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9.1 Introduction:

“See it to believe it” is a popular saying. 
In order to see, we need light. What exactly 
is light and how are we able to see anything? 
We will explore it in this and next standard. 
We know that acoustics is the term used for 
science of sound. Similarly, optics is the term 
used for science of light. There is a difference 
in the nature of sound waves and light waves 
which you have seen in chapter 8 and will learn 
in chapter 13.

9.2 Nature of light:

Earlier, light was considered to be that form 
of radiant energy which makes objects visible 
due to stimulation of retina of the eye. It is a 
form of energy that propagates in the presence 
or absence of a medium, which we now call 
waves. At the beginning of the 20th century, it 
was proved that these are electromagnetic (EM) 
waves. Later, using quantum theory, particle 
nature of light was established. According to 
this, photons are energy carrier particles. By an 
experiment using countable number of photons, 
it is now an established fact that light possesses 
dual nature. In simple words we can say that  
light consists of energy carrier photons guided 
by the rules of EM waves. In vacuum, these 
waves (or photons) travel with a speed of  

In  a  material  medium,  the  speed  of  EM

 waves is given by              ,

where permittivity ε and permeability µ  
are constants  which depend on the electric 
and magnetic properties of the medium. 

The ratio n
c

=
v

 is called the absolute 
refractive index and is the property of the 
medium.

 1. What are laws of reflection and refraction? 
 2. What is dispersion of light?
 3. What is refractive index? 

Can you recall?

Optics9. 

c = 299792458 m s-1 According to Einstein’s 
special theory of relativity, this is the maximum 
possible speed for any object. For practical 
purposes we write it as c = 3×108 m s-1.

Commonly observed phenomena 
concerning light can be broadly split into three 
categories.  

 (I)  Ray optics or geometrical optics: A 
particular direction of propagation of 
energy from a source of light is called 
a ray of light. We use ray optics for 
understanding phenomena like reflection, 
refraction, double refraction, total 
internal reflection, etc.  

 (II) Wave optics or physical optics: For 
explaining phenomena like interference, 
diffraction, polarization, Doppler effect, 
etc., we consider light energy to be in the 
form of EM waves. Wave theory will be 
further discussed in XIIth standard.

 (III) Particle nature of light: Phenomena like 
photoelectric effect, emission of spectral 
lines, Compton effect, etc. cannot be 
explained by using classical wave theory. 
These involve the interaction of light with 
matter. For such phenomena we have to 
use quantum nature of light. Quantum 
nature of light will be discussed in XIIth 

standard.

9.3 Ray optics or geometrical optics:

In geometrical optics, we mainly study 
image formation by mirrors, lenses and prisms. 
It is based on four fundamental laws/ principles 
which you have learnt in earlier classes.

 (i) Light travels in a straight line in a 
homogeneous and isotropic medium. 
Homogeneous means that the properties 
of the medium are same every where in 
the medium and isotropic means that the 

 4. What is total internal reflection?
 5. How does light refract at a curved surface? 
 6. How does a rainbow form?
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properties are the same in all directions.

(ii) Two or more rays can intersect at a point 
without affecting their paths beyond that 
point.

(iii)  Laws of reflection: 

 (a)  Reflected ray lies in the plane formed by 
incident ray and the normal drawn at the 
point of incidence; and the two rays are on 
either side of the normal.

 (b) Angles of incidence and reflection are 
equal. 

 (iv) Laws of refraction: These apply at the 
boundary between two media

 (a)  Refracted ray lies in the plane formed by 
incident ray and the normal drawn at the 
point of incidence; and the two rays are on 
either side of the normal.

 (b) Angle of incidence  (θ 1
 in a medium of  

refractive index n
1
) and angle of refraction 

(θ
2
 in medium of refractive index n

2
) are 

related by Snell’s law, given by 

  ( n 1
)sinθ 1 =  

( n 2
)sin θ 2

.

Example 9.1: Thickness of the glass of a 
spectacle is 2 mm and refractive index of its 
glass is 1.5. Calculate time taken by light to 
cross this thickness. Express your answer with 
the most convenient prefix attached to the unit 
‘second’.

Solution:

Speed of light in vacuum, c = 3×108m/s 

n
glass

 = 10.5

∴ Speed of light in glass =

 

c

nglass

�
�

� �
3 10

1 5
2 10

8
8

.
m / s

 

Distance to be travelled by light in glass,

s = 2 mm = 2×10-3 m

∴Time t required by light to travel this distance,

t
s

glass

� �
�
�

�
�

�

v
s

2 10

2 10
10

3

8
11

Most convenient prefix to express this small 
time is pico (p) = 10-12 
∴ t = 10 × 10-12 = 10 ps   
9.3.1 Cartesian sign convention:

While using geometrical optics it is 
necessary to use some sign convention. The 
relation between only the numerical values of 
u, v and f for a spherical mirror (or for a lens) 
will be different for different positions of the 
object and the type of mirror. Here u and v are 
the distances of object and image respectively 
from the optical center, and f is the focal 
length. Properly used suitable sign convention 
enables us to use the same formula for all 
different particular cases. Thus, while deriving 
a formula and also while using the formula it 
is necessary to use the same sign convention. 
Most convenient sign convention is Cartesian 
sign convention as it is analogous to coordinate 
geometry. According to this sign convention, 
(Fig. 9.1):

 
Fig. 9.1 Cartesian sign convention. 

 i)  All distances are measured from the optical 
center or pole. For most of the optical 
objects such as spherical mirrors, thin 
lenses, etc., the optical centers coincides 
with their geometrical centers.

Interestingly, all the four laws stated 
above can be derived from a single 
principle called Fermat’s (pronounced 
''Ferma'') principle. It says that “While 
travelling from one point to another by one 
or more reflections or refractions, a ray of 
light always chooses the path of least 
time”.

 Ideally it is the path of extreme time, 
i.e., path of minimum or maximum time. 
We strongly recommend you to go through 
a suitable reference book that will give 
you the proof of i = r during reflection and 
Snell’s law during refraction using 
Fermat’s principle.

Do you know ?



161

 ii)  Figures should be drawn in such a way 
that the incident rays travel from left to 
right. A diverging beam of incident rays 
corresponds to a real point object (Fig. 9.2 
(a)), a converging beam of incident rays 
corresponds to a virtual object (Fig. 9.2 
(b)) and a parallel beam corresponds to an 
object at infinity. Thus, a real object should 
be shown to the left of pole (Fig. 9.2 (a)) 
and virtual object or image to the right of 
pole. (Fig. 9.2 (b)) 

Fig. 9.2: (a) Diverging beam from a real 
object

Fig. 9.2: (b) Converging beam towards a 
virtual object.

 iii) x-axis can be conveniently chosen as the 
principal axis with origin at the pole.

 iv) Distances to the left of the pole are 
negative and those to the right of the pole 
are positive.

 v) Distances above the principal axis (x-axis) 
are positive while those below it are 
negative. 

Unless specially mentioned, we shall always 
consider objects to be real for further 
discussion.

9.4 Reflection:

9.4.1 Reflection from a plane surface:

 a)  If the object is in front of a plane reflecting 
surface, the image is virtual and laterally 
inverted. It is of the same size as that of the 
object and at the same distance as that of 
object but on the other side of the reflecting 
surface. 

 b)  If we are standing on the bank of a still 
water body and look for our image formed 
by water (or if we are standing on a plane 
mirror and look for our image formed by 
the mirror), the image is laterally reversed, 
of the same size and on the other side.

 c)  If an object is kept between two plane 
mirrors inclined at an angle θ  (like in a 
kaleidoscope), a number of images are 
formed due to multiple reflections from 
both the mirrors. Exact number of images 
depends upon the angle between the mirrors 
and where exactly the object is kept. It can 
be obtained as follows (Table 9.1):

Calculate n �
360

�
Let N be the number of images seen.

 (I) If n is an even integer, N� �� �n 1 , 
irrespective of where the object is. 

 (II)  If n is an odd integer and object is exactly 
on the angle bisector, N � �� �n 1 .

 (III) If n is an odd integer and object is off the 
angle bisector, N =  n

 (IV) If n is not an integer, N =  m, where m is 
integral part of n.

Table 9.1 

Angle 
θ 0

 
n �

360

�
Position of 

the object
N

120 3
On angle 
bisector

2

120 3
Off angle 
bisector

3

110 3.28 Anywhere 3

90 4 Anywhere 3

80 4.5 Anywhere 4

72 5
On angle 
bisector

4

72 5
Off angle 
bisector

5

60 6 Anywhere 5

50 7.2 Anywhere 7
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(concave or convex) mirror is related to object 
distance and image distance as

 1 1 1

f u
� ��

v
    --- (9.1)

Fig. 9.3 (a): Parallel rays incident from left 
appear to be diverging from F, lying on the 
positive side of origin (pole).

Fig. 9.3 (b): Parallel rays incident from 
left appear to converge at F, lying on the 
negative side of origin (pole).

By a small mirror we mean its aperture 
(diameter) is much smaller (at least one tenth) 
than the values of u, v and f.

Focal power: Converging or diverging ability 
of a lens or of a mirror is defined as its focal 

power. It is measured as P
f

=
1

.

In SI units, it is measured as diopter. 
� � � � �1 1 1� � dioptre D m

Lateral magnification: Ratio of linear size 
of an image to that of the object, measured 
perpendicular to the principal axis, is defined as 

the lateral magnification m
u

=
v

 
For any position of the object, a convex mirror 

Example 9.2: A small object is kept 
symmetrically between two plane mirrors 
inclined at 38°. This angle is now gradually 
increased to 41°, the object being symmetrical 
all the time. Determine the number of images 
visible during the process.

Solution: According to the convention used in 
the table above, 

� � � � �38
360

38
9 470 n . �

 

∴ N = 9. This is valid till the angle is 40° as the 
object is kept symmetrically

Beyond 40°, n < 9 and it decreases upto   

 
360

41
= 8.78

. 

Hence now onwards there will be 8 images till 
41°.

9.4.2 Reflection from curved mirrors: 

In order to focus a parallel or divergent 
beam by reflection, we need curved mirrors. 
You might have noticed that reflecting mirrors 
for a torch or headlights, rear view mirrors of 
vehicles are not plane but concave or convex. 
Mirrors for a search light are parabolic. We 
shall restrict ourselves to spherical mirrors only 
which can be studied using simple mathematics. 
Such mirrors are parts of a sphere polished from 
outside (convex) or from inside (concave).  

