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Let us Study

• Applications of Drivatives to Tangents and Normals  • Derivative as a rate measure

• Approximations

• Rolle's Theorem and Lagrange's Mean Value Theorem.  • Increasing and Decreasing Functions

• Maxima and Minima

Let us Recall

• Continuous functions. 
• Derivatives of Composite, Inverse Trigonometric, Logarithmic, Parametric functions. 
• Relation between derivative and slope. 
• Higher Order Derivatives.

2.1.1 Introduction :

In the previous chapter we have studied the derivatives of various functions such as composite 
functions, Inverse Trigonometric functions, Logarithmic functions etc. and also the relation between 
Derivative and slope of the tangent. In this chapter we are going to study various applications of 
differentiation such as application to (i) Geometry, (ii) Rate measure (iii) Approximations (iv) Rolle's 
Theorem and Lagrange's Mean Value Therorem (v) Increasing and Decreasing functions and (vi) 
Maxima and Minima. 

Let us Learn

2.1.2 Application of Derivative in Geometry :

2. APPLICATIONS OF DERIVATIVES 

In the previous chapter we have studied the relation between derivative and slope of a line or slope 
of a tangent to the curve at a given point on it. 

Let y = f (x) be a continuous function of x representing a curve in XY- plane and P (x1, y1) be any 
point on the curve. 

Then 
dy
dx

 

(x1, y1)

 = [ f ' (x)](x1, y1) represents slope, also called gradient, of the tangent to the curve at 

P (x1, y1). The normal is perpendicular to the tangent. Hence, the slope of the normal at P will be the negative 
of reciprocal of the slope of tangent at P. Let m and m' be the slopes of tangent and normal respectively,
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then m =  
dy
dx

 

(x1, y1)

and m' = − 1
dy
dx

(x1, y1)

 if  
dy
dx

 

(x1, y1)

≠ 0.

Equation of tangent at P (x1, y1) is given by y − y1 = m (x − x1) i.e. y − y1  =  
dy
dx

 

(x1, y1)

 (x − x1)

and equation of normal at P (x1, y1) is given by 

y − y1 = m' (x − x1) where m'  = − 1
dy
dx

(x1, y1)

 

SOLVED EXAMPLES 

Ex. 1 : Find the equations of tangent and normal to the curve at the given point on it.

  (i)  y = 2x3 − x2 + 2 at 
1
2 , 2  (ii) x3 + 2x2 y − 9xy = 0 at (2, 1) 

  (iii) x = 2 sin3 θ, y = 3 cos3 θ at θ = 
π
4 

Solution :

(i) Given that : y = 2x3 − x2 + 2

 Differentiate w. r. t. x

 
dy
dx

 = 
d
dx

 (2x3 − x2 + 2) = 6x2 − 2x

 Slope of tangent at 
1
2 , 2  = m = 6 

1
2

2

 − 2 
1
2

   ∴  m = 
1
2

 Slope of normal at 
1
2 , 2  = m' = − 2

 Equation of tangent is given by

 y − 2 = 
1
2  x − 

1
2  ⇒ 2y − 4 = 

2x − 1
2

 4y − 8 = 2x − 1 ⇒ 2x − 4y + 7 = 0
 Equation of normal is given by

 y − 2 = − 2 x − 
1
2  ⇒ y − 2 = − 2x + 1

 2x + y − 3 = 0

(ii) Given that : x3 + 2x2 y − 9xy = 0

 Differentiate w. r. t. x

3x2  + 2 x2 dy
dx

 + y
d
dx

 (x2)  − 9 x dy
dx

 + y
d
dx

 (x)  = 0

3x2  + 2x2 dy
dx

 + 4xy − 9x
dy
dx

 − 9y = 0

(2x2  − 9x) 
dy
dx

 = 9y − 4xy − 3x2 ∴ 
dy
dx

 = 
9y − 4xy − 3x2

2x2  − 9x
 Slope of tangent at (2, 1)

dy
dx

 
(1, 2) 

= m = 
9(1) − 4(2)(1) − 3(4)

2(4)  − 9(1)
 = 

9 − 8 − 12
8 − 9

      m = 
−11
−1

  ∴ m = 11

 Slope of normal at (2, 1) = m' = − 
1
11

 

 Equation of tangent is given by
 y − 1 = 11(x − 2) ⇒ 11x − y − 21 = 0

 Equation of normal is given by

 y − 1 = − 
1
11

 (x − 2) ⇒ 11y − 11 = − x + 2

 x + 11y − 13 = 0
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(iii) Given that :  y = 3 cos3 θ

 Differentiate w. r. t. θ

 
dy
d θ

 = 3 
d

d θ
 (cos θ)3 = 9 cos2 θ 

d
d θ

 (cos θ)

∴ 
dy
d θ

 = − 9 cos2 θ sin θ

 Now, x = 2 sin3 θ

 Differentiate w. r. t. θ

 
dx
d θ

 = 2 
d

d θ
 (sin θ)3 = 6 sin2 θ 

d
d θ

 (sin θ)

∴ 
dx
d θ

 = 6 sin2 θ cos θ

     We know that

     
dy
dx

 = 
 
dy
d θ
dx
d θ

 = − 
9 cos2 θ sin θ
6 sin2 θ cos θ

 = − 
3
2

 cot θ

     Slope of tangent at θ = 
π
4 is

     
dy
dx

 
θ =

π
4  

= m = − 
3
2

 cot 
π
4  = − 

3
2

     Slope of normal at θ = 
π
4  = m' = 

2
3

     When, θ = 
π
4

     x = 2 sin3 
π
4  = 2 

1

√ 
2

3 

= 
1

√ 
2

     y = 3 cos3 
π
4  = 3 

1

√ 
2

3 

= 
3

2√ 
2

     ∴ The point is P = 
1

√ 
2

, 
3

2√ 
2

     Equation of tangent at P is given by

     y − 
3

2√ 
2

 = − 
3
2

  x − 
1

√ 
2

 ⇒ y − 
3

2√ 
2

 = − 
3x
2

 + 
3

2√ 
2

     
3x
2

 + y − 
3

√ 
2

 = 0  i.e. 3x + 2y − 3√ 
2 = 0

     Equation of normal is given by

     y − 
3

2√ 
2

 = 
2
3

 x − 
1

√ 
2

 ⇒ y − 
3

2√ 
2

 = 
2x
2

 − 
2

3√ 
2

     
2x
3

 − y − 
2

3√ 
2

 + 
3

2√ 
2

 = 0 

     i.e. 4√ 
2x − 6√ 

2y + 5 = 0 . . . [ Multiply by 6√ 
2 ]
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Ex. 2 : Find points on the curve given by y = x3 − 6x2 + x + 3 where the tangents are parallel to the line   
y = x + 5.

Solution : Equation of curve is y = x3 − 6x2 + x + 3
    Differentiate w. r. t. x

    
dy
dx

 = 
d
dx

 (x3 − 6x2 + x + 3) = 3x2 − 12x + 1

    Given that the tangent is parallel to y = x + 5 whose slope is 1. 

  ∴ Slope of tangent = 
dy
dx

 = 1 ⇒ 3x2 − 12x + 1 = 1

      3x (x − 4) = 0 so, x = 0 or x = 4

    When x = 0, y = (0)3 − 6(0)2 + (0) + 3 = 3 

    When x = 4, y = (4)3 − 6(4)2 + (4) + 3 = −25

    So the required points on the curve are (0, 3) and (4, −25).

