f(x) = x^2 + 2$ and g(x) = 5x - 8, then find

- i) (f+g)(1)
- ii) (f-g)(-2)
- ii) $(f \circ g) (3m)$
- iv) $\frac{f}{g}(0)$

Solution : i) As (f + g)(x) = f(x) + g(x) (f + g)(1) = f(1) + g(1) $= [(1)^2 + 2] + [5(1) - 8]$ = 3 + (-3)= 0

ii) As
$$(f - g)(x) = f(x) - g(x)$$

 $(f - g)(-2) = f(-2) - g(-2)$
 $= [(-2)^2 + 2] - [5(-2) - 8]$
 $= [4 + 2] - [-10 - 8]$
 $= 6 + 18$
 $= 24$

111) As
$$(fg) (x) = f (x) g (x)$$

 $(f \circ g) (3m) = f (3m)g (3m)$
 $= [(3m)^2 + 2] [5(3m) - 8]$
 $= [9m^2 + 2] [15m - 8]$
 $= 135m^3 - 72m^2 + 30m - 160$

iv) As
$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}, g(x) \neq 0$$

 $\left(\frac{f}{g}\right)(0) = \frac{f(0)}{g(0)} = \frac{0^2 + 2}{5(0) - 8}$
 $= \frac{2}{-8} = -\frac{1}{4}$

Ex. 2 : Given the function $f(x) = 5x^2$ and $g(x) = \sqrt{4-x}$ find the domain of i) (f+g)(x) ii) $(f \circ g)(x)$ iii) $\frac{f}{g}(x)$ **Solution :** i) Domain of $f(x) = 5x^2$ is $(-\infty, \infty)$. To find domain of $g(x) = \sqrt{4-x}$

$$4 - x \ge 0$$

$$x - 4 \le 0$$

Let $x \le 4$, So domain is $(-\infty, 4]$.
Therefore, domain of $(f + g)(x)$ is
 $(-\infty, \infty) \cap (-\infty, 4]$, that is $(-\infty, 4]$

- ii) Similarly, domain of $(f \circ g)(x) = 5x^2\sqrt{4-x}$ is $(-\infty, 4]$
- iii) And domain of $\left(\frac{f}{g}\right)(x) = \frac{5x^2}{\sqrt{4-x}}$ is $(-\infty, 4)$

As , at x = 4 the denominator g(x) = 0 .

6.2.1 Composition of Functions:

A method of combining the function $f: A \rightarrow B$ with $g: B \rightarrow C$ is composition of functions, defined as $(f \circ g)(x) = f[g(x)]$ an read as 'f composed with g'

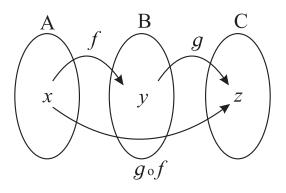


Fig. 6.35

Note:

- 1) The domain of $g \circ f$ is the set of all x in A such that f(x) is in the B. The range of $g \circ f$ is set of all g[f(x)] in C such that f(x) is in B.
- 2) Domain of $g \circ f \subseteq$ Domain of f and Range of $g \circ f \subseteq$ Range of g.

Illustration:

A cow produces 4 liters of milk in a day. Then x number of cows produce 4x liters of milk in a day. This is given by function f(x) = 4x = 'y'. Price of one liter milk is Rs. 50. Then the price of y liters of the milk is Rs. 50y. This is given by another function g(y) = 50y. Now a function h(x)gives the money earned from x number of cows in a day as a composite function of f and g as h(x) = $(g \circ f)(x) = g[f(x)] = g(4x) = 50(4x) = 200x$.

Ex. 3 : If $f(x) = \frac{2}{x+5}$ and $g(x) = x^2 - 1$, then find i) $(f \circ g)(x)$ ii) $(g \circ f)(3)$

Solution :

i) As $(f \circ g)(x) = f[g(x)]$ and $f(x) = \frac{2}{x+5}$

Replace x from f(x) by g(x), to get

$$(f \circ g)(x) = \frac{2}{g(x)+5}$$

= $\frac{2}{x^2-1+5}$
= $\frac{2}{x^2+4}$

ii) As $(g \circ f)(x) = g[f(x)]$ and $g(x) = x^2 - 1$ Replace x by f(x), to get

$$(g \circ f)(x) = [f(x)]^2 - 1$$

= $\left(\frac{2}{x+5}\right)^2 - 1$

Now let x = 3

$$(g \circ f) (3) = \left(\frac{2}{3+5}\right)^2 - 1$$
$$= \left(\frac{2}{8}\right)^2 - 1$$
$$= \left(\frac{1}{4}\right)^2 - 1$$
$$= \frac{1-16}{16}$$
$$= -\frac{15}{16}$$

Ex 4: If $f(x) = x^2$, g(x) = x + 5, and $h(x) = \frac{1}{x}$, $x \neq 0$, find $(g \circ f \circ h)(x)$ Solution: $(g \circ f \circ h)(x)$

$$= g \{f[h(x)] = g \left[f\left(\frac{1}{x}\right)\right]$$
$$= g \left[f\left(\frac{1}{x}\right)\right]$$
$$= g \left[f\left(\frac{1}{x}\right)^{2}\right]$$
$$= \left(\frac{1}{x}\right)^{2} + 5$$
$$= \frac{1}{x^{2}} + 5$$

Ex. 5 : If $h(x) = (x - 5)^2$, find the functions *f* and *g*, such that $h = f \circ g$.