Radius of the sphere of which a mirror 
is a part is called as radius of curvature (R) 
of the mirror. Only for spherical mirrors, half 
of radius of curvature is focal length of the 

mirror f
R

��
�
�

�
�
�2  . For a concave mirror it is 

the distance at which parallel incident rays 
converge. For a convex mirror, it is the distance 
from where parallel rays appear to be diverging 
after reflection. According to sign convention, 
the incident rays are from left to right and they 
should face the polished surface of the mirror. 
Thus, focal length of a convex mirror is positive 
(Fig 9.3 (a)) while that of a concave mirror is 
negative (Fig. 9.3 (b)).

Relation between f, u and v: 

For a point object or for a small finite 
object, the focal length of a small spherical 
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always forms virtual, erect and diminished 
image, m < 1. In the case of a concave mirror 
it depends upon the position of the object. 
Following Table 9.2 will help you refresh your 
knowledge.

Table 9.2

Concave mirror (f negative)

Position of 
object

Position of 
image

Real(R) 
or 

Virtual
(V)

Lateral 
magnifi-
-cation

u =  ∞ v f= R m =  0
u f> 2 2 f v f> > R m < 1
u =  2f v  =  2f R m =  1
2 f u f> > v f> 2 R m > 1
u f= v � � R m � �

u f< v u> V m > 1

Example 9.3: A thin pencil of length 20 cm 
is kept along the principal axis of a concave 
mirror of curvature 30 cm. Nearest end of the 
pencil is 20 cm from the pole of the mirror. 
What will be the size of image of the pencil?

Solution: R = 30 cm  

     f = R/2 =-15 cm ... (Concave mirror) 

 
1 1 1

f u
� ��

v
For nearest end, u = u

1
 = - 20 cm . Let the image 

distance be v
1
 

�
�

� �
�

� � �
1

15

1 1

20
60

1
1� ��� �

v
v cm

 
Nearest end is at 20 cm and pencil itself is 20 
cm long. Hence farthest end is 20 + 20 =  40 
cm � �u2  
Let the image distance be v

2

       ��
� �

�
� � �

1

15

1 1

40
24

2
2� ��� �

v
v cm�

∴ Length of the image = 60 -24 = 36 cm. 
Defects or aberration of images: The theory 
of image formation by mirrors or lenses, 
and the formulae that we have used such as  

f
R

=
2

 or 
1 1 1

f u
� ��

v
 etc. 

are based on the following assumptions: (i) 
Objects and images are situated close to the 
principal axis.

(ii) Rays diverging from the objects are confined 

to a cone of very small angle.

(iii) If there is a parallel beam of rays, it is 
paraxial, i.e., parallel and close to the principal 
axis.

However, in reality, these assumptions do 
not always hold good. This results into distorted 
or defective image. Commonly occurring 
defects are spherical aberration, coma, 
astigmatism, curvature, distortion. Except 
spherical aberration, all the other arise due to 
beams of rays inclined to principal axis. These 
are not discussed here.

Spherical aberration: As mentioned 

earlier, the relation f
R

��
�
�

�
�
�2

 giving a single 
 
point focus is applicable only for small aperture 
spherical mirrors and for paraxial rays. In reality, 
when the rays are farther from the principal axis, 
the focus gradually shifts towards pole (Fig. 
9.4). This phenomenon (defect) arises due to 
spherical shape of the reflecting surface, hence 
called  as spherical aberration. It results into a 
unsharp (fuzzy) image with unclear boundaries.

Fig. 9.4: Spherical aberration for curved 
mirrors.

The distance between F
M

 and F
P
 (Fig. 

9.4) is measured as the longitudinal spherical 
aberration. If there is no spherical aberration, 
we get a single point image on a screen placed 
perpendicular to the principal axis at that 
location, for a beam of incident rays parallel to 
the axis. In the presence of spherical aberration, 
no such point is possible at any position of the 
screen and the image is always a circle. At a 
particular location of the screen, the diameter of 
this circle is minimum. This is called the circle 
of least confusion. In the figures it is across 
AB. Radius of this circle is transverse spherical 
aberration.
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Why does a parabolic mirror not have 
spherical aberration?

Parabola is a geometrical shape drawn 
in such a way that every point on it is 
equidistant from a straight line and from a 
point. Figure 9.5 shows a parabola. Points A, 
B, C, … on it are equidistant from line RS 
(called directrix) and point F (called focus). 
Hence A′A = AF, B′B = BF, C′C = CF, …. 

RR

SS

Fig. 9.5: Single focus for parabolic mirror.
If rays of equal optical path converge 

at a point, that point is the location of real 
image corresponding to that beam of rays. 

Paths A″AA′, B″BB′. C″CC′, etc., 
are equal paths in the absence of mirror. 
If the parabola ABC… is a mirror then 
the respective optical paths will be A″AF, 
B″BF, C″CF, … and from the definition of 
parabola, these are also equal. Thus, F is the 
single point focus for entire beam parallel to 
the axis with NO spherical aberration. 

Do you know ?

In the case of curved mirrors, this defect 
can be completely eliminated by using a 
parabolic mirror. Hence surfaces of mirrors 
used in a search light, torch, headlight of a car, 
telescopes, etc., are parabolic and not spherical.

9.5 Refraction: 
Being an EM wave, the properties of light 

(speed, wavelength, direction of propagation, 
etc.) depend upon the medium through which 
it is traveling. If a ray of light comes to an 
interface between two media and enters into 
another medium of different refractive index, 
it changes itself suitable to that medium. This 
phenomenon is defined as refraction of light. 
The extent to which these properties change is 
decided by the index of refraction, 'n'. 

 (a) Logic behind the convention 1n
2
 : Letter 

n is the symbol for refractive index, 
n2  corresponds to refractive index of 
medium 2 and 1n

2
 indicates that it is 

with respect to medium 1. In this case, 
light travels from medium 1 to 2 so we 
need to discuss medium 2 in context to 
medium 1.

 (b) Dictionary meaning of the word refract 
is to change the path`. However, in 
context of Physics, we should be more 
specific. We use the word deviate for 
changing the path. During refraction at 
normal incidence, there is no change 
in path. Thus, there is refraction but 
no deviation. Deviation is associated 
with refraction only during oblique 
incidence. Deviation or changing the 
path or bending is associated with 
many phenomena such as reflection, 
diffraction, scattering, gravitational 
bending due to a massive object, etc.

Do you know ?

Absolute refractive index: 

Absolute refractive index of a medium is 
defined as the ratio of speed of light in vacuum 
to that in the given medium.

n
c

=
v  where c and v are respective speeds 

of light in vacuum and in the medium. As n 
is the ratio of same physical quantities, it is a 
unitless and dimensionless physical quantity.

For any material medium (including 
air) n > 1, i.e., light travels fastest in vacuum 
than in any material medium. Medium having 
greater value of n is called optically denser. An 
optically denser medium need not be physically 
denser, e.g., many oils are optically denser than 
water but water is physically denser than them.

Relative refractive index: 

Refractive index of medium 2 with respect 
to medium 1 is defined as the ratio of speed of 
light v

1
 in medium 1 to its speed v

2
 in medium 

2. Thus, 1
2

2

1

n
n

n
= =

v

v
1

2
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Illustrations of refraction: 1) When seen from 
outside, the bottom of a water body appears to 
be raised. This is due to refraction at the plane 
surface of water. In this case,     

n
Real depth

apparent depthwater ≅
   

 

This relation holds good for a plane 
parallel transparent slab also as shown below. 

Figure 9.6 shows a plane parallel slab of a 
transparent medium of refractive index n. A 
point object O at real depth R appears to be at 
I at apparent depth A, when seen from outside 
(air). Incident rays OA (traveling undeviated) 
and OB (deviating along BC) are used to locate 
the image. 

Fig. 9.6: Real and apparent depth.
By considering i and r to be small, we can write,

tan sin tanr
x

A
r i

x

R
i� � � � � � � � � � � �and sin  

� �
� �
� �

�

�
�
�

�
�
�

�
�
�

�
�
�

� �n
r

i

x
A
x
R

R

A

sin

sin

Real�depth

Apparent�deptth
 

2) A stick or pencil kept obliquely in a glass 
containing water appears broken as its part in 
water appears to be raised.

Example 9. 4: A crane flying 6 m above a still, 
clear water lake sees a fish underwater. For the 
crane, the fish appears to be 6 cm below the 
water surface. How much deep should the crane 
immerse its beak to pick that fish?

For the fish, how much above the water surface 
does the crane appear? Refractive index of 
water =  4/3.

Solution: For crane, apparent depth of the fish 
is 6 cm and real depth is to be determined.

For fish, real depth (height, in this case) of the 
crane is 6 m and apparent depth (height) is to 
be determined.

  

For crane, it is water with respect to air as real 
depth is in water and apparent depth is as seen 
from air  

      

� � � � � �n
R

A

R
R

4

3 6
8���� �cm

For fish, it is air with respect to water as the 
real height is in air and seen from water.

     � � � � � �n
R

A A
A

3

4

6
8���� �m

9.6 Total internal reflection: 

Fig. 9.7: Total internal reflection.

Figure 9.7 shows refraction of light 
emerging from a denser medium into a rarer 
medium for various angles of incidence. 
The angles of refraction in the rarer medium 
are larger than the corresponding angles of 
incidence. At a particular  angle of incidence i

c
 

in the denser medium, the corresponding angle 
of refraction in the rarer medium is 900. For 
angles of incidence greater than i

c
 , the angle 

of refraction become larger than 900 and the ray 
does not enter into rarer medium at all but is 
reflected totally into the denser medium. This is 

Small angle approximation: For small angles, 
expressed in radian, sin � � �� � tan . 
For example, for

 
In this case the error is 0 5236 0 5. . �� � 0.0236 in 
0.5, which is 4.72 %. 
For practical purposes we consider angles less 
than 100 where the error in using sin � ��  is 
less than 0.51 %. (Even for 600, it is still 15.7 %)
It is left to you to verify that this is almost 
equally valid for tanθ  till 200 only.
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Fig. 9.8 (a): Optical fibre construction.

Fig. 9.8 (b): Optical fibre working.