2.1.3 Derivative as a Rate measure : 

If y = f (x) is the given function then a change in x from x1 to x2 is generally denoted by 

δx = x2 − x1 and the corresponding change in y is denoted by δy = f (x2) − f (x1). The difference quotient 

δy
δx

 = 
 f (x2) − f (x1)

x2 − x1

 is called the average rate of change with respect to x. This can also be interpreted 

geometrically as the slope of the secant line joining the points P ( x1, f (x1)) and Q ( x2, f (x2)) on the graph 
of function y = f (x). 

Consider the average rate of change over smaller and smaller intervals by letting x2 to approach x1 and 

therefore letting δx to approach 0. The limit of these average rates of change is called the instantaneous 

rate of change of y with respect to x at x = x1, which is interpreted as the slope of the tangent to the curve        

y =  f (x) at P ( x1, f (x1)). Therefore instantaneous rate of change is given by 

lim
δx → 0

δy
δx

 = lim
x2 → x1

f (x2) − f (x1)
x2 − x1

We recognize this limit as being the derivative of f (x) at x = x1, i.e. f ' (x1). We know that one 

interpretation of the derivative f ' (a) is the instantaneous rate of change of y = f (x) with respect x when 

x = a. The other interpretation is f (x) at f ' (a) is the slope of the tangent to y = f (x) at (a, f (a)).

SOLVED EXAMPLES 

Ex. 1 : A stone is dropped in to a quiet lake and waves in the form of circles are generated, radius of the 
circular wave  increases at the rate of 5 cm/ sec. At the instant when the radius of the circular 
wave is 8 cm, how fast the area enclosed is increasing ? 

Solution : Let R be the radius and A be the area of the circular wave.
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   ∴  A = π·R2

     Differentiate w. r. t. t

     
dA
dt

  = π 
d
dt

 (R2)

     
dA
dt

  = 2πR 
dR
dt

  . . . (I)

     Given that 
dR
dt

 = 5 cm/sec. 

     Thus when R = 8 cm, from (I) we get, 

     
dA
dt

  = 2π(8) (5)  = 80π

  Hence when the radius of the circular wave is 8 cm, the area of the circular wave is increasing at 
the rate of 80π cm2/ sec.

Ex. 2 : The volume of the spherical ball is increasing at the rate of 4π cc/sec. Find the rate at which the 
radius and the surface area are changing when the volume is 288π cc.  

Solution : Let R be the radius, S be the surface area and V be the volume of the spherical ball. 

     V = 
4
3

 πR3 . . . (I)

     Differentiate w. r. t. t

     
dV
dt

  = 
4π
3

·
d
dt

 (R3)

     4π  = 
4π
3

·3R2 dR
dt

  . . . [Given 
dV
dt

 = 4π cc/sec ]

     
dR
dt

  = 
1
R2

  . . . (II)

     When volume is 288π cc. 

     i.e.  
4
3

 π·R3 = 288π we get, R3 = 216 ⇒ R = 6 . . . [From (I)]

     From (II) we get, 
dR
dt

 = 
1
36

     So, the radius of the spherical ball is increasing at the rate of 
1
36

 cc/sec.

     Now, S = 4πR2

     Differentiate w. r. t. t. 

     
dS
dt

  = 4π
d
dt

 (R2) = 8πR 
dR
dt

     So, when R = 6 cm

     
dS
dt

 
R = 6 

= 8π(6) 
1
36

 = 
4π
3

  ∴ Surface area is increasing at the rate of 
4π
3

 cm2/ sec.
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Ex. 3 : Water is being poured at the rate of 36 m3/sec in to a cylindrical vessel of base radius 3 meters. 
Find the rate at which water level is rising.  

Solution : Let R be the radius of the base, H be the height and V be the volume of the cylindrical vessel 
at any time t. R, V and H are functions of t.

       V = πR2 H

       V = π(3)2 H = 9π H . . . [ Given : R = 3]

       Differentiate w. r. t. t

       
dV
dt

 = 9π 
dH
dt

       
dH
dt

 = 
1

9π
·
dV
dt

  . . . (I)

    Given that,

       
dV
dt

 = 36 m3/sec  . . . (II)

    From (I) we get,  
dH
dt

 = 
1

9π
· (36) = 

4
π

  ∴ Water level is rising at the rate of 
4
π

 meter/sec.

Ex. 4 : A man of height 180 cm is moving away from a lamp post at the rate of 1.2 meters per second. 
If the height of the lamp post is 4.5 meters, find the rate at which (i) his shadow is lengthening. 

  (ii) the tip of the shadow is moving.
Solution : Let OA be the lamp post, MN be the man, MB = x be the length of shadow and OM = y be 

the distance of the man from the lamp post at time t. Given that man is moving away from 
the lamp post at the rate of 1.2 meter/sec.  x and y are functions of t.

   Hence 
dy
dt

 = 1.2. The rate at which shadow is lengthening = 
dx
dt

. 

   B is the tip of the shadow and it is at a distance of (x + y) from the post.

   
x

1.8
 = 

x + y
4.5

 i.e. 45x = 18x + 18y  i.e.  27x = 18y

         ∴  x = 
2y
3

       Differentiate w. r. t. t

       
dx
dt

 = 
2
3

 × 
dy
dt

 = 
2
3

 × 1.2 = 0.8 meter/sec. 

    rate at which the tip of the shadow is moving is given by

       
d
dt

 (x + y) = 
dx
dt

 + 
dy
dt

      

      ∴ 
d
dt

 (x + y) = 0.8 + 1.2 = 2 meter/sec.

 Shadow is lengthening at the rate of 0.8 meter/ sec. and its tip is moving at the rate of 2 meters/sec.
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2.1.4 Velocity, Acceleration and Jerk :  

If s = f (t ) is the desplacement function of a particle that moves along a straight line, then f ' (t ) is 
the rate of change of the displacement s with respect to the time t. In other  words, f ' (t ) is the velocity 
of the particle. The speed of the particle is the absolute value of the velocity, that is, | f ' (t )|. 

The rate of change of velocity with respect to time is valled the acceleration of the particle denoted 
by a (t ). Thus the acceleration function is the derivative of the velocity function and is therefore the 
second derivative of the position function s = f (t ).

Thus, a = 
dy
dt

 = 
d 

2s
dt 

2
  i.e. a (t ) = v' (t ) = s'' (t ).

Let us consider the third derivative of the position function s = f (t ) of an object that moves along a 
straight line. s''' (t ) = v'' (t ) = a' (t ) is derivative of the acceleration function and is called the Jerk (  j ). 

Thus,  j = 
d a
dt

 = 
d 

3s
dt 

3
. Hence the jerk j is the rate of change of acceleration. It is aptly named because 

a jerk means a sudden change in acceleration, which causes an abrupt movement in a vehicle.

SOLVED EXAMPLES 

Ex. 1 : A car is moving in such a way that the 
distance it covers, is given by the equation 
s = 4t2 + 3t where s is in meters and t is in 
seconds. What would be the velocity and the 
acceleration of the car at time t = 20 second ? 

Solution : Let v be the velocity and a be the 
acceleration of the car.

 Distance traveled by the car is given by 
   s = 4t2 + 3t
 Differentiate w. r. t. t.
∴ Velocity of the car is given by 

 v = 
ds
dt

 = 
d
dt

 (4t2 + 3t ) = 8t + 3  . . . (I) 

 and Acceleration of the car is given by

 a = 
d
dt

 
dv
dt

 = 
d
dt

 (8t + 3 ) = 8 . . . (II) 

 Put t = 20 in (I), 
∴ Velocity of the car, vt = 20 = 8(20) + 3 = 163 m/sec.
 Put t = 20 in (II), 
∴ Acceleration of the car, at = 20 = 8 m/sec2.