 \rightarrow In h (x), 5 is subtracted from x first and then squared. Let g(x) = x - 5 and $f(x) = x^2$, (verify)

Ex. 6 : Express $m(x) = \frac{1}{x^3+7}$ in the form of $f \circ g \circ h$

 \rightarrow In *m* (*x*), *x* is cubed first then 7 is added and then its reciprocal taken. So,

$$h(x) = x^3$$
, $g(x) = x + 7$ and $f(x) = \frac{1}{x}$, (verify)

6.2.2 Inverse functions:

Let $f : A \rightarrow B$ be one-one and onto function and f(x) = y for $x \in A$. The inverse function

$$f^{-1}$$
: B \rightarrow A is defined as $f^{-1}(y) = x$ if $f(x) = y$

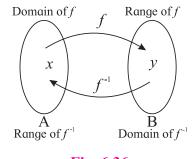


Fig. 6.36

Note:

- 1) As f is one-one and onto every element $y \in B$ has a unique element $x \in A$ such that y = f(x).
- 2) If f and g are one-one and onto functions such that f[g(x)] = x for every $x \in$ Domain of g and g [f(x)] = x for every $x \in$ Domain of f, then g is called inverse of function f. Function g is denoted by f^{-1} (read as f inverse). i.e. f[g(x)] = g[f(x)] = x then $g = f^{-1}$ which Moreover this means $f[f^{-1}(x)] = f^{-1}[f(x)] = x$
- 3) $f^{-1}(x) \neq [f(x)]^{-1}$, because $[f(x)]^{-1} = \frac{1}{f(x)}$ $[f(x)]^{-1}$ is reciprocal of function f(x) where as $f^{-1}(x)$ is the inverse function of f(x).
 - e.g. If f is one-one onto function with f(3) =7 then $f^{-1}(7) = 3$.
- **Ex.** 7 : If *f* is one-one onto function with f(x) = 9 - 5x, find $f^{-1}(-1)$.
- **Soln.** : \rightarrow Let $f^{-1}(-1) = m$, then -1 = f(m)Therefore,

-1 = 9 - 5m5m = 9 + 15m = 10m = 2That is f(2) = -1, so $f^{-1}(-1) = 2$.

Ex. 8 : Verify that
$$f(x) = \frac{x-5}{8}$$
 and $g(x) = 8x + 5$

are inverse functions of each other.

Solution : As $f(x) = \frac{x-5}{8}$, replace $x \inf f(x)$ with g(x)

$$f[g(x)] = \frac{g(x)-5}{8} = \frac{8x+5-5}{8} = \frac{8x}{8} = x$$

and $g(x) = 8x+5$, replace x in $g(x)$ with $f(x)$
 $g[f(x)] = 8f(x) + 5 = 8\left[\frac{x-5}{3}\right] + 5 = x - 5 + 5$

8 = xAs f[g(x)] = x and g[f(x)] = x, f and g are inverse

functions of each other.

Ex. 9: Determine whether the function

$$f(x) = \frac{2x+1}{x-3}$$
 has inverse, if it exists find it.

Solution : f^{-1} exists only if *f* is one-one and onto.

Consider $f(x_1) = f(x_2)$,

Therefore,

$$\frac{2x_1+1}{x_1-3} = \frac{2x_2+1}{x_2-3}$$

$$(2x_1+1) (x_2-3) = (2x_2+1) (x_1-3)$$

$$2x_1x_2-6x_1+x_2-3 = 2x_1x_2-6x_2+x_1-3$$

$$-6x_1+x_2 = -6x_2+x_1$$

$$6x_1+x_2 = 6x_2+x_1$$

$$7x_2 = 7x_1$$

$$x_2 = x_1$$

Hence, *f* is one-one function.

Let
$$f(x) = y$$
, so $y = \frac{2x+1}{x-3}$

Express x as function of y, as follows

$$y = \frac{2x+1}{x-3}$$
$$y(x-3) = 2x + 1$$

$$xy-3y = 2x + 1$$

$$xy-2x = 3y + 1$$

$$x(y-2) = 3y + 1$$

$$\therefore \qquad x = \frac{3y+1}{y-2} \text{ for } y \neq 2.$$

Thus for any $y \neq 2$,

we have x such that f(x) = y

 f^{-1} is well defined on R - {2}

If f(x) = 2 i.e. 2x + 1 = 2(x - 3)

i.e.
$$2x + 1 = 2x - 6$$
 i.e. $1 = -6$

Which is contradiction.

 $2 \notin \text{Range of } f$.

Here the range of f(x) is $\mathbb{R} - \{2\}$.

x is defined for all *y* in the range.