An optical fibre essentially consists of an 
extremely thin (slightly thicker than a human 
hair), transparent, flexible core surrounded 
by optically rarer (smaller refractive index), 
flexible cover called cladding. This system is 
coated by a buffer and a jacket for protection. 
Entire thickness of the fibre is less than half a 
mm. (Fig. 9.8(a)). Number of such fibres may 
be packed together in an outer cover.

An optical signal (ray) entering the core 
suffers multiple total internal reflections (Fig. 
9.8 (b)) and emerges after several kilometers 
with extremely low loss travelling with highest 
possible speed in that material ( ~ 2,00,000 
km/s for glass). Some of the advantages of 
optic fibre communication are listed below.

 (a) Broad bandwidth (frequency range): For 
TV signals, a single optical fibre can 
carry over 90000 channels (independent 
signals).

 (b) Immune to EM interference: Being 
electrically non-conductive, it is not able 
to pick up nearby EM signals.

 (c) Low attenuation loss: The loss is lower 
than 0.2 dB/km so that a single long cable 
can be used for several kilometers.

 (d) Electrical insulator: No issue with ground 
loops of metal wires or lightning.

 (e) Theft prevention: It is does not use copper 
or other expensive material.

 (f) Security of information: Internal damage is 
most unlikely.

(ii) Prism binoculars: Binoculars using 
only two cylinders have a limitation of field 
of view as the distance between the two 
cylinders can’t be greater than that between 
the two eyes. This limitation can be overcome 

In Physics the word critical is used when 
certain phenomena are not applicable or 
more than one phenomenon are applicable. 
Some examples are as follows.
 (i)  In case of total internal reflection, the 

phenomenon of reversibility of light 
is not applicable at critical angle and 
refraction is possible only for angles of 
incidence in the denser medium smaller 
than the critical angle. 

 (ii) At the critical temperature, a substance 
coexists into all the three states; 
solid, liquid and gas. At all the other 
temperatures, only two states are 
simultaneously possible. 

 (iii) For liquids, streamline flow is possible 
till critical velocity is achieved. 
At critical velocity it can be either 
streamline or turbulent.

Do you know ?

called total internal reflection. In general, there 
is always partial reflection and partial refraction 
at the interface. During total internal reflection 
TIR, it is total reflection and no refraction. The 
corresponding angle of incidence in the denser 
medium is greater than or equal to the critical 
angle. 

Critical angle for a pair of refracting media 
can be defined as that angle of incidence in the 
denser medium for which the angle of refraction 
in the rarer medium is 90°. 

Let µ be the relative refractive index 
of denser medium with respect to the rarer. 
Applying Snell’s law at the critical angle of 

incidence, iC , we can write sin ( )c i �
1

�
 as,  

                         (µ)sin (i
c
) = (1) sin 90° 

For commonly used glasses of

µ = 1.5, i
c
 = 41° 49′ ≅ 42° and for water of

� �
4

3
, i

c
 = 48° 35′ (Both, with respect to air)

9.6.1 Applications of total internal reflection: 

(i) Optical fibre: Though little costly for initial 
set up, optic fibre communication is undoubtedly 
the most effective way of telecommunication 
by way of EM waves. 
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by using two right angled glass prisms  
( iC ~ 420 ) used for total internal reflection as 
shown in the Fig. 9.9. Total internal reflections 
occur inside isosceles, right angled prisms. 

Fig. 9.9: Prism binoculars
(iii) Periscope: It is used to see the objects on 
the surface of a water body from inside water. 
The rays of light should be reflected twice 
through right angle. Reflections are similar 
to those in the binoculars (Fig 9.10) and total 
internal reflections occur inside isosceles, right 
angled prisms.

Fig. 9.10: Periscope.
Example 9.5: There is a tiny LED bulb at the 
center of the bottom of a cylindrical vessel of 
diameter 6 cm. Height of the vessel is 4 cm. The 
beaker is filled completely with an optically 
dense liquid. The bulb is visible from any 
inclined position but just visible if seen along 
the edge of the beaker. Determine refractive 
index of the liquid.

Solution: As seen from the accompanying 
figure, if the bulb is just visible from the edge, 
angle of incidence in the liquid (at the edge) 
must be the critical angle of incidence, i

C

From the dimensions given, 

tan ( ) sin ( )
sin

sin( )
liquid  c c

c

i i
i

� � � � �
�
�

3

4

3

5

90 5

3
n

9.7 Refraction at a spherical surface and 
      lenses:  

In the section 9.5 we saw that due to 
refraction, the bottom of a water body appears 

to be raised and n
Real depth

apparent depthwater =
   

  . 

However, this is valid only if we are dealing 
with refraction at a plane surface. In many cases 
such as liquid drops, lenses, ellipsoid paper 
weights, etc, curved surfaces are present and the 
formula mentioned above may not be true. In 
such cases we need to consider refraction at one 
or more spherical surfaces. This will involve 
parameters including the curvature such as 
radius of curvature, in addition to refractive 
indices.

Lenses: Commonly used lenses can be 
visualized to be consisting of intersection of 
two spheres of radii of curvature R

1
 and R

2
 or of 

one sphere and a plane surface (R = ∞) . A lens 
is said to convex if it is thicker in the middle 
and narrowing towards the periphery. A lens is 
concave if it is thicker at periphery and narrows 
down towards center. Convex lens is visualized 
to be internal cross section of two spheres (or 
one sphere and a plane surface) while concave 
lens is their external cross section (Figs. 9.11-a to 
9.11-f). Concavo-convex and convexo-concave 
lenses are commonly used for spectacles of 
positive and negative numbers, respectively. 

For lenses of material optically denser than 
the medium in which those are kept, convex 
lenses have positive focal length [according 
to Cartesian sign convention] and converge 
the incident beam while concave lenses have 
negative focal length and diverge the incident 
beam. 

For most of the applications of lenses, 
maximum thickness of lens is negligible (at 
least 50 times smaller) compared with all the 
other distances such as R

1
 and R

2
, u, v, f, etc. 

Such a lens is called as a thin lens and physical 
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center of such a lens can be assumed to be the 
common pole (or optical center) for both its 
refracting surfaces.

      

Fig. 9.11 (a): Convex 
lens as internal 
cross section of two 
spheres.

            

Fig. 9.11 (b): Concave 
lens as external cross 
section of two spheres.

       

Fig. 9.11 (c): Plano 
convex lens

          

Fig. 9.11 (d): Plano 
concave lens

              

Fig. 9.11 (e): concave-
convex lens

                 

Fig. 9.11 (f) convex-
concave lens

For any thin lens, 
1 1 1

f u
� ��

v
      --- (9.2)

If necessary, we can have a number of 
thin lenses in contact with each other having 
common principal axis. Focal power of such 
combination is given by the algebraic addition 
(by considering ± signs) of individual focal 
powers.

          ∴ 1 1 1 1 1

1 2 3

1 2 3

f f f f f

P P P P P

i

i

�
�

�
�

�

�
� � � � ��

� � � � � �

�

�    ..
 

For only two thin lenses, separated in air by 
distance d, 
1 1 1

1 2 1 2
1 2 1 2f f f

d

f f
P P dP P P� � � � � � �

 

Refraction at a single spherical surface: 
Consider a spherical surface YPY’ of radius of 
curvature R, separating two transparent media 
of refractive indices n1  and n2 �respectively with 
n1 < n2 . P is the pole and X’PX is the principal 
axis. A point object O is at an object distance 
-u from the pole, in the medium of refractive 
index n1 . Convexity or concavity of a surface 
is always with respect to the incident rays, i.e., 
with respect to a real object. Hence in this case 
the surface is convex (Fig. 9.12).

Fig. 9.12: Refraction at a single refracting 
surface.

To locate its image and in order to minimize 
spherical aberration, we consider two paraxial 
rays. The ray OP along the principal axis 
travels undeviated along PX. Another ray OA 
strikes the surface at A. CAN is the normal 
from center of curvature C of the surface at A. 
Angle of incidence in the medium n

1
 at A is i.  

Unless mentioned specifically, we assume 
lenses to be made up of optically denser 
material compared to the medium in which 
those are kept, e.g., glass lenses in air or in 
water, etc. As special cases we may consider 
lenses of rarer medium such as an air lens 
in water or inside a glass. A spherical 
hole inside a glass slab is also a lens of 
rarer medium. In such case, physically (or 
geometrically or shape-wise) convex lens 
diverges the incident beam while concave 
lens converges the incident beam.

For lenses, the relations between  u, v, R and f 
depend also upon the refractive index n  of the 

material of the lens. The relation f
R

��
�
�

�
�
�2  

does NOT hold good for lenses. Below we shall 
derive the necessary relation by considering 
refraction at the two surfaces of a lens 
independently. 
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As n
1
< n

2 
, the ray deviates towards the normal, 

travels along AZ and cuts the principal axis at 
I. Thus, real image of point object O is formed 
at I. Angle of refraction in medium n

2 
 is r. 

According to Snell’s law,

 n i1 sin � � �  n r2sin � �   --- (9.3)

Let  be the angles subtended by 
incident ray, normal and refracted ray with the 
principal axis.
� � � � �i r� �� � � �and�

For paraxial rays, all these angles are 
small and PA can be considered as an arc for 

.

 

Also, � � �
�

arc AP

PO

arc AP

u

� �
,�

� � �
arc AP

PC

arc AP

R

   
  and

� � �
arc AP

PI

arc AP� �

v  
� �n i n r1 2  
� �� � � �� �n n1 2� � � �

 
� �� � � �n n n n2 1 2 1� � �

Substituting  and canceling 'arc AP', 
we get 

 

n n

R

n n

u
2 1 2 1�

� �
v    

--- (9.4)

Example 6: A glass paper-weight (n =1.5) of 
radius 3 cm has a tiny air bubble trapped inside 
it. Closest distance of the bubble from the 
surface is 2 cm. Where will it appear when seen 
from the other end (from where it is farthest)?

Solution: Accompanying Figure below 
illustrates the location of the bubble. 

According to the symbols used in the Eq. 
(9.4), we get,

n2 1= =refractive index�of�the�other�medium �

u cm� �� � �4  
v = ? 
R cm� �� � �3  
n n

R

n n

u
2 1 2 1�

� �
v  

�
�
�

� �
�

� � � � ���
. .

�� ��� � . �
1 1 5

3

1 1 5

4

1

6

1 3

8
4 8

v v
v cm

 

In this case apparent depth is NOT less 
than real depth. This is due to curvature of the 
refracting surface. 