Note : In this problem, the acceleration is 
independent of time. Such a motion is said 
to be uniformly accelerated motion.

Ex. 2 : The displacement of a particle at time t 
is given by s = 2t3 − 5t2 + 4t − 3. Find the 
time when the acceleration is 14 ft/ sec2, the 
velocity and the displacement at that time. 

Solution : Displacement of a particle is given by 
 s = 2t3 − 5t2 + 4t − 3  . . . (I)
 Differentiate w. r. t. t.

 Velocity,  v = 
ds
dt

 = 
d
dt

 (2t3 − 5t2 + 4t − 3) 

∴ v = 6t2 − 10t + 4 . . . (II) 

 Acceleration, a = 
dv
dt

 = 
d
dt

 (6t2 − 10t + 4)

∴ a = 12t − 10  . . . (III) 
 Given : Acceleration = 14 ft/ sec2.
∴  12t − 10 = 14 ⇒ 12t = 24 ⇒ t = 2
 So, the particle reaches an acceleration of   

14 ft/ sec2 in 2 seconds. 
 Velocity, when t = 2 is
∴ vt = 2 = 6(2)2 − 10(2) + 4 = 8 ft/ sec.
 Displacement when t = 2 is 
∴ st = 2 = 2(2)3 − 5(2)2 + 4(2) − 3 = 1 foot.
 Hence the velocity is 8 ft/ sec and the 

displacement is 1 foot after 2 seconds.
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EXERCISE 2.1

(1) Find the equations of tangents and normals 
to the curve at the point on it.

 (i) y = x2 + 2e 
x + 2 at (0, 4) 

 (ii) x3 + y3 − 9xy = 0 at (2, 4)
 (iii) x2 − √ 3xy + 2y2 = 5 at (√ 3, 2)

 (iv) 2xy + π sin y = 2π at 1, 
π
2

 (v) x sin 2y = y cos 2x at 
π
4, 

π
2

 (vi) x = sin θ and y = cos 2θ at θ = 
π
6

 (vii) x = √ t , y = t − 
1
√ t

 at t = 4.

(2) Find the point on the curve y = √ x − 3  where
 the tangent is perpendicular to the line
 6x + 3y − 5 = 0.

(3) Find the points on the curve y = x3 − 2x2 − x 
where the tangents are parallel to 3x − y + 1 = 0. 

(4) Find the equations of the tangents to the  
curve x2 + y2 − 2x − 4y + 1= 0 which are 
parallel to the X-axis. 

(5) Find the equations of the normals to the  
curve 3x2 − y2 = 8, which are parallel to the 
line x + 3y = 4. 

(6) If the line y = 4x − 5 touches the curve 

 y2 = ax3 + b at the point (2, 3) find a and b. 

(7) A particle moves along the curve 6y = x2 + 2. 

 Find the points on the curve at which 
y-coordinate is changing 8 times as fast as 
the X-coordinate. 

(8) A spherical soap bubble is expanding so 
that its radius is increasing at the rate of 
0.02 cm/sec. At what rate is the surface 
area is increasing, when its radius is 5 cm?

(9) The surface area of a spherical balloon is 
increasing at the rate of 2 cm2/ sec. At what 
rate the volume of the balloon is increasing 
when radius of the balloon is 6 cm?

(10) If each side of an equilateral triangle 
increases at the rate of √ 2 cm/ sec, find the 
rate of increase of its area when its side of 
length 3 cm . 

(11) The volume of a sphere increase at the rate 
of 20 cm3/ sec. Find the rate of change of its 
surface area when its radius is 5 cm. 

(12) The edge of a cube is decreasing at the rate of 
0.6 cm/sec. Find the rate at which its volume is 
decreasing when the edge of the cube is 2 cm. 

(13) A man of height 2 meters walks at a uniform 
speed of 6 km/hr away from a lamp post of 6 
meters high. Find the rate at which the length 
of the shadow is increasing. 

(14) A man of height 1.5 meters walks toward a 
lamp post of height 4.5 meters, at the rate 
of 3

4
 meter/sec. Find the rate at which 

 (i) his shadow is shortening. (ii) the tip of the 
shadow is moving.

(15) A ladder 10 meter long is leaning against a 
vertical wall. If the bottom of the ladder is 
pulled horizontally away from the wall at the 
rate of 1.2 meters per second, find how fast the 
top of the ladder is sliding down the wall when 
the bottom is 6 meters away from the wall.

(16) If water is poured into an inverted hollow 
cone whose semi-vertical angel is 30°, so 
that its depth (measured along the axis) 
increases at the rate of 1 cm/ sec. Find the 
rate at which the volume of water increasing 
when the depth is 2 cm.
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2.2.1 Approximations     

 If f (x) is a differentiable function of x, then its derivative at x = a is given by

     f ' (a) = lim
h → 0

 f (a + h) − f (a)
h

Here we use ≑ sign for approximation.
For a sufficiently small h we have, 

      f ' (a) ≑ 
 f (a + h) − f (a)

h

   i.e.  h f ' (a) ≑  f (a + h) − f (a)

   ∴ f (a + h) ≑  f (a) + h f ' (a)

This is the formula to find the approximate value of the function at x = a + h, when f ' (a) exists.    
Let us solve some problems by using this formula. 

SOLVED EXAMPLES 

Ex. 1 : Find the approximate value of √ 64.1.

Solution : 

  Let f (x) = √ x . . . (I)

  Differentiate w. r. t. x. 

  f ' (x) = 
1

2√ x
 . . . (II)

  Let a = 64, h = 0.1
  For x = a = 64, from (I) we get 

  f (a) = f (64) = √ 64 = 8 . . . (III) 

  For x = a = 64, from (II) we get 

  f ' (a) = f ' (64) = 
1

2√ 64
 = 

1
16

 

∴  f ' (a) = 0.0625 . . . (IV) 

  We have, f (a + h) ≑  f (a) + h f ' (a)

  f (64 + 0.1) ≑  f (64) + (0.1)· f ' (64)

   f (64.1) ≑ 8 + (0.1)·(0.0625) . . . 
[From (III) and (IV)]

     ≑ 8 + 0.00625

  ∴ f (64.1) = √ 64.1 ≑ 8.00625

Ex. 2 : Find the approximate value of (3.98)3.

Solution : 

  Let f (x) = x3 . . . (I)

  Differentiate w. r. t. x. 

  f ' (x) = 3x2   . . . (II)

  Let a = 4, h = − 0.02
  For x = a = 4, from (I) we get 

  f (a) = f (4) = (4)3 = 64 . . . (III) 

  For x = a = 4, from (II) we get 

  f ' (a) = f ' (4) = 3(4)2 = 48 . . . (IV) 

  We have, f (a + h) ≑  f (a) + h f ' (a)

  f [4 + (− 0.02)] ≑  f (4) + (− 0.02)· f ' (4) 

   f (3.98) ≑ 64 + (− 0.02).(48) . . . 
[From (III) and (IV)]

   f (3.98) ≑ 64 − 0.96 

  ∴ f (3.98) = (3.98)3 ≑ 63.04
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Ex. 3 : Find the approximate value of 
  sin (30° 30' ). Given that 1° = 0.0175c 

and cos 30° = 0.866.
Solution : Let f (x) = sin x  . . . (I)
  Differentiate w. r. t. x. 
  f ' (x) = cos x

  Now, 30° 30' = 30° + 30' = 30° + 1
2

°

     = π
6

 + 0.1750c

2
   30° 30'  = π

6
 + 0.00875 . . . (II)

  Let a = π
6

, h = 0.00875

  For x = a = π
6

, from (I) we get

  f (a) = f π
6

 = sin π
6

 = 1
2

 = 0.5 . . . (III) 

  For x = a = π
6

, from (II) we get

  f ' (a) = f ' π
6

 = cos π
6

 = 0.866 . . . (IV)

  We have, f (a + h) ≑  f (a) + h f ' (a)

f π
6

 + 0.00875c  ≑  f π
6

 + (0.00875)· f ' π
6

  f (30° 30' ) ≑ 0.5 + (0.00875)·(0.866) ... 
. . . [From (III) and (IV)]

     ≑ 0.5 + 0.075775

 ∴ f (30° 30' ) = sin (30° 30' ) ≑ 0.575775

Ex. 4 : Find the approximate value of tan−1(0.99), 
Given that π ≑ 3.1416.