Therefore f(x) is onto function.

As f is one-one and onto, so f^{-1} exists.

As
$$f(x) = y$$
, so $f^{-1}(y) = x$

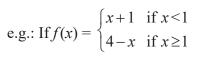
Therefore, $f^{-1}(y) = \frac{3y+1}{y-2}$

Replace x by y, to get

$$f^{-1}(x) = \frac{3x+1}{x-2} \; .$$

6.2.3 Piecewise Defined Functions:

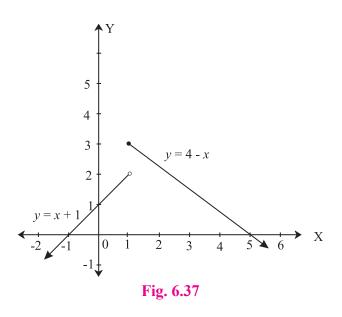
A function defined by two or more equations on different parts of the given domain is called piecewise defind function.



Here f(3) = 4 - 3 = 1 as 3 > 1,

whereas f(-2) = -2 + 1 = -1 as -2 < 1 and

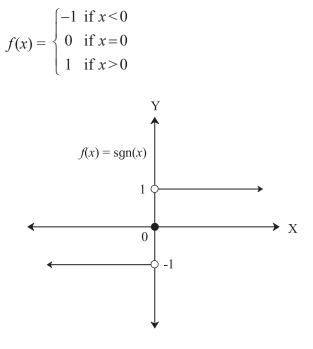
$$f(1) = 4 - 1 = 3.$$



As (1,3) lies on line y = 4 - x, so it is shown by small black disc on that line. (1,2) is shown by small white disc on the line y=x+1, because it is not on the line.

1) Signum function :

Definition: f(x) = sgn(x) is a piecewise function



Properties:

- For x > 0, the graph is line y = 1 and for x < 11) 0, the graph is line y = -1.
- For f(0) = 0, so point (0,0) is shown by 2) black disc, whereas points (0,-1) and (0,1)are shown by white discs.

Absolute value function (Modulus function):

Definition: f(x) = |x|, is a piece wise function

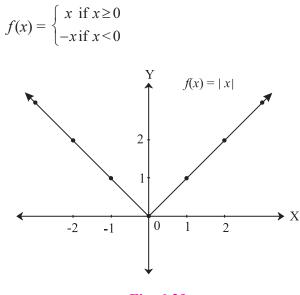
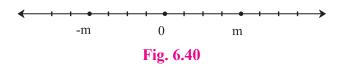


Fig. 6.39

Domain : R or $(-\infty,\infty)$ and **Range :** $[0,\infty)$

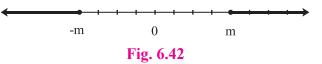
Properties:

- 1) Graph of f(x) = |x| is union of line y = x from quadrant I with the line y = -x from quadrant II. As origin marks the change of directions of the two lines, we call it a critical point.
- 2) Graph is symmetric about *y*-axis.
- 3) Graph of f(x) = |x-3| is the graph of |x| shifted 3 units right and the critical point is (3,0).
- 4) f(x) = |x|, represents the distance of x from origin.
- 5) If |x| = m, then it represents every x whose distance from origin is *m*, that is x = +m or x = -m.



If |x| < m, then it represents every x whose 6) distance from origin is less than $m, 0 \le x < m$ and 0 > x > -m That is -m < x < m. In interval notation $x \in (-m, m)$

If $|x| \ge m$, then it represents every x whose 7) distance from origin is greater than or equal to m, so, $x \ge m$ and $x \le -m$. In interval notation $x \in (-\infty, m] \cup [m, \infty)$



If m < |x| < n, then it represents all x whose 8) distance from origin is greater than *m* but less than *n*. That is $x \in (-n, -m) \cup (m, n)$.

$$(+ \circ + - m \circ + +$$

- Triangle inequality $|x + y| \le |x| + |y|$. 9) Verify by taking different values for x and y(positive or negative).
- 10) |x| can also be defined as $|x| = \sqrt{x^2}$ $= \max\{x, -x\}.$

Ex. 10 : Solve $|4x - 5| \le 3$.

Solution : If $|x| \le m$, then $-m \le x \le m$

Therefore

$$-3 \le 4x - 5 \le 3$$
$$-3 + 5 \le 4x \le 3 + 5$$
$$2 \le 4x \le 8$$
$$\frac{2}{4} \le x \le \frac{8}{4}$$
$$\frac{1}{2} \le x \le 2$$

Ex. 11 : Find the domain of $\frac{1}{\sqrt{||\mathbf{x}|-1|-3}}$

Solution : As function is defined for ||x|-1|-3>0

Therefore ||x|-1| > 3So |x|-1>3 or |x|-1<-3That is |x|>3 + 1 or |x|<-3+1

|x| > 4 or |x| < -2

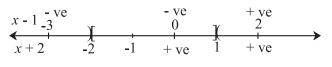
But |x| < -2 is not possible as |x| > 0 always So -4 < x < 4, $x \in (-4, 4)$.