In this case (Fig. 9.12) we had considered 
the object placed in rarer medium, real image 
in denser medium and the surface facing the 
object to be convex. However, while deriving 
the relation, all the symbolic values (which 
could be numeric also) were substituted as 
per the Cartesian sign convention (e.g. ‘u’ 
as negative, etc.). Hence the final expression 
(Eq. 9.4) is applicable to any surface 
separating any two media, and real or virtual 
image provided you substitute your values 
(symbolic or numerical) as per Cartesian 
sign convention. The only restriction is that 
n

1 
is for medium of real object and n

2
 is the 

other medium (not necessarily the medium 
of image). Only in the case of real image, it 
will be in medium n

2
. If virtual, it will be in 

the medium n
1 
(with image distance negative 

how do you justify this?).
We strongly suggest you to do the 

derivations yourself for any other special 
case such as object placed in the denser 
medium, virtual image, concave surface, etc. 
It must be remembered that in any case you 
will land up with the same expression as in 
Eq. (9.4).

Lens makers’ equation: Relation between 
refractive index (n), focal length (f ) and radii of 
curvature R

1
 and R

2
  for a thin lens.

Consider a lens of radii of curvature R
1
 and 

R
2
 kept in a medium such that n is refractive 
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index of material of the lens with respect to the 
outside medium. Assuming the lens to be thin, 
P is the common pole for both the surfaces. O is 
a point object on the principal axis at a distance 
u from P. First refracting surface of the lens 
of radius of curvature R1  faces the object (Fig 
9.13).

Fig. 9.13: Lens maker's equation.

Axial ray OP travels undeviated. Paraxial 
ray OA deviates towards normal and would 
intersect axis at I

1
, in the absence of second 

refracting surface. PI
1 
= v

1
 is the image distance 

for intermediate image I
1
.

Thus, the symbols to be used in Eq. (9.4) are

     n n2 = ,� n1 1= ,� R R= 1,� u u= , v = v1

∴
 

n

R

n

u

�
� �

� �
1 1

1 1v
    

--- (9.5)

(Not that, in this case, we are not substituting 
the algebraic values but just using different 
symbols.) 

Before reaching I
1
, the ray PI

1
 is intercepted 

at B by the second refracting surface. In this 
case, the incident rays AB and OP are in the 
medium of refractive index n and converging 
towards I

1
. Thus, I

1
 acts as virtual object for 

second surface of radius of curvature (R
2
) and 

object distance is u �� �v1 .  As the incident rays 
are in the medium of refractive index n, this 
is the medium of (virtual) object ∴ n

1 
= n and 

refractive index of the other medium is n
2
 = 1. 

After refraction, the ray bends away from 
the normal and intersects the principal axis at I 
which is the real image of object O formed due 
to the lens. ∴ PI = v.

Substituting all these symbols in Eq. (9.4), 
we get

 
1 1 1

2 2 1

�
�

�
�

� �
� �

n

R

n

R

n

v v
  --- (9.6)

Adding Eq. (9.5) and (9.6), we get,

 
n

R R u
�� � �

�

�
�

�

�
� � �1

1 1 1 1

1 2 v
  

For 

 � � �� � �
�

�
�

�

�
��

1
1

1 1

1 2f
n

R R
 --- (9.7)

For preparing spectacles, it is necessary 
to grind the glass (or acrylic, etc.) for having 
the desired radii of curvature. Equation (9.7) 
can be used to calculate the radii of curvature 
for the lens, hence it is called the lens makers’ 
equation. (It should be remembered that while 
solving problems when you are using equations 
9.1, 9.2, 9.4, 9.7, etc., we will be substituting the 
values of the corresponding quantities. Hence 
this time it is algebraic substitution, i.e., with 

Special cases:

Most popular and most common special 
case is the one in which we have a thin, 
symmetric, double lens. In this case, R R1 2� �and  
are numerically equal. 

(A) Thin, symmetric, double convex lens: R
1
 

is positive, R
2
 is negative and numerically 

equal. Let R R R1 2= = .

� � �� � �
�

�
�
�

�
�
� �

�� �
�
1

1
1 1 2 1

f
n

R R

n

R  
Further, for popular variety of glasses, 
n ≅ 1 5. . In such a case, f R= .
(B) Thin, symmetric, double concave lens: 
R

1
 is negative, R

2
 is positive and numerically 

equal. Let R R R1 2= = .

� � �� �
�

��
�
�

�
�
� �

�� �
�

�
1

1
1 1 2 1

f
n

R R

n

R   

Further if 
(C) Thin, planoconvex lenses: One radius is 

R and the other is ∞. � �
�1 1

f

n

R

Further if 

proper ±  sign)

Example 7: A dense glass double convex lens 
n �� �2  designed to reduce spherical aberration 

has |R
1
|:|R

2
|=1:5. If a point object is kept 15 cm 

in front of this lens, it produces its real image at 
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7.5 cm. Determine R
1
 and R

2
.

Solution: u = - 15 cm, v = + 7.5 cm (real image 
is on opposite side).

      

1 1 1 1 1

7 5

1

15
5

f u f
f� � � � �

�
� � �� ��� �

.
��� �

v
cm

 
The lens is double convex. Hence, R

1
 is positive 

and R
2
 is negative. Also, R R2 15=  and n = 2.

n
R R f

R R

�� � �
�

�
�

�

�
� �

� �� � �
�� �

�

�
��

�

�
�� �

�� �

1
1 1 1

2 1
1 1

5

1

5

1

1 2

1 1

�

� ���

66

5

1

5
6 30

1
1 2R

R R
�

�
�

�

�
� � � � � ���� � ��� �cm cm

 9.8 Dispersion of light and prisms: 
The colour of light that we see depends 

upon the frequency of that ray (wave). The 
refractive index of a material also depends upon 
the frequency of the wave and increases with 
frequency. Obviously refractive index of light 
is different for different colours. As a result, 
for an obliquely incident ray, the angles of 
refraction are different for each colour and they 
separate (disperse) as they travel along different 
directions. This phenomenon is called angular 
dispersion Fig 9.14. 

Fig. 9.14: Angular dispersion at a single 
surface.

If a polychromatic beam of light (bundle of 
rays of different colours) is obliquely incident 
upon a plane parallel transparent slab, emergent 
beam consists of all component colours 
separated out. However, in this case all those are 
parallel to each other and also parallel to initial 
direction. This is lateral dispersion which is 
measured as the perpendicular distance between 
the direction of incident ray and respective 
directions of dispersed emergent rays (L

R 
and 

L
V
) Fig 9.15. For it to be easily detectable, the 

parallel surfaces must be separated over very 
large distance and i should be large.

Fig. 9.15: Lateral dispersion due to plane 
parellal slab.

Example 8: A fine beam of white light is 
incident upon the longer side of a plane parallel 
glass slab of breadth 5 cm at angle of incidence 
600. Calculate angular deviation of red and 
violet rays within the slab and lateral dispersion 
between them as they emerge from the opposite 
side. Refractive indices of the glass for red and 
violet are 1.51 and 1.53 respectively. 

Solution: As shown in the Fig. 9.15 above, 
VM =  L

V
 and RT =  L

R
 give respective lateral 

deviations for violet and red colours and L
VR

 =  
L LV R-  is the lateral dispersion between these 
colours. n

R
 = 1.51, n

V
 = 1.53 and i = 60° 

� � � �

� � �

sin
sin sin

.
.

sin
sin sin

.
.

r
i

n

r
i

n

R
R

V
V

60

1 51
0 5735

60

1 53
0 5

0

0

666

� � � �

� � � � �

� �r R r r

i r i r

R RV R V

R V

V
35 34 28

25 25 3

320 0

0 0

� � ��

� ,

’’and

  

�

22’

� � � �� �� � �
� � �� �� � �

� sin . �

sin . �

L i r

L i r

R R

V V

RT AR cm�

VM AV cm

2 58

2 58
  

It shows that the lateral dispersion is too 
small to detect.
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In order to have appreciable and observable 
dispersion, two parallel surfaces are not useful. 
In such case we use prisms, in which two 
refracting surfaces inclined at an angle are 
used. Popular variety of prisms are having 
three rectangular surfaces forming a triangle. 
At a time two of these are taking part in the 
refraction. The one, not involved in refraction is 
called base of the prism. Fig 9.16.

Fig. 9.16: Prism consisting of three plane 
surfaces.

Any section of prism perpendicular to the base 
is called principal section of the prism. Usually 
we consider all the rays in this plane. Fig 9.17 a 
and 9.17 b show refraction through a prism for 
monochromatic and white beams respectively. 
Angular dispersion is shown for white beam. 

Fig. 9.17 (a):   Refraction through a prism 
(monocromatic light).

Fig. 9.17 (b): Angular dispersion through a 
prism. (white light).

Relations between the angles involved: 
Figure 9.18 shows principal section ABC of a 
prism of absolute refractive index n kept in air. 
Refracting surfaces AB and AC are inclined at 
angle A, which is refracting angle of prism or 
simply ‘angle of prism’. Surface BC is the base. 
A monochromatic ray PQ obliquely strikes first 

reflecting surface AB. Normal passing through 
the point of incidence Q is MQN. Angle of 
incidence at Q is i. After refraction at Q, the ray 
deviates towards the normal and strikes second 
refracting surface AC at R which is the point 
of emergence. MRN is the normal through R. 
Angles of refraction at Q and R are r

1
 and r

2
 

respectively. 

Fig. 9.18:  Deviation through a prism.

After R, the ray deviates away from normal and 
finally emerges along RS making e as the angle 
of emergence. Incident ray PQ is extended as 
QT. Emergent ray RS meets QT at X if traced 
backward. Angle TXS is angle of deviation δ .

∠ AQN =  � ��ARN 900    ……   (Angles at 
normal)

∴ From quadrilateral AQNR, 

 A +   ∠ QNR = 1800      ---   (9.8)

From ∆ QNR, r r1 2+ + ∠ QNR = 1800  ---    (9.9)

∴ From Eqs. (9.8) and (9.9),

  A r r� �1 2     ---   (9.10)

Angle δ  is exterior angle for triangle XQR.