Solution : Let f (x) = tan−1 x  . . . (I)
  Differentiate w. r. t. x. 

  f ' (x) = 1
1 + x2

    . . . (II)

  Let a = 1, h = −0.01
  For x = a = 1, from (I) we get 

  f (a) = f (1) = tan−1 (1) = π
4

 . . . (III) 

  For x = a = 1, from (II) we get 

  f ' (a) = f ' (1) = 1
1 + 12

 = 0.5 . . . (IV)

  We have, f (a + h) ≑  f (a) + h f ' (a)

 f [(1) + (−0.01)]  ≑  f (1) + (−0.01)· f ' (1)

  f (0.99) ≑ π
4

 − (0.01)·(0.5) . . . [From
(III) and (IV)]

    ≑ π
4

 − 0.005

    ≑ 3.1416
4

 − 0.005 

    ≑ 0.7854 − 0.005 = 0.7804

 ∴ f (0.99) = tan−1 (0.99) ≑ 0.7804

Solution : Let f (x) = e x . . . (I)
  Differentiate w. r. t. x. 
  f ' (x) = e x   . . . (II)
  Let a = 1, h = 0.005
  For x = a = 1, from (I) we get 

  f (a) = f (1) = e1 = 2.7183 . . . (III) 

  For x = a = 1, from (II) we get 

  f ' (a) = f ' (1) = e1 = 2.7183 . . . (IV) 

  We have, f (a + h) ≑  f (a) + h f ' (a)

  f (1 + 0.005)  ≑  f (1) + (0.005)· f ' (1) 

  f (1.005) ≑ 2.7183 + (0.005) (2.7183) ... 
. . . [From (III) and (IV)]

  f (1.005)  ≑ 2.7183 + 0.0135915

     ≑ 2.7318915

  f (1.005) = e1.005 ≑ 2.73189

Ex. 5 : Find the approximate value of e1.005. Given that e = 2.7183.
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Ex. 6 : Find the approximate value of 
  log10 (998). Given that log10 e = 0.4343.

Solution : Let f (x) = log10 x = log x
log 10

 

 ∴    f (x) = (log10 e)·log x  . . . (I)
  Differentiate w. r. t. x. 

   f ' (x) = 
log10 e

x  = 
0.4343

x  . . . (II)
  Let a = 1000, h = −2
  For x = a = 1000, from (I) we get
  f (a) = f (1000) = log10 1000 
 ∴ f (a) = 3log1010 = 3 . . . (III) 
  For x = a = 1000, from (II) we get

  f ' (a) = f ' (1000) = 
0.4343
1000

 

 ∴ f ' (a) = 0.0004343 . . . (IV)

  We have, f (a + h) ≑  f (a) + h f ' (a)

 f [1000 + (−2)] ≑  f (1000) + (−2) f ' (1000)
  f (998) ≑ 3 − (2) (0.0004343) . . . 

[From (III) and (IV)]

    ≑ 3 − 0.0008686

  f (998) = log (998 ) ≑ 2.9991314

Ex. 7 : Find the approximate value of 
  f (x) = x3 + 5x2 − 2x + 3 at x = 1.98.
Solution : Let f (x) = x3 + 5x2 − 2x + 3  . . . (I)
  Differentiate w. r. t. x. 
  f ' (x) = 3x2 + 10x − 2  . . . (II)
  Let a = 2, h = −0.02
  For x = a = 2, from (I) we get 
  f (a) = f (2) = (2)3 + 5(2)2 − 2(2) + 3 

 ∴ f (a) = 27  . . . (III) 

  For x = a = 2, from (II) we get 

  f ' (a) = f ' (2) = 3(2)2 + 10(2) − 2

 ∴ f ' (a) = 30  . . . (IV)

  We have, f (a + h) ≑  f (a) + h f ' (a)

 f [(2) + (−0.02)]  ≑  f (2) + (−0.02)· f ' (2)

  f (1.98) ≑ 27 − (0.02)·(30) . . . [From
(III) and (IV)]

    ≑ 27 − 0.6

  f (1.98) ≑ 26.4

EXERCISE 2.2

(1) Find the approximate value of given 
functions, at required points.

 (i) √ 8.95  (ii) √ 28  (iii) √ 31.98

 (iv) (3.97)4 (v) (4.01)3

(2) Find the approximate value of 
 (i) sin (61°) given that 1° = 0.0174c, 
  √ 3 = 1.732
 (ii) sin (29° 30' ) given that 1° = 0.0175c, 
  √ 3 = 1.732
 (iii) cos (60° 30' ) given that 1° = 0.0175c, 
  √ 3 = 1.732
 (iv) tan (45° 40' ) given that 1° = 0.0175c.

(3) Find the approximate value of
 (i) tan−1 (0.999)  (ii) cot−1 (0.999) 
 (iii) tan−1 (1.001) 
(4) Find the approximate value of 
 (i) e 

0.995  (ii) e 
2.1 given that e2 = 7.389

 (iii) 3 
2.01 given that log 3 = 1.0986

(5) Find the approximate value of 
 (i) loge (101) given that loge 10 = 2.3026 
 (ii) loge (9.01) given that log 3 = 1.0986
 (iii) log10 (1016) given that log10 e = 0.4343
(6) Find the approximate value of 
 (i) f (x) = x3 − 3x + 5 at x = 1.99
 (ii) f (x) = x3 + 5x2 − 7x + 10 at x = 1.12

3 5
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at each point of (a, b). Now the existence of real number c ∈ (a, b) such that f ' (c) = 0 shows that 
the tangent to the curve at x = c has slope zero, that is, tangent is parallel to X-axis since f (a) = f (b).  

SOLVED EXAMPLES 

Ex. 1 : Check whether conditions of Rolle's theorem are satisfied by the following functions.

  (i) f (x) = 2x3 − 5x2 + 3x + 2, x ∈ 0, 3
2

 (ii) f (x) = x2 − 2x + 3, x ∈ [1, 4]

Solution : 

(i) Given that    f (x) = 2x3 − 5x2 + 3x + 2    . . . (I) 

 f (x) is a polynomial which is continuous on 0, 3
2

 and it is differentiable on 0, 3
2

.

      Let a = 0, and b = 3
2

 , 

      For x = a = 0 from (I) we get, 

      f (a) = f (0) = 2 (0)3 − 5 (0)2 + 3 (0) + 2 = 2

      For x = b = 3
2

 from (I) we get, 

      f (b) = f  3
2

 = 2 3
2

3

 − 5 3
2

2

 + 3 3
2

 + 2  = 54
8

 − 45
4

 + 9
2

 + 2 

      f (b) = f  3
2

 = 54 − 90 + 36
8

 + 2 = 2

      So, here f (a) = f (b) i.e. f (0) = f  3
2

 = 2

      Hence conditions of Rolle's Theorem are satified. 