Ex. 12 : Solve |x - 1| + |x + 2| = 8.

Solution : Let f(x) = |x - 1| + |x + 2|

Here the critical points are at x = 1 and x = -2.

They divide number line into 3 parts, as follows.



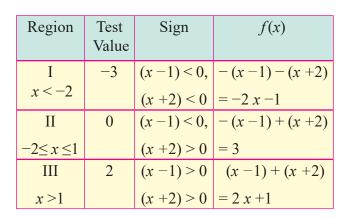


Fig. 6.44

$\operatorname{As} f(x) = 8$

From I, -2x - 1 = 8 : -2x = 9 : $x = -\frac{9}{2}$.

From II, 3 = 8, which is impossible, hence there is no solution in this region.

From III, 2x + 1 = 8 $\therefore 2x = 7$ $\therefore x = \frac{7}{2}$. Solutions are $x = -\frac{9}{2}$ and $x = \frac{7}{2}$.

3) Greatest Integer Function (Step Function): Definition: For every real x, f(x) = [x] = The greatest integer less than or equal to x. [x] is also called as floor function and represented by |x|.

Illustrations:

1) f(5.7)=[5.7] = greatest integer less than or equal to 5.7

Integers less than or equal to 5.7 are 5, 4, 3, 2 of which 5 is the greatest.

2) f(-6.3) = [-6.3] = greatest integer less than or equal to -6.3.

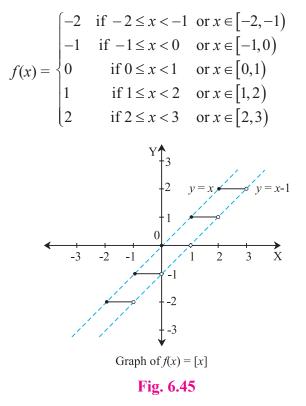
Integers less than or equal to -6.3 are -10, -9, -8, -7 of which -7 is the greatest.

$$\therefore [-6.3] = -7$$

3) f(2) = [2] = greatest integer less than or equal to 2 = 2.

4)
$$[\pi] = 3$$
 5) $[e] = 2$

The function can be defined piece-wise as follows f(x) = n, if $n \le x < n + 1$ or $x \in [n, n + 1)$, $n \in I$



Domain = R and Range = I (Set of integers)

Properties:

- If x ∈ [2,3), f(x) = 2 shown by horizontal line. At exactly x = 2, f(2) = 2, 2 ∈ [2,3) hence shown by black disc, whereas 3 ∉
 [2,3) hence shown by white disc.
- 2) Graph of y = [x] lies in the region bounded by lines y = x and y = x-1. So $x-1 \le [x] < x$

3)
$$[x] + [-x] = \begin{cases} 0 \text{ if } x \in I \\ -1 \text{ if } x \notin I \end{cases}$$

- Ex. [3.4] + [-3.4] = 3 + (-4) = -1 where $3.4 \notin I$ [5] + [-5] = 5 + (-5) = 0 where 5 $\in I$
- 4) [x+n] = [x] + n, where $n \in I$
- **Ex.** [4.5 + 7] = [11.5] = 11 and
- [4.5] + 7 = 4 + 7 = 11

4) Fractional part function:

Definition: For every real $x, f(x) = \{x\}$ is defined as $\{x\} = x - [x]$

Illustrations:

$$f(4.8) = \{4.8\} = 4.8 - [4.8] = 4.8 - 4 = 0.8$$

$$f(-7.1) = \{-7.1\} = -7.1 - [-7.1]$$
$$= -7.1 - (-8) = -7.1 + 8 = 0.9$$

$$f(8) = \{8\} = 8 - [8] = 8 - 8 = 0$$

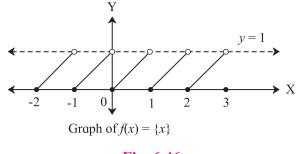


Fig. 6.46

Domain = R and Range = [0,1)

Properties:

- 1) If $x \in [0,1]$, $f(x) = \{x\} \in [0,1]$ shown by slant line y = x. At x = 0, f(0) = 0, $0 \in [0,1)$ hence shown by black disc, whereas at x = 1, f(1) = 1, $1 \notin [0,1)$ hence shown by white disc.
- 2) Graph of $y = \{x\}$ lies in the region bounded by y = 0 and y = 1. So $0 \le \{x\} < 1$

3)
$$\{x\} + \{-x\} = \begin{cases} 0 & \text{if } x \in I \\ 1 & \text{if } x \notin I \end{cases}$$

Ex. 13:
$$\{5.2\} + \{-5.2\} = 0.2 + 0.8 = 1$$
 where $5.2 \in 1$
 $\{7\} + \{-7\} = 0 + (0) = 0$ where $7 \in I$

4) $\{x \pm n\} = \{x\}, \text{ where } n \in I$

Ex. 14 : $\{2.8+5\} = \{7.8\} = 0.8$ and $\{2.8\} = 0.8$ $\{2.8-5\} = \{-2.2\} = -2.2 - (-2.2) = -2.2 - (-3)$ $= 0.8 (\because \{x\} = x - [x])$

Ex. 15 : If $\{x\}$ and [x] are the fractional part function and greatest integer function of *x* respectively. Solve for *x*, if $\{x + 1\} + 2x = 4[x+1] - 6$.