  

�� �� �

� �� � � �� � �
� �� � � �� � �

� � �

�

XQR XRQ �

�

�

i r e r

i e r r

1 2

1 2

Hence, using Eq. (9.10), i e A�� � � � � � �
 � � � �i e A �       --- (9.11)
Deviation curve, minimum deviation and 
prism formula: From the relations (9.10) and 
(9.11), it is clear that δ ,� ,� � �e r r1 2and  depend upon 
i, A and n. After a certain minimum value of 
angle of incidence i

min
, the emergent ray is 

possible. This is because of the fact that for  
i< i

min
 , r

2
 > i

c
 and there is total internal reflection 

at the second surface and there is no emergent 
ray. This will be shown later. Then onwards, 

n
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as i increases, r
1
 increases as 

sin

sin

 i

r
n

1

=  but r
2
 

and e decrease. However, variation in δ  with 
increasing i is different. It is as plotted in the 
Fig. 9.19.

Fig. 9.19: Deviation curve for a prism.
It shows that, with increasing values of i, 

the angle of deviation δ decreases initially to 
a certain minimum �m� �  and then increases. 
It should also be noted that the curve is not a 
symmetric parabola, but the slope in the part 
after is less. It is clear that except at � �� m  , 
(Angle of minimum deviation) there are two 
values of i for any given δ .�By applying the 
principle of reversibility of light to path PQRS 
it is obvious that if one of these values is i,  
the other must be e and vice versa. Thus at 
� �� m , we have i e= .� Also, in this case, r

1
 = r

2
 

and A = r
1
 + r

2
 = 2r � �� �r

A

2
Only in this case QR is parallel to base BC and 
the figure is symmetric. 

Using these in Eq. (9.11), we get,

i i A i
A

m
m� � � � �

�� �
�

�
�

2
According to Snell’s law,

     

� �

��
�
�

�
�
�

�
�
�

�
�
�

n

A

A

msin

sin

�
2

2   
---  (9.12)

Equation (9.12) is called prism formula.
Example 9.9: For a glass (n =1.5) prism having 
refracting angle 600, determine the range of 
angle of incidence for which emergent ray 
is possible from the opposite surface and the 
corresponding angles of emergence. Also 
calculate the angle of incidence for which  
i = e. How much is the corresponding angle of 
minimum deviation?

(I) Grazing emergence and minimum angle 
of incidence: At the point of emergence, the 
ray travels form a denser medium into rarer 
(popular prisms are of denser material, kept 

in rarer). Thus if r n2
1 1

� �
�
�

�
�
�

�sin �is the critical 
angle, the angle of emergence e = 900 . This 
is called grazing emergence or we say that 
the ray just emerges. Angle of prism A is 
constant for a given prism and A r r� �1 2 . 
Hence the corresponding r1  and i will have 
their minimum possible values.

 

(II) For commonly used glass prisms, 

n = 1.5, sin sin� ��
�
�

�
�
� �

�
�
�

�
�
�

� � � �

1 1

0
2

1 1

1 5

41 49

n

r
max

.
'   

If prism is symmetric (equilateral), 

A � ’ ’� � � � �60 60 41 49 18 110
1

0 0 0r

 
� � �imin � .’27 55 280 0

(III) For a symmetric (equilateral) prism, 
the prism formula can be written as

n

m m

�

��
�
�

�
�
�

�
�
�

�
�
�

�
��

�
�

�
�
�

� �

�

sin

sin

sin

sin

s

60

2
60
2

30
2

30

2

� �

   iin 30
2

��
�
�

�
�
�

�m

(IV) For a prism of denser material, 
kept in a rarer medium, the incident ray 
deviates towards the normal during the 
first refraction and away from the normal 
during second refraction. However, during 
both the refractions it deviates towards the 
base only. 
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Solution: As shown in the box above, 
imin = 27 550 ' . Angle of emergence for this is 
emax = 900 .

From the principle of reversibility of light, 
i and emax min= =90 27 550 0�� �� ’

Also, from the box above,

n

m

m

�

��
�
�

�
�
�

�
�
�

�
�
�

�
��

�
�

�
�
�

� �
�

sin

sin

sin

sin
sin

60

2
60
2

30
2

30
2 3

�

�

00
2

��
�
�

�
�
�

�m

 
i e A� � ��    and  i e m� � for � �� �   
∴ i + i = 60 + 37° 10′ = 97°10′ ∴ i = 48°35′
Thin prisms: Prisms having refracting angle 
less than 100 A �� �100 �are called thin prisms. 
For such prisms we can comfortably use  
sin � �� . For such prisms to deviate the incident 
ray towards the base during both refractions, it 
is essential that i should also be less than 100 so 
that all the other angles will also be small.
Thus 

� � �i nr e nr1 2 and �

Using these in Eq. (9.11), we get,
i e nr nr n r r nA A� � � � �� � � � �1 2 1 2 �

� � �� �� A n 1       --- (9.13)

A and n are constant for a given prism. Thus, 
for a thin prism, for small angles of incidences, 
angle of deviation is constant (independent of 
angle of incidence).
Angular dispersion and mean deviation: 
As discussed earlier, if a polychromatic beam 
is incident upon a prism, the emergent beam 
consists of all the individual colours angularly 

separated. This is angular dispersion (Fig. 9.20).

Fig. 9.20: Angular dispersion through a 
prism.

It is measured for any two component 
colours. 

� � �� � �21 2 1

Normally we do it for extreme colours. 
For white light, violet and red are the 

extreme colours.
� � �� � �VR V R  

Using deviation for thin prism (Eq. 9.13), we 
can write
� � � � �� � � �� �
� �� �
� � �21 2 1 2 1

2 1

1 1A n A n

A n n

where n
1
 and n

2
 are refractive indices for the 

two colours.
Also, 

� � �VR V R V R

V R

� � � �� � � �� �
� �� �

A n A n

A n n

1 1

--- (9.14)

Yellow is practically chosen to be the mean 
colour for violet and red. 

This gives mean deviation

 �
� �

�VR
V R

Y Y�
�

� � �� �
2

1A n          --- (9.15)

 (i)  If you see a rainbow widthwise, yellow 
appears to be centrally located. Hence 
angular deviation of yellow is average 
for the entire colour span. This may be 
the reason for choosing yellow as the 
mean colour. Remember, red band is 
widest and violet is much thinner than 
blue. 

 (ii) While obtaining the expression for ω, 
we have used thin prism formula for δ . 
However, the expression for ω  (equation 
9.16) is valid as well for equilateral 
prisms or right-angled prisms.

Do you know ?

n
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Dispersive power: Ability of an optical 
material to disperse constituent colours is its 
dispersive power. It is measured for any two 
colours as the ratio of angular dispersion to the 
mean deviation for those two colours. Thus, for 
the extreme colours of white light, dispersive 
power is given by

�
� �
� �

� �
�

�
�� �
��

��
�
��

�
�

�
�� �
�� �

�
�
�

V R

V R

V R

Y

V R

Y

V R

Y

2

1 1
   

A n n

A n

n n

n
   

--- (9.16)

As ω is the ratio of same physical quantities, 
it is unitless and dimensionless quantity. From 
the expression in terms of refractive indices 
it should be understood that dispersive power 
depends only upon refractive index (hence 
material only) and not upon the dimensions of 
prism. For commonly used glasses it is around 
0.03.

Example 10: For a dense flint glass prism of 
refracting angle 100, obtain angular deviation 
for extreme colours and dispersive power of 
dense flint glass. (
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(This is much higher than popular crown glass)

9.9 Some natural phenomena due to Sunlight: 

Mirage: On a hot clear Sunny day, along 
a level road, a pond of water appears to be 
there ahead. However, if we physically reach 
the spot, there is nothing but the dry road and 
water pond again appears ahead. This illusion 

is called a mirage (Fig. 9.21). 

Fig. 9.21: The Mirage.

On a hot day the air in contact with the 
road is hottest and as we go up, it gets gradually 
cooler. The refractive index of air thus increases 
with height. As shown in the figure, due to this 
gradual change in the refractive index, the ray of 
light coming from the top of an object becomes 
more and more horizontal as it almost touches 
the road. For some reason (mentioned later) it 
bends above. Then onwards, upward bending 
continues due to denser air. As a result, for an 
observer, it appears to be coming from below 
thereby giving an illusion of reflection from an 
(imaginary) water surface.

Rainbow: Undoubtedly, rainbow is an eye-
catching phenomenon occurring due to rains 
and Sunlight. It is most popular because it is 
observable from anywhere on the Earth. A 
few lucky persons might have observed two 
rainbows simultaneously one above the other. 
Some might have seen a complete circular 
rainbow from an aeroplane (Of course, this time 
it’s not a bow!). Optical phenomena discussed 
till now are sufficient to explain the formation 
of a rainbow. 

The facts to be explained are: 

 (i) It is seen during rains and on the opposite 
side of the Sun.

 (ii)  It is seen only during mornings and 
evenings and not throughout the day.

 (iii)  In the commonly seen rainbow red arch is 
outside and violet is inside.

 (iv) In the rarely occurring concentric 
secondary rainbow, violet arch is outside 
and red is inside.

 (v) It is in the form of arc of a circle.

 (vi) Complete circle can be seen from a higher 
altitude, i.e., from an aeroplane.
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 (vii) Total internal reflection is not possible in 
this case.

Conditions necessary for formation of a 
rainbow: Light shower with relatively large 
raindrops, morning or evening time and enough 
Sunlight.

Optical phenomena involved: During the 
formation of a rainbow, the rays of Sunlight 
incident on water drops, deviate and disperse 
during refraction, internally (NOT total 
internally) reflect once (for primary rainbow) 
or twice (for secondary rainbow) and finally 
refract again into air. At all stages there 
is angular dispersion which leads to clear 
separation of the colours.

Primary rainbow: Figure 9.22 (a) shows the 
optical phenomena involved in the formation of 
a primary rainbow due to a spherical water drop. 

Possible reasons for the upward bending 
at the road during mirage could be: 
 (i)  Angle of incidence at the road is 

glancing. At glancing incidence, the 
reflection coefficient is very large 
which causes reflection.

 (ii)  Air almost in contact with the road is 
not steady. The non-uniform motion of 
the air bends the ray upwards and once 
it has bent upwards, it continues to do 
so.

 (iii) Using Maxwell’s equations for EM 
waves, correct explanation is possible 
for the reflection. 
It may be pointed out that total internal 

reflection is NEVER possible here because 
the relative refractive index is just less than 1 
and hence the critical angle (discussed in the 
article 9.6) is also approaching 900.