2.3.1 Rolle's Theorem or Rolle's Lemma :      

If a real-valued function f is continous on [a, b], differentiable on the open interval (a, b) and f (a) 
= f (b), then there exists at least one c in the open interval (a, b) such that f ' (c) = 0. 

Rolle's Theorem essentially states that any real-valued differentiable function that attains equal 
values at two distinct points on it, must have at least one stationary point somewhere in between them, 
that is, a point where the first derivative (the slope of the tangent line to the graph of the function) is zero. 

Fig. 2.3.1

Geometrical Significance :

Let f (x) be a real valued 
function defined on [a, b] 
and it is continuous on [a, b]. 
This means that we can 
draw the graph f (x) between 
the values x = a and x = b. 
Also f (x) is differentiable 
on (a, b) which means the 
graph of f (x) has a tangent 
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(ii) Given that    f (x) = x2 − 2x + 3     . . . (I) 
 f (x) is a polynomial which is continuous on [1, 4] and it is differentiable on (1, 4).
      Let a = 1, and b = 4
      For x = a = 1 from (I) we get, 
      f (a) = f (1) = (1)2 − 2(1) + 3 = 2
      For x = b = 4 from (I) we get, 
      f (b) = f (4) = (4)2 − 2(4) + 3 = 11
      So, here f (a) ≠ f (b) i.e. f (1) ≠ f  (4)

      Hence conditions of Rolle's theorem are not satisfied. 

Ex. 2 : Verify Rolle's theorem for the function 

  f (x) = x2 − 4x + 10 on [0, 4].

Solution : 

 Given that  f (x) = x2 − 4x + 10   . . . (I)

 f (x) is a polynomial which is continuous on 
[0, 4] and it is differentiable on (0, 4).

 Let a = 0, and b = 4

 For x = a = 0 from (I) we get, 

 f (a) = f (0) = (0)2 − 4(0) + 10 = 10

 For x = b = 4 from (I) we get, 

 f (b) = f (4) = (4)2 − 4(4) + 10 = 10

 So, here f (a) = f (b) i.e. f (0) = f  (4) = 10

 All the conditions of Rolle's theorem are 
satisfied. 

 To get the value of c, we should have 

 f ' (c) = 0 for some c ∈ (0, 4) 

 Differentiate (I) w. r. t. x. 

 f ' (x)  = 2x − 4 = 2 (x − 4) 

 Now, for x = c, 

 f ' (c)  = 0 ⇒ 2 (c − 2) = 0 ⇒ c = 2

 Also c = 2 ∈ (0, 4)

 Thus Rolle's theorem is verified.

Ex. 3 : Given an interval [a, b] that satisfies 
hypothesis of Rolle's theorem for the 
function f (x) = x3 − 2x2 + 3. It is known 
that a = 0. Find the value of b.

Solution : 

 Given that  f (x) = x3 − 2x2 + 3   . . . (I)

 Let g (x) = x3 − 2x2 = x2 (x − 2)

 From (I),  f (x) = g (x) + 3

 We see that g (x) becomes zero for x = 0 and 
x = 2. 

 We observe that for x = 0, 

   f (0) = g (0) + 3 = 3

 and for x = 2, 

   f (2) = g (2) + 3 = 3

∴ We can write that f (0) = f (2) = 3

 It is obvious that the function f (x) is 
everywhere continuous and differentiable as 
a cubic polynomial. Consequently, it satisfies 
all the conditions of Rolle's theorem on the 
interval [0, 2]. 

 So   b = 2.
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Ex. 4 : Verify Rolle's theorem for the function f (x) = ex (sin x − cos x) on π
4

, 5π
4

.

Solution : Given that,    f (x) = ex (sin x − cos x)    . . . (I) 

  We know that ex, sin x and cos x are continuous and differentiable on their domains. Therefore 

f (x) is continuous and differentiable on  π
4

, 5π
4

 and π
4

, 5π
4

 respectively.  

    Let a = π
4

, and b = 5π
4

    For x = a = π
4

 from (I) we get, 

    f (a) = f π
4

 = e
π
4  sin π

4
 − cos π

4
 = e

π
4  

1

√ 
2

 − 
1

√ 
2

 = 0

    For x = b = 5π
4

 from (I) we get, 

    f (a) = f 5π
4

 = e
5π
4  sin 5π

4
 − cos 5π

4
 = e

5π
4  − 

1

√ 
2

 + 
1

√ 
2

 = 0

   ∴ f (a) = f (b) i.e. f  π
4

 = f  5π
4

.

    All the conditions of Rolle's theorem are satisfied. 

    To get the value of c, we should have f ' (c) = 0 for some c ∈ π
4

, 5π
4

.

   Differentiate (I) w. r. t. x.

    f ' (x) = e 
x (cos x + sin x) + (sin x − cos x) e 

x = 2e 
x sin x

   Now, for x = c,  f ' (c)  = 0 ⇒ 2e 
c sin c = 0. As e 

c ≠ 0 for any c ∈ R 

   sin c = 0 ⇒ c = 0, ± π, ± 2π, ± 3π, . . .

    It is clearly seen that  π  ∈ π
4

, 5π
4

 ∴ c = π

    Thus Rolle's theorem is verified.

2.3.2 Lagrange's Mean Value Theorem (LMVT) :       

If a real-valued function f is continous on a closed [a, b] and differentiable on the open interval      
(a, b) then there exists at least one c in the open interval (a, b) such that 

 f ' (c) = 
 f (b) − f (a)

b − a
Lagrange's mean value theorem states, that for any real-valued diffenentiable function which is 

continuous at the two end points, there is at least one point at which the tangent is parallel to the the 
secant through its end points.
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Geometrical Significance :

Draw the curve y = f (x) (see Figure 2.3.2) and take the end 
points A (a, f (a)) and B (b, f (b)) on the curve, then 

 Slope of the chord AB = 
 f (b) − f (a)

b − a
 Since by statement of Lagrange's Mean Value.

 Theorem   f ' (c) = 
 f (b) − f (a)

b − a
    f ' (c) = Slope of the chord AB. 

This shows that the tangent to the curve y = f (x) at the point x = c 
is parallel to the chord AB.

Fig. 2.3.2

SOLVED EXAMPLES 

Ex. 1 : Verify Lagrange's mean value theorem 

for the function f (x) = √ 
x + 4 on the 

interval [0, 5].

Solution : Given that f (x) = √ 
x + 4 . . . (I) 

  The function f (x) is continuous on the 
closed interval [0, 5] and differentiable 
on the open interval (0, 5), so the LMVT 
is applicable to the function. 

  Differentiate (I) w. r. t. x. 

  f ' (x) = 
1

2√ 
x + 4

 . . . (II) 

  Let a = 0 and b = 5

  From (I), f (a) = f (0) = √ 
0 + 4 = 2

     f (b) = f (5) = √ 
5 + 4 = 3

  Let c ∈ (0, 5) such that 

     f ' (c)  = 
 f (b) − f (a)

b − a

     
1

2√ 
c + 4

 = 3 − 2
5 − 0

 = 1
5

 ∴ √ 
c + 4 = 5

2
 ⇒ c + 4 = 25

4
 ∴ c = 9

4
 ∈ (0, 5)

  Thu s Lagrange's Mean Value Theorem 
is verified. 

Ex. 2 : Verify Lagrange's mean value theorem 

for the function f (x) = x + 1
x

 on the 
interval [1, 3].

Solution : Given that f (x) = x + 1
x

  . . . (I) 

  The function f (x) is continuous on the 
closed interval [1, 3] and differentiable 
on the open interval (1, 3), so the LMVT 
is applicable to the function. 