Solution : ${x + 1} + 2x = 4 [x + 1] - 6$

Since $\{x + n\} = \{x\}$ and [x + n] = [x] + n, for $n \in I$, also $x = [x] + \{x\}$

- $\therefore \quad \{x\} + 2(\{x\} + [x]) = 4([x] + 1) 6$
- $\therefore \quad \{x\} + 2\{x\} + 2[x] = 4[x] + 4 6$
- \therefore 3{x} = 4[x] 2[x] 2
- \therefore 3{x} = 2[x] 2 ... (I)

Since $0 \le \{x\} < 1$

- $\therefore \quad 0 \le 3\{x\} < 3$ $\therefore \quad 0 \le 2[x] - 2 < 3 \quad (\because \text{ from I})$
- :. $0+2 \le 2 [x] < 3+2$

$$\therefore \quad 2 \le 2 [x] < 5$$

$$\therefore \quad \frac{2}{2} \le [x] < \frac{5}{2}$$
$$\therefore \quad 1 \le [x] < 2.5$$

But as [x] takes only integer values

[x] = 1, 2 since $[x] = 1 \Rightarrow 1 \le x < 2$ and $[x] = 2 \Rightarrow 2 \le x < 3$

Therefore $x \in [1,3)$

Note:

1)

Property	f(x)
f(x+y) = f(x) + f(y)	kx
f(x+y) = f(x)f(y)	a^{kx}
f(xy) = f(x)f(y)	χ^n
f(xy) = f(x) + f(y)	$\log x$

2) If n(A) = m and n(B) = n then

- (a) number of functions from A and B is n^m
 (b) for m≤n, number of one-one functions is n!/(n-m)!
- (c) for m > n, number of one-one functions is 0
- (d) for $m \ge n$, number of onto functions are $n^m - {}^nC_1(n-1)^m + {}^nC_2(n-2)^m - {}^nC_3(n-3)^m + ... + (-1)^{n-1} {}^nC_{n-1}$
- (e) for m < n, number of onto functions are 0.
- (f) number of constant fuctions is m.
- 3) Characteristic & Mantissa of Common Logarithm $\log_{10} x$:

As
$$x = [x] + \{x\}$$

$$\log_{10} x = [\log_{10} x] + \{\log_{10} x\}$$

Where, integral part $[\log_{10} x]$ is called Characteristic & fractional part $\{\log_{10} x\}$ is called Mantissa.

Illustration : For $\log_{10} 23$,

$$log_{10} \ 10 < log_{10} \ 23 < log_{10} \ 100$$
$$log_{10} \ 10 < log_{10} \ 23 < log_{10} \ 10^2$$

$$log_{10} \ 10 < log_{10} \ 23 < 2log_{10} \ 10$$
$$1 < log_{10} \ 23 < 2 \qquad (\because \ log_{10}^{10} = 1)$$

Then $[\log_{10} 23] = 1$, hence Characteristic of $\log_{10} 23$ is 1.

The characteristic of the logarithm of a number N, with 'm' digits in its integral part is 'm-1'.

Ex. 16 : Given that $\log_{10} 2 = 0.3010$, find the number of digits in the number 20^{10} .

Solution : Let $x = 20^{10}$, taking \log_{10} on either sides, we get

$$log_{10} x = log_{10} (20^{10}) = 10log_{10} 20$$

= 10log_{10} (2×10) = 10 {log_{10} 2 + log_{10} 10}
= 10 {log_{10} 2 + 1} = 10 {0.3010 + 1}
= 10 (1.3010) = 13.010

That is characteristic of x is 13.

So number of digits in *x* is 13 + 1 = 14

EXERCISE 6.2

1) If f(x) = 3x + 5, g(x) = 6x - 1, then find

(a)
$$(f+g)(x)$$
 (b) $(f-g)(2)$
(c) $(fg)(3)$ (d) $(f/g)(x)$ and its domain.

- 2) Let $f: \{2,4,5\} \rightarrow \{2,3,6\}$ and $g: \{2,3,6\} \rightarrow \{2,4\}$ be given by $f = \{(2,3), (4,6), (5,2)\}$ and $g = \{(2,4), (3,4), (6,2)\}$. Write down $g \circ f$
- 3) If $f(x) = 2x^2 + 3$, g(x) = 5x 2, then find (a) $f \circ g$ (b) $g \circ f$ (c) $f \circ f$ (d) $g \circ g$
- 4) Verify that *f* and *g* are inverse functions of each other, where

(a)
$$f(x) = \frac{x-7}{4}$$
, $g(x) = 4x + 7$
(b) $f(x) = x^3 + 4$, $g(x) = \sqrt[3]{x-4}$
(c) $f(x) = \frac{x+3}{x-2}$, $g(x) = \frac{2x+3}{x-1}$

5) Check if the following functions have an inverse function. If yes, find the inverse function.