Do you know ?

White ray AB from the Sun strikes from upper 
portion of a water drop at an incident angle i. 
On entering into water, it deviates and disperses 
into constituent colours. Extreme colours 
violet(V) and red(R) are shown. Refracted rays 
BV and BR strike the opposite inner surface 
of water drop and suffer internal (NOT total 
internal) reflection. These reflected rays finally 

emerge from V′ and R′ and can be seen by an 
observer on the ground. For the observer they 
appear to be coming from opposite side of 
the Sun. Minimum deviation rays of red and 
violet colour are inclined to the ground level at  
θ

R
 = 42.8° ≅ 43° and θ

V
 = 40.8 ≅ 41° respectively.  

As a result, in the ‘bow’ or arch, the red is above 
or outer and violet is lower or inner.

Fig. 9.22 (a): Formation of primary rainbow.

Fig. 9.22 (b): Formation of secondary 
rainbow.

Secondary rainbow: Figure 9.22 (b) shows 
some optical phenomena involved in the 
formation of a secondary rainbow due to a 
spherical water drop. White ray AB from the 
Sun strikes from lower portion of a water drop 
at an incident angle i. On entering into water, it 
deviates and disperses into constituent colours. 
Extreme colours violet(V) and red(R) are shown. 
Refracted rays BV and BR finally emerge the 
drop from V' and R' after suffering two internal 
reflections and can be seen by an observer on 
the ground. Minimum deviation rays of red and 
violet colour are inclined to the ground level at 
θ

R
 ≅ 51° and θ

V
 ≅ 53° respectively.  As a result, 

in the ‘bow’ or arch, the violet is above or outer 
and red is lower or inner. 

Observer on ground

A

White 
sunlight
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(I) Why total internal reflection is not 
possible during formation of a rainbow? 

Angle of incidence i in air, at the water 
drop, can’t be greater than 90°. As a result, 
angle of refraction r in water will always less 
than the critical angle. From Fig a and b and 
by simple geometry, it is clear that this r itself 

Do you know ? of i and r. Again, by using Figs. a and b, we 
can obtain the corresponding angles θ θR V� �and  
at the horizontal, which is the visible angular 
position for the rainbow.
(III) Why is the rainbow a bow or an arch? 
Can we see a complete circular rainbow?

Figure c illustrates formation of primary 
and secondary rainbows with their common 
centre O is the point where the line joining 
the sun and the observer meets the Earth 
when extended. P is location of the observer. 
Different colours of rainbows are seen on 
arches of cones of respective angles described 
earlier.

Smallest half angle refers to the cone of 
violet colour of primary rainbow, which is 
410. As the Sun rises, the common centre of 
the rainbows moves down. Hence as the Sun 
comes up, smaller and smaller part of the 
rainbows will be seen. If the Sun is above 
410, violet arch of primary rainbow cannot 
be seen.  Obviously beyond 530, nothing will 
be seen. That is why rainbows are visible 
only during mornings and evenings.
However, if observer moves up (may be in 
an aeroplane), the line PO itself moves up 
making lower part of the arches visible. 
After a certain minimum elevation, entire 
circle for all the cones can be visible.
(IV) Size of water drops convenient for 
rainbow: Water drops responsible for the 
formation of a rainbow should not be too 
small. For too small drops the phenomenon 
of diffraction (redistribution of energy due 
to obstacles, discussed in XIIth standard) 
dominates and clear rainbow can’t be seen.

Fig. c

Fig. a

Fig. b

is the angle 
of incidence 
at any point 
for one or 
more internal 
re f lec t ions . 
O b v i o u s l y, 
total internal 

reflection is not possible.           
(II) Why is rainbow seen only for a definite 
angle range with respect to the ground? 

For clear visibility we must have a beam 
of enough intensity. From the deviation curve 
(Fig 9.19) it is clear that near minimum 
deviation the curve is almost parallel to x-axis, 
i.e., for majority of angles of incidence in this 
range, the angle of deviation is nearly the same 

and those are 
almost parallel 
forming a beam 
of enough 
intensity.  Thus, 
the rays in the 
near vicinity 
of minimum 

deviation are almost parallel to each other. 
Rays beyond this range suffer wide angular 
dispersion and thus will not have enough 
intensity for visibility.

By using simple geometry for Figs. 
a and b it can be shown that the angle of 
deviation between final emergent ray and the 
incident ray is δ = π + 2i - 4r during primary 
rainbow, and δ = 2π + 2i - 6r during secondary 
rainbow. Using these relations and Snell’s 
law sin sini n r= ,  we can obtain derivatives 
of δ .  Second derivative of δ  comes out 
to be negative, which shows that it is the 
minima condition. Equating first derivative 
to zero we can obtain corresponding values 
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9.10 Defects of lenses (aberrations of optical 

        images):  

As mentioned in the section 9.4 for 
aberration for curved mirrors, while deriving 
various relations, we assume most of the rays 
to be paraxial by using lenses of small aperture. 
In reality, we have objects of finite sizes. Also, 
we need optical devices of large apertures 
(lenses and/or mirrors of size few meters for 
telescopes, etc.). In such cases the beam of rays 
is no more paraxial, quite often not parallel also. 
As a result, the spherical oberration discussed 
for spherical mirrors can occur for lenses also. 
Only one defect is mentioned corresponding to 
monochromatic beam of light. 

Chromatic aberration: In case of mirrors 
there is no dispersion of light due to refractive 
index. However, lenses are prepared by using 
a transparent material medium having different 
refractive index for different colours. Hence 
angular dispersion is present. A convex lens can 
be approximated to two thin prisms connected 
base to base and for a concave lens those are 
vertex to vertex. (Fig. 9.23 (a) and 9.23 (b))

      Fig. 9.23: (a) Convex lens (b) Concave lens

If the lens is thick, this will result into 
notably different foci corresponding to each 
colour for a polychromatic beam, like a 
white light. This defect is called chromatic 
aberration, violet being focused closest to pole 
as it has maximum deviation. (Fig 9.24 (a) and 
9.24 (b)) Longitudinal chromatic aberration, 
transverse chromatic aberration and circle of 
least confusion are defined in the same manner 
as that of spherical aberration for spherical 
mirrors. 

Fig. 9.24: Chromatic aberration: (a) 
Convex lens. 

Fig. 9.24: Chromatic aberration: (b) 
Concave lens

Reducing/eliminating chromatic aberration: 

Eliminating chromatic aberration 
simultaneously for all the colours is impossible. 
We try to eliminate it for extreme colours which 
reduces it for other colours. Convenient methods 
to do it use either a convex and a concave 
lens in contact or two thin convex lenses with 
proper separation. Such a combination is called 
achromatic combination.

Achromatic combination of two lenses in 
contact: Let ω

1
 and ω

2
  be the dispersive powers 

of materials of the two component lenses used 
in contact for an achromatic combination. 
Their focal lengths f for violet, red and yellow 
(assumed to be the mean colour) are suffixed by 
respective letters V, R and Y. 

Also, let K
R R1

1 2 1

1 1
� �
�

�
�

�

�
�  for lens 1 and

K
R R2

1 2 2

1 1
� �
�

�
�

�

�
� �for lens 2.

For two thin lenses in contact, 

 1 1 1

1 2f f f
� �  …… 

To be used separately for respective colours.

For the combination to be achromatic, the 
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resultant focal length of the combination must 
be the same for both the colours, i.e.,   

 f f
f fV R
V R

= =��or �
1 1
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1 1 1 1
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 …… using lens makers’ Eq. (9.7)
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Equating R.H.S. of (9.17) and (9.18) and 
rearranging, we can write
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--- (9.19)

Equation (9.19) is the condition for achromatic 
combination of two lenses, in contact.

Dispersive power ω is always positive. Thus, 
one of the lenses must be convex and the other 
concave. 

If second lens is concave, f Y2  is negative. 

 ∴ 
1 1 1

1 2f f fY Y Y

� �  

For this combination to be converging, fY  
should be positive. 

Hence, f fY Y1 2< �and  � �1 2�
Thus, for an achromatic combination if there 
is a choice between flint glass ( n =  1.655) 
and crown glass ( n = 1 517. ), the convergent 
(convex) lens must be of crown glass and the 
divergent (concave) lens of flint glass.

Example 9.11: After Cataract operation, a 
person is recommended with concavo-convex 
spectacles of curvatures 10 cm and 50 cm. 
Crown glass of refractive indices 1.51 for red 
and 1.53 for violet colours is used for this. 
Calculate the lateral chromatic aberration 
occurring due to these glasses.

Solution: For a concavo-concave lens, both 
the radii of curvature are either positive or both 
negative. If convex shape faces object, both 
will be positive. See the accompanying figure.  

Fig.  Concavo-convex 
lens with convex face 
receiving incident rays
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 ∴ Longitudinal chromatic aberration  

 = f
V
 - f

R
=25.51 - 23.58 

= 1.93 cm,... (quite appreciable!)

Verify that you get the same answer even 
if you consider the concave surface facing the 
incident rays.

Spherical aberration: Longitudinal spherical 
aberration, transverse spherical aberration and 
circle of least confusion are defined in the same 
manner as that for spherical mirrors. (Fig 9.25 
(a) and 9.25 (b))
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Fig. 9.25 (a): Spherical aberration, Convex 
lens.

Fig. 9.25 (b): Spherical aberration, Concave 
lens

Methods to reduce/eliminate spherical 
aberration of lenses:

 (i) Cheapest method to reduce the spherical 
aberration is to use a planoconvex or 
planoconcave lens with curved side facing 
the incident rays (real object). Reversing it 
increases the aberration appreciably.

 (ii) Certain ratio of radii of curvature for a 
given refractive index almost eliminates 
the spherical aberration. For n =  1.5, the 

ratio is 
R

R
1

2

1

6
=  and for n =  2, it is 

1

5
 (iii) Use of two thin converging lenses 

separated by distance equal to difference 
between their focal lengths with lens of 
larger focal length facing the incident rays 
considerably reduces spherical aberration.

 (iv) Spherical aberration of a convex lens is 
positive (for real image), while that of a 
concave lens is negative. Thus, a suitable 
combination of them (preferably a double 
convex lens of smaller focal length and 
a planoconcave lens of greater focal 
length) can completely eliminate spherical 
aberration.