  Differentiate (I) w. r. t. x. 

  f ' (x) = 1 − 1
x2

  . . . (II) 

  Let a = 1 and b = 3

  From (I), f (a) = f (1) = 1 + 1
1

 = 2

     f (b) = f (3) = 3 + 1
3

 = 10
3

  Let c ∈ (1, 3) such that 

     f ' (c)  = 
 f (b) − f (a)

b − a

     1 − 1
c2

  = 
10
3  − 2
3 − 1

     1 − 1
c2

  = 
4
3

2
 = 2

3

 ∴ c
 

2 = 3 ⇒ c = ± √ 
3

 ∴  c = √ 
3 ∈ (1, 3) and c = − √ 

3 ∉ (1, 3)
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(1) Check the validity of the Rolle's theorem for 
the following functions. 

 (i) f (x) = x2 − 4x + 3, x ∈ [1, 3]
 (ii)  f (x) = e 

−x sin x, x ∈ [0, π]
 (iii)  f (x) = 2x2 − 5x + 3, x ∈ [1, 3]
 (iv)  f (x) = sin x − cos x + 3, x ∈ [0, 2π]
 (v)  f (x) = x2 if 0 ≤ x ≤ 2
   = 6 − x if 2 ≤ x ≤ 6

 (vi)  f (x) = x 

2
3 , x ∈ [−1, 1]

(2)  Given an interval [a, b] that satisfies 
hypothesis of Rolle's thorem for the function 
f (x) = x4 + x2 − 2. It is known that a = − 1. 
Find the value of b.

(3) Verify Rolle's theorem for the following 
functions.

 (i) f (x) = sin x + cos x + 7, x ∈ [0, 2π]

 (ii) f (x) = sin x
2

, x ∈ [0, 2π]

 (iii) f (x) = x2 − 5x + 9, x ∈ [1, 4]

EXERCISE 2.3

(4)  If Rolle's theorem holds for the function 
 f (x) = x3 + px2 + qx + 5, x ∈ [1, 3] with 

 c = 2 + 
1

√ 3
 , find the values of p and q. 

(5)  Rolle's theorem holds for the function 
 f (x) = (x − 2) log x, x ∈ [1, 2], show that the 

equation x log x = 2 − x is satisfied by at least 
one value of x in (1, 2). 

(6)  The function f (x) = x (x + 3) e−
 

x
2  satisfies all 

the conditions of Rolle's theorem on [−3, 0]. 
Find the value of c such that f ' (c) = 0.

(7)  Verify Lagrange's mean value theorem for 
the following functions. 

 (i) f (x) = log x, on [1, e]
 (ii)  f (x) = (x − 1) (x − 2) (x − 3) on [0, 4] 

 (iii)  f (x) = x2 − 3x − 1, x ∈ − 
11
7 , 

13
7

 (iv)  f (x) = 2x − x2, x ∈ [0, 1]

 (v)  f (x) =  x − 1
x − 3

 on [4, 5]

2.4.1 Increasing and decreasing functions :  

Increasing functions : 

Definition : A function f is said to be a monotonically (or strictly) increasing function on an interval      
(a, b) if for any x1, x2 ∈ (a, b) with if x1 < x2 , we have f (x1) < (x2). 

Consider an increasing function y = f (x) in (a, b). Let h > 0 be a small increment in x then, 
      x < x + h  [ x = x1 , x + h = x2 ]

      f (x) < f (x + h) [ f (x1) < f (x2)]

∴      f (x + h) > f (x)  

∴      f (x + h) − f (x) > 0 

∴      
f (x + h) − f (x)

h
 > 0  

∴   lim
h → 0

 

f (x + h) − f (x)
h

 ≥ 0

∴      f ' (x) ≥ 0 
Fig. 2.4.1
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If f ' (a) > 0, then in a small δ-neighborhood of a i.e. (a − δ, a + δ), we have f strictly increasing if

       
f (a + h) − f (a)

h
 > 0 for |h| < δ

Hence if 0 < h < δ,  f (a + h) − f (a) > 0 and  f (a − h) − f (a) < 0
Thus for 0 < h < δ,  f (a − h) < f (a) < f (a + h)

Decreasing functions : 

Definition : A function f is said to be a monotonically (strictly) decreasing function on an interval (a, b) 
if for any x1, x2 ∈ (a, b) with x1 < x2 , we have  f (x1) > (x2).

Consider a decreasing function y = f (x) in (a, b). Let h > 0 be a small increment in x then, 
      x + h > x  [ x = x1 , x + h = x2 ]
      f (x) > f (x + h) [ f (x1) < f (x2)]
∴      f (x + h) < f (x)  
∴      f (x + h) − f (x) < 0 

∴      
f (x + h) − f (x)

h
 < 0  

∴   lim
h → 0

 

f (x + h) − f (x)
h

 ≤ 0

∴      f ' (x) ≤ 0 
If f ' (a) < 0, then in a small δ-neighborhood of a i.e. (a − δ, a + δ), we have f strictly decreasing

  because   
f (a + h) − f (a)

h
 < 0 for |h| < δ

  Hence for 0 < h < δ,  f (a − h) > f (a) > f (a + h)

Note : Whenever f ' (x) = 0, at that point the tangent is parallel to X-axis, we cannot deduce that 
whether f (x) is increasing or decreasing at that point.

SOLVED EXAMPLES 

Fig. 2.4.2

Ex. 1 : Show that the function f (x) = x3 + 10x + 7 

for x ∈ R is strictly increasing.

Solution : Given that f (x) = x3 + 10x + 7

   Differentiate w. r. t. x.

   f ' (x) = 3x2 + 10

  Here, 3x2 ≥ 0 for all x ∈ R and 10 > 0. 

  ∴  3x2 + 10 > 0 ⇒ f ' (x) > 0

  Thus f (x) is a strictly increasing function. 

Ex. 2 : Test whether the function 

  f (x) = x3 + 6x2 + 12x − 5 is increasing or 

decreasing for all x ∈ R.

Solution : Given that f (x) = x3 + 6x2 + 12x − 5

   Differentiate w. r. t. x.

   f ' (x) = 3x2 + 12x + 12 = 3(x2 + 4x + 4)

   f ' (x) = 3(x + 2)2

  3(x + 2)2 is always positive for x ≠ −2

  ∴ f ' (x) ≥ 0 for all x ∈ R

Hence f (x) is an increasing function for all x ∈ R.
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Ex. 3 : Find the values of x, for which the funciton f (x) = x3 + 12x2 + 36x + 6 is (i) monotonically 

increasing. (ii) monotonically decreasing.

Solution : Given that f (x) = x3 + 12x2 + 36x + 6

   Differentiate w. r. t. x.

   f ' (x)  = 3x2 + 24x + 36 

    = 3(x2 + 8x + 12)

   f ' (x)  = 3(x + 2) (x + 6)

(i)  f (x) is monotonically increasing if  f ' (x) > 0

 i.e. 3(x + 2) (x + 6) > 0, (x + 2) (x + 6) > 0

 then either (x + 2) < 0 and (x + 6) < 0 or (x + 2) > 0 and (x + 6) > 0

Case (I) : x + 2 < 0 and x + 6 < 0

   x < − 2 and x < − 6

   Thus for every x < − 6, (x + 2) (x + 6) > 0, hence f  is monotonically increasing.

Case (II) : x + 2 > 0 and x + 6 > 0

   x > − 2 and x > − 6

   Thus for every x > − 2, (x + 2) (x + 6) > 0 and f  is monotonically increasing.

 ∴ From Case (I) and Case (II), f (x) is monotonically increasing if and only if x < − 6 or x > − 2.