(a)
$$f(x) = 5x^2$$
 (b) $f(x) = 8$
(c) $f(x) = \frac{6x-7}{3}$ (d) $f(x) = \sqrt{4x+5}$
(e) $f(x) = 9x^3+8$
(f) $f(x) = \begin{cases} x+7 & x < 0\\ 8-x & x \ge 0 \end{cases}$

6) If
$$f(x) = \begin{cases} x^2 + 3, & x \le 2\\ 5x + 7, & x > 2 \end{cases}$$
, then find
(a) $f(3)$ (b) $f(2)$ (c) $f(0)$

7) If
$$f(x) = \begin{cases} 4x - 2, & x \le -3 \\ 5, & -3 < x < 3 \\ x^2, & x \ge 3 \end{cases}$$

(a) $f(-4)$ (b) $f(-3)$
(c) $f(1)$ (d) $f(5)$

8) If
$$f(x) = 2|x| + 3x$$
, then find
(a) $f(2)$ (b) $f(-5)$

9) If f(x) = 4[x] - 3, where [x] is greatest integer function of x, then find

(a)
$$f(7.2)$$
 (b) $f(0.5)$
(c) $f\left(-\frac{5}{2}\right)$ (d) $f(2\pi)$, where $\pi = 3.14$

10) If $f(x) = 2\{x\} + 5x$, where $\{x\}$ is fractional part function of *x*, then find

(a)
$$f(-1)$$
 (b) $f\left(\frac{1}{4}\right)$

(c)
$$f(-1.2)$$
 (d) $f(-6)$

11) Solve the following for *x*, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.

(a)
$$|x+4| \ge 5$$

(b) $|x-4| + |x-2| = 3$
(c) $|x| \le 12$
(c) $2|x| = 5$
(c) $2|x| = 5$
(c) $[x + [x + [x]]] = 9$
(c) $\{x\} > 4$
(c) $\{x\} = 0$
(c) $\{x\} = 0.5$
(c) $\{x\} = x + [x]$

Let's Remember

• If $f: A \to B$ is a function and f(x) = y, where $x \in A$ and $y \in B$, then

Domain of f is A = Set of Inputs = Set of Pre-images = Set of values of x for which y = f(x) is defined = Projection of graph of f(x) on X-axis.

Range of f is f(A) = Set of Outputs = Set of Images = Set of values of y for which y =f(x) is defined = Projection of graph of f(x) on Y-axis.

Co-domain of f is B.

- If $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$ then f is **one-one** and for every $y \in B$, if there exists $x \in A$ such that f(x) = y then f is **onto**.
- If *f*:A → B. *g*:B → C then a function g ° *f*:A → C is a composite function.
- If $f:A \to B$, then $f^{-1}:B \to A$ is inverse function of f.
- If *f*:R → R is a real valued function of real variable, the following table is formed.

Type of f	Form of <i>f</i>	Domain of <i>f</i>	Range of <i>f</i>
Constant function	f(x) = k	R	k
Identity function	f(x) = x	R	R
Square function	$f(x) = x^2$	R	$[0,\infty)$ or R^+
Cube function	$f(x) = x^3$	R	R
Linear function	f(x) = ax + b	R	R
Quadratic function	$f(x) = ax^2 + bx + c$	R	$\left(\frac{4ac-b^2}{4a},\infty\right)$
Cubic function	$f(x) = ax^3 + bx^2 + cx + d$	R	R
Square root funtion	$f(x) = \sqrt{x}$	$[0,\infty)$	$[0,\infty)$ or R^+
Cube root function	$f(x) = \sqrt[3]{x}$	R	R
Rational function	$f(x) = \frac{p(x)}{q(x)}$	$\mathbf{R} - \{x \mid q(x) = 0\}$	depends on $p(x)$ and $q(x)$
Exponential function	$f(x) = a^x, a > 1$	R	$(0,\infty)$
Logarithmic function	$f(x) = \log_a x, a > 1$	$(0,\infty)$ or R^+	R
Absolute function	f(x) = x	R	$[0,\infty)$ or R^+
Signum function	$f(x) = \mathrm{sgn}(x)$	R	{-1, 0, 1}
Greatest Integer function	f(x) = [x]	R	I (set of integers)
Fractional Part function	$f(x) = \{x\}$	R	[0,1)

MISCELLANEOUS EXERCISE 6

- (I) Select the correct answer from given alternatives.
- 1) If $\log (5x 9) \log (x + 3) = \log 2$ then $x = \dots$
 - A) 3 B) 5 C) 2 D) 7
- 2) If $\log_{10}(\log_{10}(\log_{10}x)) = 0$ then x =
 - A) 1000 B) 10¹⁰
 - C) 10 D) 0

- 3) Find x, if $2\log_2 x = 4$
 - A) 4, -4 B) 4
 - C) -4 D) not defined
- 4) The equation $\log_{x^2} 16 + \log_{2x} 64 = 3$ has,
 - A) one irrational solution
 - B) no prime solution
 - C) two real solutions
 - D) one integral solution