9.11 Optical instruments:

Introduction: Whether an object appears 
bigger or not does not necessarily depend upon 
its own size. Huge mountains far off may appear 
smaller than a small tree close to us. This is 
because the angle subtended by the mountain 
at the eye from that distance (called the visual 
angle) is smaller than that subtended by the tree 
from its position. Hence, apparent size of an 
object depends upon the visual angle subtended 
by the object from its position. Obviously, for 
an object to appear bigger, we must bring it 
closer to us or we should go closer to it. 

However, due to the limitation for focusing 
the eye lens it is not possible to take an object 
closer than a certain distance. This distance is 
called least distance of distance vision D. For 
a normal, unaided human eye D = 25cm. If an 
object is brought closer than this, we cannot 
see it clearly. If an object is too small (like 
the legs of an ant), the corresponding visual 
angle from 25 cm is not enough to see it and 
if we bring it closer than that, its image on the 
retina is blurred. Also, the visual angle made 
by cosmic objects far away from us (such as 
stars) is too small to make out minor details and 
we cannot bring those closer. In such cases we 
need optical instruments such as a microscope 
in the former case and a telescope in the latter. 
It means that microscopes and telescopes help 
us in increasing the visual angle. This is called 
angular magnification or magnifying power.

Magnifying power: Angular magnification or 
magnifying power of an optical instrument is 
defined as the ratio of the visual angle made 
by the image formed by that optical instrument 
(β) to the visual angle subtended by the object 
when kept at the least distance of distinct vision 
(α ). (Figure 9.26 (a) and 9.26 (b)) In the case 
of telescopes, α  is the angle subtended by the 
object from its own position as it is not possible 
to get it closer.

Simple microscope or a reading glass: In 
order to read very small letters in a newspaper, 
sometimes we use a convex lens. You might 
have seen watch-makers using a special type 
of small convex lens while looking at very tiny 
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parts of a wrist watch. Convex lens used for 
this purpose is a simple microscope.

 
Fig. 9.26: (a) Visual Angle α.

Fig. 9.26: (b) Visual Angle β.
Figure 9.26 (a) shows visual angle α  made 

by an object, when kept at the least distance of 
distinct vision D. Without an optical instrument 
this is the greatest possible visual angle as we 
cannot get the object closer than this. Figure 
9.26 (b) shows a convex lens forming erect, 
virtual and magnified image of the same object, 
when placed within the focus. The visual angle 
β  of the object and the image in this case are 
the same. However, this time the viewer is 
looking at the image which is not closer than 
D. Hence the same object is now at a distance 
smaller than D. It makes β  greater then α  and 
the same object appears bigger.

Angular magnification or magnifying 
power, in this case, is given by 

For small angles � �� �and , we can write,
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For common human eyesight, D = 25 cm. 
Thus, if f = 5 cm,
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Hence image appears to be only 5 to 6 times 
bigger for a lens of focal length 5 cm.
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Thus, the image size is infinite times that of the 
object, but appears only 5 times bigger.
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∴ m
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= = 6 . Thus, image size is 6 times 

that of the object, and appears also 6 times 
larger.

Example 9.12: A magnifying glass of focal 
length 10 cm is used to read letters of thickness 
0.5 mm held 8 cm away from the lens. Calculate 
the image size. How big will the letters appear? 
Can you read the letters if held 5 cm away from 
the lens? If yes, of what size would the letters 
appear? If no, why not?
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∴ Image will appear to be 3.125 times bigger. 
i.e., 3.125 × 0.5 = 1.5625 cm

For µ = - 5 cm, v will be - 10 cm.  

For an average human being to see clearly, 
the image must be at or beyond 25 cm. Thus, it 
will not possible to read the letters if held 5 cm 
away from the lens.

Compound microscope: As seen above, the 
magnifying power of a simple microscope 
is inversely proportional to its focal length. 
However, if we need focal length to be smaller 
and smaller, the corresponding lens becomes 
thicker and thicker. For such a lens both 
spherical as well as chromatic aberrations are 
dominant. Thus, if higher magnifying power is 
needed, we go for using more than one lenses. 
The instrument is then called a compound 
microscope. It is used to view very small objects 
(sizes . Also, whether 
the image is erect or inverted is immaterial. 

A compound microscope essentially uses 
two convex lenses of suitable focal lengths fit 
into a cylindrical tube with some adjustment 
possible for its length. The smaller lens (∼ 4 mm 
to 6 mm aperture) facing the object is called the 
objective. Other lens with which the observer 
jams her/his eye is litter larger and called as 
the eye lens. (Fig 9.27) During this discussion 
we consider the eye lens to be a single lens, but 
in practice it is an eyepiece, itself consisting of 
two planoconvex lenses.

Fig. 9.27: Compound Microscope.
As shown in the Fig. 9.27, a tiny object 

AB is placed between f and 2f of the objective 
which produces its real, inverted and magnified 
image A′ B′ in front of the eye lens. Position 
of the eye lens is so adjusted that the (inte-

rmediate) image A′ B′ is within its focus. Hence, 
for this object A′ B′, the eye lens behaves as a 
simple microscope and produces its virtual and 
magnified image A′′ B′′, which is inverted with 
respect to original object AB.

Magnifying power of a compound 
microscope with two lenses: From its position, 
the final image A′′ B′′ makes a visual angle β  
at the eye (jammed at the eye lens). Visual angle 
made by the object from distance D is α.
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D     (Fig. 9.29 (a))
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 is the linear (lateral) 

magnification of the objective and
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�
� �  is the angular magnification or 

magnifying power of the eye lens. Length 
of the compound microscope then  becomes 
L = distance between the two lenses v

0
 + u

e
.  

Remarks: 
 (i)  In order to increase mo , we need to decrease 

uo . Thereby, the object comes closer 
and closer to the focus of the objective. 
This increases v

0
 and hence length of the 

microscope. Thus mo  can be increased 
only within the limitation of length of the 
microscope.

 (ii) Minimum value of Me  is 
D

fe

�

�
�

�

�
�  for final

  image at infinity and maximum value of 

M
D

fe
e

 is 1�
�

�
�

�

�
�  for final image at D 

  respectively. Me  and mo  together decide 
the minimum and maximum magnifying 
power of the microscope.
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Example 9.13: The pocket microscope used by 
a student consists of eye lens of focal length 
6.25 cm and objective of focal length 2 cm. 
At microscope length 15 cm, the final image 
appears biggest. Estimate distance of the object 
from the objective and magnifying power of the 
microscope.

Solution:
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Telescope: Telescopes are used to see terrestrial 
or astronomical bodies. A telescope essentially 
uses two lenses (or one large parabolic mirror 
and a lens). The lens facing the object (called 
objective) is of aperture as large as possible. For 
Newtonian telescopes, a large parabolic mirror 
faces the object. 

For terrestrial telescopes the objects to be 
seen are on the  Earth , like mountains, trees, 
players playing a match in a stadium, etc. In 
such case, the final image must be erect. Eye 
lens used for this purpose must be concave 
and such a telescope is popularly called a 
binocular. A variety of binoculars use three 
convex lenses with proper separation. The 
third lens again inverts the second intermediate 
image and makes final image erect with respect 
to the object. In this text we shall be discussing 
astronomical telescope.

For an astronomical telescope, the objects 
to be seen are planets, stars, galaxies, etc. In 
this case there is no necessity of erect image. 

Such telescopes use convex lens as eye lens. 
(Fig. 9.27).

Fig. 9.28: Telescope.

Magnifying power of a telescope: Objects 
to be seen through a telescope cannot be 
brought to distance D from the objective, like 
in microscopes. Hence, for telescopes, α  is the 
visual angle of the object from its own position, 
which is practically at infinity. Visual angle of 
the final image is β  and its position can be 
adjusted to be at D. However, under normal 
adjustments, the final image is also at infinity 
but making a greater visual angle than that of 
the object. (If the image is really at infinity, 
there will not be any parallax at the cross wires).  
Beam of incident rays is now inclined at an 
angle α  with the principal axis while emergent 
beam is inclined at a greater angle β  with the 
principal axis causing angular magnification. 
(Fig. 9.28)

Objective of focal length f
o
 focusses the 

parallel incident beam at a distance f
o
 from the 

objective giving an inverted image AB. For 
normal adjustment, the eye lens is so adjusted 
that the intermediate image AB happens to be at 
the focus of the eye lens. Rays refracted beyond 
the eye lens form a parallel beam inclined at an 
angle β  with the principal axis resulting into 
the image also at infinity.

∴Angular magnification or magnifying power,
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Length of the telescope for normal adjustment 
is L f fo e� �

Under the allowed limit of length objective of 
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maximum possible focal length fo  and eye lens 
of minimum possible focal length fe  can be 
chosen for maximum magnifying power.

Example 14: Focal length of the objective of 
an astronomical telescope is 1 m. Under normal 
adjustment, length of the telescope is 1.05 
m. Calculate focal length of the eyepiece and 
magnifying power under normal adjustment.

Solution: For astronomical telescope,

L= f
0
 + f

e
 ∴1.05 = 1 + f

0
 ∴ f

e
 = 0.05 m = 5 cm

Under normal adjustments,

 M
f

f
o

e

= = =
1

0 05
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1. Choose the correct option 

 i. As per recent understanding light consists 
of 

  (A) rays  

  (B) waves  

  (C) corpuscles 

  (D) photons obeying the rules of waves

 ii. Consider optically denser lenses P, Q, 
R and S drawn below. According to 
Cartesian sign convention which of these 
have positive focal length?

    

  (A) Only P

  (B) Only P and Q 

  (C) Only P and R  

  (D) Only Q and S

 iii. Two plane mirrors are inclined at angle 
400 between them. Number of images 
seen of a tiny object kept between them is

  (A) Only 8  (B) Only 9 

  (C) 8 or 9  (D) 9 or 10

 iv. A concave mirror of curvature 40 cm, 
used for shaving purpose produces image 
of double size as that of the object. Object 
distance must be 

  (A) 10 cm only    

  (B) 20 cm only  

  (C) 30 cm only   

  (D) 10 cm or 30 cm

Exercises Exercises

 v. Which of the following aberrations will 
NOT occur for spherical mirrors?