   Hence, x ∈ (∞,− 6) or x ∈ (− 2, ∞) ⇒ f  is monotonically increasing.

(ii)  f (x) is said to be monotonically decreasing if  f ' (x) = 0

 i.e. 3(x + 2) (x + 6) < 0, (x + 2) (x + 6) < 0

 then either (x + 2) < 0 and (x + 6) > 0 or (x + 2) > 0 and (x + 6) < 0

Case (I) : x + 2 < 0 and x + 6 > 0

   x < − 2 and x > − 6

   Thus for x ∈ (− 6, − 2), f  is monotonically decreasing.

Case (II) : x + 2 > 0 and x + 6 < 0

   x > − 2 and x < − 6 

 ∴ This case does not arise. . . . [check. why ?] 
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2.4.2 Maxima and Minima : 

Maxima of a function f (x) : A function f (x) is said to have a maxima at x = c if the value of the function 
at x = c is greater than any other value of f (x) in a δ-neighborhood of c. That is for a small δ > 0 and for 

x ∈ (c − δ, c + δ)  we have f (c) > f (x). The value f (c) is called a Maxima of f (x). Thus the function f (x) 

will have maxima at x = c if f (x) is increasing in c − δ < x < c and decreasing in c < x < c + δ.

Minima of a function f (x) : A function f (x) is said to have a minima at x = c if the value of the function 
at x = c is less than any other value of f (x) in a δ-neighborhood of c. That is for a small δ > 0 and for x 

∈ (c − δ, c + δ)  we have f (c) < f (x). The value f (c) is called a Minima of f (x). Thus the function f (x) 

will have minima at x = c if f (x) is decreasing in c − δ < x < c and increasing in c < x < c + δ.

If f ' (c) = 0 then at x = c the function is neither increasing nor decrasing, such a point on the curve 
is called turning point or stationary point of the function. Any point at which the tangent to the graph 

is horizontal is a turning point. We can locate the turn points by looking for points at which 
dy
dx

 = 0. 

At these points if the function has Maxima or Minima then these are called extreme values of the 
function.

Note : The maxima and the minima of a function are not necessarily the greatest and the least values 
of the function in the whole domain. Actually these are the greatest and the least values of the 
function in a small interval. Hence the maxima or the minima defined above are known as local 
(or relative) maximum and the local (or relative) minimum of the function f (x). 

  To find the extreme values of the function let us use following tests. 

2.4.3 First derivative test : 

A function f (x) has a maxima at x = c if
(i) f ' (c) = 0 
(ii) f ' (c − h) > 0   [ f (x) is increasing for values of x < c ] 
(iii) f ' (c + h) < 0   [ f (x) is decreasing for values of x > c ]
 where h is a small positive number. 
A function f (x) has a minima at x = c if 
(i)  f ' (c) = 0 
(ii) f ' (c − h) < 0   [ f (x) is decreasing for values of x < c ]
(iii)  f ' (c + h) > 0   [ f (x) is increasing for values of x > c ] 
 where h is a small positive number. 

Note : If f ' (c) = 0 and f ' (c − h) > 0, f ' (c + h) > 0 or f ' (c − h) <0, f ' (c + h) < 0 then f (c) in neither 
maxima nor minima. In such a case x = c is called a point of inflexion. e.g. f (x) = x3 , f (x) = x5 
in [−2, 2].
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SOLVED EXAMPLES 

Ex. 1 : Find the local maxima or local minima of f (x) = x3 − 3x.

Solution : Given that f (x) = x3 − 3x    . . . (I)
   Differentiate (I) w. r. t. x.
   f ' (x)  = 3x2 − 3 = 3 (x2 − 1)    . . . (II)
   For extreme values, f ' (x) = 0
   3x2 − 3 = 0 i.e. 3 (x2 − 1) = 0
   i.e. x2 − 1 = 0 ⇒ 0 ⇒ x2 = 1 ⇒ x = ± 1
   The turning points are x = 1 and x = −1
   Let's consider the turning point, x = 1
   Let x = 1 − h for a small, h > 0, from (II) we get, 
   f ' (1 − h) = 3 [(1 − h)2 − 1] = 3 (1 − 2h + h2 − 1) = 3h (h − 2)
 ∴ f ' (1 − h) < 0 . . . [ since,  h > 0, h − 2 < 0 ]

 ∴ f ' (x) for x = 1 − h ⇒ f (x) is decreasing for, x > 1.
   Now for x = 1 + h for a small, h > 0, from (II) we get, 
   f ' (1 + h) = 3 [(1 + h)2 − 1] = 3 (1 + 2h + h2 − 1) = 3 (h2 + 2h)
 ∴ f ' (1 + h) > 0 . . . [ since,  h > 0, h2 + 2h > 0 ]

 ∴ f ' (x) < 0 for x = 1 + h ⇒ f (x) is increasing for, x < 1.
 ∴ f ' (x) < 0 for 1 − h < x < 1
 ∴ f ' (x) > 0 for 1 < x < 1 + h.
 ∴ x = 1 is the point of local minima.
   Minima of f (x), is f (1) = 13 − 3 (1) = −2 
   Now, let's consider the turning point, x = −1
   Let x = −1 − h for a small, h > 0, from (II) we get, 
 ∴ f ' (−1 − h) = 3 [(−1 − h)2 − 1] = 3 (1 + 2h + h2 − 1) = 3 (h2 + 2h)
 ∴ f ' (−1 − h) > 0 . . . [ since,  h > 0, h2 + 2h > 0 ]

 ∴ f ' (x) > 0 for x = −1 − h ⇒ f (x) is increasing for, x < −1.
   Now for x = −1 + h for a small, h > 0, from (II) we get, 
 ∴ f ' (−1 + h) = 3 [(− 1 + h)2 − 1] = 3 (1 − 2h + h2 − 1) = − 3h (2 − h)
 ∴ f ' (−1 + h) < 0 . . . [ since,  h > 0, 2 − h > 0 ]

 ∴ f ' (x) < 0 for x = − 1 + h ⇒ f (x) is decreasing for, x > −1.
 ∴ f ' (x) > 0 for −1 − h < x < −1
 ∴ f ' (x) > 0 for −1 < x < −1 + h.
 ∴ x = − 1 is the point of local maxima. 
   Maxima of f (x), is f (−1) = (−1)3 − 3(−1) = −1 + 3 = 2

   Hence, Maxima of f (x) = 2 and Minima of f (x) = −2



85

Fig. 2.4.4 (a) Fig. 2.4.4 (b)

2.4.4 Second derivative test : 

A function f (x) has a maxima at x = c if f ' (c) = 0 and f '' (c) < 0 

A function f (x) has a minima at x = c if f ' (c) = 0 and f '' (c) < 0

Note : If f '' (c) = 0 then second derivative test fails so, you may try using first derivative test. 

Maxima at A : Consider the slopes of the tangents (See Fig 2.4.4a) Slope of L1 is +ve, slope of L2 = 0 
and slope of L3 is −ve. Thus the slope is seen to be decreasing if there is a maximum at A. 

Minima at A : Consider the slopes of the tangents (See Fig 2.4.4b) slope of L1 is −ve, slope of L2 = 0 
and slope of L3 is +ve. Thus the slope is seen to be increasing if there is a minima at A.

SOLVED EXAMPLES 

Ex. 1 : Find the local maximum and local minimum value of f (x) = x3 − 3x2 − 24x + 5.