5) If
$$f(x) = \frac{1}{1-x}$$
, then $f(f\{f(x)\}]$ is
A) $x - 1$ B) $1 - x$ C) x D) $-x$

- 6) If $f: \mathbb{R} \to \mathbb{R}$ is defined by $f(x) = x^3$ then $f^{-1}(8)$ is equal to :
 - A) {2} C){-2} D) (-2. 2)
- 7) Let the function f be defined by $f(x) = \frac{2x+1}{1-3x}$ then $f^{-1}(x)$ is:
 - A) $\frac{x-1}{3x+2}$ B) $\frac{x+1}{3x-2}$ C) $\frac{2x+1}{1-3x}$ C) $\frac{3x+2}{x-1}$
- 8) If $f(x) = 2x^2 + bx + c$ and f(0) = 3 and f(2) = 1, then f(1) is equal to

9) The domain of $\frac{1}{[x]-x}$ where [x] is greatest integer function is

A) R B) Z C)
$$R-Z$$
 D) Q - $\{o\}$

10) The domain and range of f(x) = 2 - |x - 5| is

A) R^+ , $(-\infty, 1]$ B) R, $(-\infty, 2]$

C) R, $(-\infty, 2)$ D) R⁺, $(-\infty, 2]$

(II) Answer the following.

- 1) Which of the following relations are functions? If it is a function determine its domain and range.
 - i) $\{(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)\}$
 - ii) {(0, 0), (1, 1), (1, -1), (4, 2), (4, -2), (9, 3), (9, -3), (16, 4), (16, -4)}
 - iii) {12, 1), (3, 1), (5, 2)}
- 2) Find whether following functions are oneone.
 - i) $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x) = x^2 + 5$
 - ii) $f: \mathbb{R} \{3\} \rightarrow \mathbb{R}$ defined by $f(x) = \frac{5x + 7}{x 3}$ for $x \in \mathbb{R} - \{3\}$

- 3) Find whether following functions are onto or not.
 - i) $f: \mathbb{Z} \to \mathbb{Z}$ defined by f(x) = 6x-7 for all $x \in \mathbb{Z}$
 - ii) $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x) = x^2+3$ for all $x \in \mathbb{R}$
- 4) Let $f: \mathbb{R} \to \mathbb{R}$ be a function defined by $f(x) = 5x^3 8$ for all $x \in \mathbb{R}$, show that f is one-one and onto. Hence find f⁻¹.
- 5) A function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \frac{3x}{5} + 2$, $x \in \mathbb{R}$. Show that f is one-one and onto. Hence find f⁻¹.
- 6) A function f is defined as f(x) = 4x+5, for $-4 \le x < 0$. Find the values of f(-1), f(-2), f(0), if they exist.
- 7) A function f is defined as : f(x) = 5-x for $0 \le x \le 4$. Find the value of x such that (i) f(x) = 3 (ii) f(x) = 5
- 8) If $f(x) = 3x^4 5x^2 + 7$ find f(x-1).
- 9) If f(x) = 3x + a and f(1) = 7 find *a* and f(4).
- 10) If $f(x) = ax^2 + bx + 2$ and f(1) = 3, f(4) = 42, find *a* and *b*.
- 11) Find composite of f and g

i)
$$f = \{(1, 3), (2, 4), (3, 5), (4, 6)\}$$

 $g = \{(3, 6), (4, 8), (5, 10), (6, 12)\}$
ii) $f = \{(1, 1), (2, 4), (3, 4), (4, 3)\}$
 $g = \{(1, 1), (3, 27), (4, 64)\}$

12) Find fog and gof

i)
$$f(x) = x^2 + 5, g(x) = x - 8$$

ii)
$$f(x) = 3x - 2, g(x) = x^2$$

iii)
$$f(x) = 256x^4, g(x) = \sqrt{x}$$

13) If
$$f(x) = \frac{2x-1}{5x-2}, x \neq \frac{5}{2}$$

Show that (fof)(x) = x.

- 14) If $f(x) = \frac{x+3}{4x-5}$, $g(x) = \frac{3+5x}{4x-1}$ then show that (fog)(x) = x.
- 15) Let $f: \mathbb{R} \{2\} \rightarrow \mathbb{R}$ be defined by $f(x) = \frac{x^2 4}{x 2}$ and $g: \mathbb{R} \to \mathbb{R}$ be defined by g(x) = x + 2. Ex whether f = g or not.
- 16) Let $f: \mathbb{R} \to \mathbb{R}$ be given by f(x) = x + 5 for all $x \in \mathbb{R}$. Draw its graph.
- 17) Let $f: \mathbb{R} \to \mathbb{R}$ be given by $f(x) = x^3 + 1$ for all $x \in \mathbb{R}$. Draw its graph.
- 18) For any base show that $\log (1+2+3) = \log 1 + \log 2 + \log 3.$
- 19) Find x, if $x = 3^{3\log_3 2}$
- 20) Show that,

$$\log |\sqrt{x^2 + 1} + x| + \log |\sqrt{x^2 + 1} - x| = 0$$

- 21) Show that, $\log \frac{a^2}{bc} + \log \frac{b^2}{ca} + \log \frac{c^2}{ab} = 0$
- 22) Simplify, $\log(\log x^4) \log(\log x)$.
- 23) Simplify

$$\log_{10}\frac{28}{45} - \log_{10}\frac{35}{324} + \log_{10}\frac{325}{432} - \log_{10}\frac{13}{15}$$