  (A) Chromatic aberration  

  (B) Coma

  (C) Distortion 

  (D) Spherical aberration 

 vi.  There are different fish, monkeys and 
water on the habitable planet of the star 
Proxima b. A fish swimming underwater 
feels that there is a monkey at 2.5 m on the 
top of a tree. The same monkey feels that 
the fish is 1.6 m below the water surface. 
Interestingly, height of the tree and the 
depth at which the fish is swimming are 
exactly same. Refractive index of that 
water must be

  (A) 6/5   (B) 5/4  

  (C) 4/3   (D) 7/5

 vii. Consider following phenomena/
applications: P) Mirage, Q) rainbow, 
R) Optical fibre and S) glittering of a 
diamond. Total internal reflection is 
involved in

  (A) Only R and S (B) Only R  

  (C) Only P, R and S (D) all the four

 viii. A student uses spectacles of number -2 for 
seeing distant objects. Commonly used 
lenses for her/his spectacles are

  (A) bi-concave  

  (B) double concave 

  (C) concavo-convex 

  (D) convexo-concave
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 ix. A spherical marble of refractive index  
1.5 and curvature 1.5 cm, contains a tiny 
air bubble at its centre. Where will it 
appear when seen from outside?

  (A) 1 cm inside  (B) at the centre

  (C) 5/3 cm inside (D) 2 cm inside

 x. Select the WRONG statement.

  (A) Smaller angle of prism is 
recommended  for greater angular 
dispersion.

  (B) Right angled isosceles glass prism is 

   commonly used for total internal   
 reflection.

  (C) Angle of deviation is practically 
constant for thin prisms.

  (D) For emergent ray to be possible from 

   the second refracting surface, certain 

   minimum angle of incidence is 

   necessary from the first surface.

 xi. Angles of deviation for extreme colours 
are given for different prisms. Select the 
one having maximum dispersive power 
of its material.

  (A) 7°, 10°  (B) 8°, 11°   
(C) 12°, 16°  (D) 10°, 14° 

 xii. Which of the following is not involved in 
formation of a rainbow?

  (A) refraction 

  (B) angular dispersion 

  (C) angular deviation 

  (D) total internal reflection

 xiii. Consider following statements regarding 
a simple microscope:

  (P) It allows us to keep the object within 
the least distance of distant vision.

  (Q) Image appears to be biggest if the 
object is at the focus.

  (R) It is simply a convex lens.

  (A) Only (P) is correct   

  (B) Only (P) and (Q) are correct

  (C) Only (Q) and (R) are correct  
(D) Only (P) and (R) are correct

2. Answer the following questions. 

 i) As per recent development, what is the 
nature of light? Wave optics and particle 
nature of light are used to explain which 
phenomena of light, respectively?

 ii) Which phenomena can be satisfactorily 
explained using ray optics? State the 
assumptions on which ray optics is based.

 iii)  What is focal power of a spherical mirror 
or of a lens? What may be the reason for 

using P
f

=
1

 as its expression?

 

 iv)  At which positions of the objects do 
spherical mirrors produce (i) diminished 
image, (ii) magnified image?

 v) State the restrictions for having images 
produced by spherical mirrors to be 
appreciably clear. 

 vi)  Explain spherical aberration for spherical 
mirrors. How can it be minimized? Can it 
be eliminated by some curved mirrors?

 vii) Define absolute refractive index and 
relative refractive index. Explain in brief, 
with an illustration for each.

 viii) Explain ‘mirage’ as an illustration of 
refraction. 

 ix) Under what conditions is total internal 
reflection possible? Explain it with a 
suitable example. Define critical angle of 
incidence and obtain an expression for it.

 x) Describe construction and working of 
an optical fibre. What are the advantages 
of optical fibre communication over 
electronic communication?

 xi) Why is a prism binoculars preferred 
over traditional binoculars? Describe its 
working in brief.

 xii) A spherical surface separates two 
transparent media. Derive an expression 
that relates object and image distances 
with the radius of curvature for a point 
object. Clearly state the assumptions, if 
any.
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 xiii) Derive lens makers’ equation. Why is it 
called so? Under which conditions focal 
length f and radii of curvature R are 
numerically equal for a lens?

 2. Answer the following questions in 
detail. 

 i) What are different types of dispersions of 
light? Why do they occur? 

 ii) Define angular dispersion for a prism. 
Obtain its expression for a thin prism. 
Relate it with the refractive indices of the 
material of the prism for corresponding 
colours.

 iii) Explain and define dispersive power 
of a transparent material. Obtain its 
expressions in terms of angles of 
deviation and refractive indices.

 iv) (i) State the conditions under which a 
rainbow can be seen. 

  (ii) Explain the formation of a primary 
rainbow. For which angular range with 
the horizontal is it visible?

  (iii) Explain the formation of a secondary 
rainbow. For which angular range with 
the horizontal is it visible?

  (iv) Is it possible to see primary and 
secondary rainbow simultaneously? 
Under what conditions?

 v) (i) Explain chromatic aberration for 
spherical lenses. State a method to 
minimize or eliminate it.

  (ii) What is achromatism? Derive a 
condition to achieve achromatism for a 
lens combination. State the conditions 
for it to be converging.

 vi) Describe spherical aberration for 
spherical lenses. What are different ways 
to minimize or eliminate it?

 vii) Define and describe magnifying power of 
an optical instrument. How does it differ 
from linear or lateral magnification?

 viii) Derive an expression for magnifying 
power of a simple microscope. Obtain its 
minimum and maximum values in terms 
of its focal length.

 ix)  Derive the expressions for the magnifying 
power and the length of a compound 
microscope using two convex lenses.

 x) What is a terrestrial telescope and an 
astronomical telescope?

 xi) Obtain the expressions for magnifying 
power and the length of an astronomical 
telescope under normal adjustments. 

 xii) What are the limitations in increasing 
the magnifying powers of (i) simple 
microscope (ii) compound microscope 
(iii) astronomical telescope?

 3.      Solve the following numerical examples

 i)  A monochromatic ray of light strike the 
water (n = 4/3) surface in a cylindrical 
vessel at angle of incidence 530. Depth of 
water is 36 cm. After striking the water 
surface, how long will the light take to 
reach the bottom of the vessel? [Angles 
of the most popular Pythagorean triangle 
of sides in the ratio 3:4:5 are nearly 370, 
530 and 900] 

                [Ans: 2 ns]

 ii)  Estimate the number of images produced 
if a tiny object is kept in between two 
plane mirrors inclined at 350, 360, 400 and 
450. 

    [Ans: 10, 9, 9 or 8, 7 respectively]

 iii)  A rectangular sheet of length 30 cm and 
breadth 3 cm is kept on the principal axis 
of a concave mirror of focal length 30 cm. 
Draw the image formed by the mirror on 
the same ray diagram, as far as possible 
on scale. 

  [Ans: Inverted image starts from 50 
cm and ends at 90 cm. Its height in the 
beginning is 2 cm and at the end it is 
6 cm. At 60 cm, image height is 3 cm. 
Thus, outer boundary if the image is a 
curve]

 iv)  A car uses a convex mirror of curvature 
1.2 m as its rear-view mirror. A minibus 
of cross section 2.4 m × 2.4 m is 6.6 m 
away from the mirror. Estimate the image 
size. 

                     [Ans: A square of edge 0.2 m]
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 v) A glass slab of thickness 2.5 cm having 
refractive index 5/3 is kept on an ink spot. 
A transparent beaker of very thin bottom, 
containing water of refractive index 4/3 
up to 8 cm, is kept on the glass block. 
Calculate apparent depth of the ink spot 
when seen from the outside air.   
                     [Ans: 7.5 cm]

 vi) A convex lens held some distance above 
a 6 cm long pencil produces its image 
of SOME size. On shifting the lens by a 
distance equal to its focal length, it again 
produces the image of the SAME size as 
earlier. Determine the image size. 

             [Ans: 12 cm]

 vii)  Figure below shows the section ABCD of 
a transparent slab. There is a tiny green 
LED light source at the bottom left corner 
B. A certain ray of light from B suffers 
total internal reflection at nearest point P 
on the surface AD and strikes the surface 
CD at point Q. Determine refractive index 
of the material of the slab and distance 
DQ. At Q, the ray PQ will suffer partial 
or total internal reflection? [You may use 
the approximation given in Q 1 above]. 

  [Ans: n = 5/4, DQ = 1.5 cm, 
Partial internal reflection at Q] 

 viii) A point object is kept 10 cm away from 
one of the surfaces of a thick double 
convex lens of refractive index 1.5 and 
radii of curvature 10 cm and 8 cm. Central 
thickness of the lens is 2 cm. Determine 
location of the final image considering 
paraxial rays only.

  Hint : Single spherical surface formula 
to be used twice.  

  [Ans: 64 cm away from the other surface]

 ix) A monochromatic ray of light is incident 
at 370 on an equilateral prism of refractive 
index 3/2. Determine angle of emergence 
and angle of deviation. If angle of prism 
is adjustable, what should its value be for 
emergent ray to be just possible for the 
same angle of incidence. 

      [Ans: e = 63°, δ = 40°, A = 65° 24' for 

                e = 90° (just emerges)]

 x)  From the given data set, determine 
angular dispersion by the prism and 
dispersive power of its material for 
extreme colours. n

R
 = 1.62 n

V
 = 1.66,  

δ
R
 = 3.1°  

        [Ans: δ
VR

 = 0.2°, ω
VR 

= 
1

16
 = 0.0625]

 xi)  Refractive index of a flint glass varies 
from 1.60 to 1.66 for visible range. Radii 
of curvature of a thin convex lens are 10 
cm and 15 cm. Calculate the chromatic 
aberration between extreme colours. 

                   [Ans: 10/11 cm]

 xii) A person uses spectacles of ‘number’ 
2.00 for reading. Determine the 
range of magnifying power (angular 
magnification) possible. It is a concavo-
convex lens (n = 1.5) having curvature of 
one of its surfaces to be 10 cm. Estimate 
that of the other.   
[Ans:  M

min
 = 0.5, M

max
 = 1.5 R

2
 = 50/3 cm]

 xiii)  Focal power of the eye lens of a compound 
microscope is 6 dioptre. The microscope 
is to be used for maximum magnifying 
power (angular magnification) of at least 
12.5. The packing instructions demand 
that length of the microscope should be 
25 cm. Determine minimum focal power 
of the objective. How much will its radius 
of curvature be if it is a biconvex lens of 
n = 1.5.  

     [Ans: 40 dioptre, 2.5 cm]

***