- 24) If $\log\left(\frac{a+b}{2}\right) = \frac{1}{2}(\log a + \log b)$, then show that a=b
- 25) If $b^2=ac$. prove that, $\log a + \log c = 2\log b$
- 26) Solve for x, $\log_x (8x 3) \log_x 4 = 2$
- 27) If $a^2 + b^2 = 7ab$, show that,

$$\log\left(\frac{a+b}{2}\right) = \frac{1}{2}\log a + \frac{1}{2}\log b$$

28) If
$$\log\left(\frac{x-y}{5}\right) = \frac{1}{2}\log x + \frac{1}{2}\log y$$
, show that $x^2 + y^2 = 27xy$.

- 29) If $\log_3 [\log_2(\log_3 x)] = 1$, show that x = 6561.
- 30) If $f(x) = \log(1-x)$, $0 \le x < 1$ show that

$$f\left(\frac{1}{1+x}\right) = f(1-x) - f(-x)$$

31) Without using log tables, prove that

$$\frac{2}{5} < \log_{10} 3 < \frac{1}{2}$$

32) Show that

$$7 \log\left(\frac{15}{16}\right) + 6 \log\left(\frac{8}{3}\right) + 5 \log\left(\frac{2}{5}\right) + \log\left(\frac{32}{25}\right)$$
$$= \log 3$$

33) Solve:
$$\sqrt{\log_2 x^4} + 4 \log_4 \sqrt{\frac{2}{x}} = 2$$

- 34) Findvalue of $\frac{3 + \log_{10} 343}{2 + \frac{1}{2} \log_{10} \left(\frac{49}{4}\right) + \frac{1}{2} \log_{10} \left(\frac{1}{25}\right)}$
- 35) If $\frac{\log a}{x+y-2z} = \frac{\log b}{x+y-2x} = \frac{\log c}{x+y-2y}$, show that abc = 1.
- 36) Show that, $\log_v x^3 \cdot \log_z y^4 \cdot \log_x z^5 = 60$
- 37) If $\frac{\log_2 a}{4} = \frac{\log_2 b}{6} = \frac{\log_2 c}{3k}$ and $a^3b^2c = 1$ find the value of k.
- 38) If $a^2 = b^3 = c^4 d^5$, show that $\log_a bcd = \frac{47}{30}$.
- 39) Solve the following for x, where |x| is modulus function, [x] is greatest interger function, $\{x\}$ is a fractional part function.

a)
$$1 < |x - 1| < 4$$
 c) $|x^2 - x - 6| = x + 2$
c) $|x^2 - 9| + |x^2 - 4| = 5$
d) $-2 < [x] \le 7$ e) $2[2x - 5] - 1 = 7$
f) $[x^2] - 5 [x] + 6 = 0$
g) $[x - 2] + [x + 2] + \{x\} = 0$
h) $\left[\frac{x}{2}\right] + \left[\frac{x}{3}\right] = \frac{5x}{6}$

40) Find the domain of the following functions.

a)
$$f(x) = \frac{x^2 + 4x + 4}{x^2 + x - 6}$$

b) $f(x) = \sqrt{x - 3} + \frac{1}{\log(5 - x)}$
c) $f(x) = \sqrt{1 - \sqrt{1 - x^2}}$
d) $f(x) = x!$

e)
$$f(x) = {}^{5-x}P_{x-1}$$

f) $f(x) = \sqrt{x - x^2} + \sqrt{5 - x}$

g) $f(x) = \sqrt{\log(x^2 - 6x + 6)}$

41) Find the range of the following functions.

a) f(x) = |x-5| b) $f(x) = \frac{x}{9+x^2}$ c) $f(x) = \frac{1}{1+\sqrt{x}}$ d) f(x) = [x]-x

e)
$$f(x) = 1 + 2^x + 4^x$$

42) Find $(f \circ g)(x)$ and $(g \circ f)(x)$

a)
$$f(x) = e^{x}$$
, $g(x) = \log x$
b) $f(x) = \frac{x}{x+1}$, $g(x) = \frac{x}{1-x}$

43) Find f(x) if a) $g(x) = x^2 + x - 2$ and $(g \circ f)(x)$ $= 4x^2 - 10x + 4$ (b) $g(x) = 1 + \sqrt{x}$ and $f[g(x)] = 3 + 2\sqrt{x} + x$.

44) Find
$$(f \circ f)(x)$$
 if
(a) $f(x) = \frac{x}{\sqrt{1+x^2}}$
(b) $f(x) = \frac{2x+1}{3x-2}$

**