Solution : Given that f (x) = x3 − 3x2 − 24x + 5 . . . (I)

  Differentiate (I) w. r. t. x.

  f ' (x) = 3x2 − 6x − 24   . . . (II)

  For extreme values, f ' (x) = 0

  3x2 − 6x − 24 i.e. 3 (x2 − 2x − 8) = 0 

  i.e. x2  − 2x − 8 = 0 i.e. (x + 2) (x − 4) = 0 

  ⇒ x + 2 = 0 or x − 4 = 0 ⇒ x = −2 or x = 4 

  The stationary points are x = −2 and x = 4. 

  Differentiate (II) w. r. t. x.

  f '' (x) = 6x − 6   . . . (III) 

  For x = −2, from (III) we get, 

  f '' (−2) = 6 (−2) − 6 = −18 < 0 

∴   At x = −2, f (x) has a maximum value.

  For maximum of f (x), put x = −2 in (I) 

  f (−2) = (−2)3 − 3(−2)2 − 24 (−2) + 5 = 33. 

  For x = 4, from (III) we get 

  f '' (4) = 6(4) − 6 = 18 > 0 

∴ At x = 4, f (x) has a minimum value. 

 For minima of f (x), put x = 4 in (I) 

 f (4) = (4)3 − 3 (4)2 − 24 (4) + 5 = −75 

∴ Local maximum of f (x) is 33 when x = −2

 and

 Local minimum of f (x) is −75 when x = 4. 

L
1

L
3

L
2 L

1

L
2

L
3
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Ex. 2 : A wire of length 120 cm is bent in the form 
of a rectangle. Find its dimensions if the 
area of the rectangle is maximum.

Solution : Let x cm and y cm be the length and 
the breadth of the rectangle. Perimeter of 
rectangle = 120 cm. 

∴  2 (x + y) = 120  so, x + y = 60 
∴   y = 60 − x   . . . (I) 
  Let A be the area of the rectangle
∴   A = xy = x (60 − x) = 60x − x2. . . [From (I)]
  Differentiate w. r. t. x.

  
dA
dx

 = 60 − 2x . . . (II)

  For maximum area 
dA
dx

 = 0

  i.e. 60 − 2x = 0 ⇒ x = 30
  Differentiate (II) w. r. t. x.

  
d2A
dx2

 = − 2   . . . (III)

  For, x = 30 from (III) we get, 

  
d2A
dx2

 
x = 30 

= − 2 < 0

  When, x = 30, Area of the rectangle is 
maximum. 

  Put x = 30 in (I) we get y = 60 − 30 = 30
∴  Area of the rectangle is maximum if length 

= breadth = 30 cm. 

  After leaving the margins, length of the 
printing space is (x − 1) m and breadth of 
the printing space is ( y − 1.5) m. 

  Let A be the area of the printing space

  A = (x − 1) ( y − 1.5) = (x − 1) 
24
x  − 1.5

   = 24 − 1.5x − 
24
x

 + 1.5 . . . [ From (I)]

  A = 25.5 − 1.5x − 
24
x

 . . . (II)

  Differentiate w. r. t. x.

  
dA
dx

 = − 1.5 + 
24
x2

 . . . (III)

  For maximum printing space 
dA
dx

 = 0

i.e. − 1.5x + 
24
x2

 = 0 ⇒ 1.5x2 = 24 ⇒ x = ± 4, x ≠ −4

∴  x =  4
  Differentiate (III) w. r. t. x.

  
d2A
dx2

 = − 
48
x3

 . . . (IV)

  For, x = 4, from (IV) we get, 

  
d2A
dx2

 
x = 4 

= − 
48
(4)3

 < 0

  When, x = 4 Area of the rectangular 
printing space is maximum. 

  Put x = 4 in (I) we get y = 
24
4

 = 6

∴   Area of the printing space is maximum 
when width printing space = 4 m. and 
length of the printing space = 6 m.

Ex. 3 : A Rectangular sheet of paper has it area 24 
sq. meters. The margin at the top and the 
bottom are 75 cm each and at the sides 50 cm 
each. What are the dimensions of the paper, 
if the area of the printed space is maximum ?

Solution : Let x m and y m be the width and the 
length of the rectangular sheet of paper 
respectively. Area of the paper = 24 sq. m.

∴  xy = 24  ⇒  y = 
24
x

 . . . (I) 

Fig. 2.4.5
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Ex. 4 : An open box is to be cut out of piece of 
square card coard of side 18 cm by cutting 
of equal squares from the corners and 
turning up the sides. Find the maximum 
volume of the box. 

Solution : Let the side of each of the small squares 
cut be x cm, so that each side of the box to 
be made is (18 − 2x) cm. and height x cm.

Ex. 5 : Two sides of a triangle are given, find the 
angle between them such that the area of 
the triangle is maximum.

Solution : Let ABC be a triangle. Let the given 
sides be AB = c and AC = b. 

Fig. 2.4.6

Fig. 2.4.7

  Let V be the volume of the box. 
  V = Area of the base × Height 
   = (18 − 2x)2 x = (324 − 72x + 4x2) x
  V = 4x3 − 72x2 + 324x  . . . (I) 
  Differentiate w. r. t. x

  
dV
dx

 = 12x2 − 144x + 324 . . . (II)

  For maximum volume 
dV
dx

 = 0

i.e.  12x2 − 144x + 324 = 0 ⇒ x2 − 12x + 27 = 0
  (x − 3) (x − 9) = 0 ⇒ x − 3 = 0 or x − 9 = 0
∴  x = 3 or x = 9, but x ≠ 9  ∴  x = 3

  Differentiate (II) w. r. t. x

  
d2V
dx2

 = 24x − 144 . . . (III)

  For, x = 3 from (III) we get,

  
d2V
dx2

 
x = 3 

= 24 (3) − 144 = − 72 < 0

  Volume of the box is maximum when x = 3.
  Maximum volume of the box 
  = (18 − 6)2 (3) = 432 c.c.

  Let ∆ be the area of the triangle. 

  ∆ = 
1
2

 bc sin A . . . (I)

  Differentiate w. r. t. A. 

  
d∆
dA

 = 
bc
2

 cos A . . . (II)

  For maximum area 
d∆
dA

 = 0

i.e.  
bc
2

 cos A = 0 ⇒ cos A = 0 ⇒ A = 
π
2

  Differentiate (II) w. r. t. A. 

  
d2∆
dA2

 = − 
bc
2

 sin A . . . (III)

  For, A = 
π
2

 from (III) we get,

  
d2∆
dA2

 
A = 

π
2

 
= − 

bc
2

 sin 
π
2

 = 
bc
a

 < 0

  When, A = 
π
2

 Area of the triangle is 

maximum. 

  Hence, the area of the triangle is maximum 

when the angle between the given sides 
π
2

. 

Note : sin A is maximum (=1), when A = 
π
2
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Ex. 6 : The slant side of a right circular cone is l. Show that the semi-vertical angle of the cone of 
maximum volume is tan−1 (√ 2 ).

Solution : Let x be the height of the cone and r be the radius of the base.
  So, r2 = l2 − x2 . . . (I) 
  Let V be the volume of the cone. 

  V = 
1
3

 πr2x = 
π
3

 (l2 − x2) x   

∴  V  = 
π
3

 (l2 x − x3)

  Differentiate w. r. t. x

  
dV
dx

 = 
π
3

 (l2 − 3x2)  . . . (II)

  For maximum volume 
dV
dx

 = 0

i.e.   
π
3

 (l2 − 3x2) = 0 ⇒ x2 = 
l2

3
  x = ± 

l
√ 3

 ⇒ x = l
√ 3

  or x = − 
l

√ 3
 is the stataionary point but, x ≠ − l

√ 3
   ∴  x = l

√ 3
 

  Differentiate (II) w. r. t. x

  
d2V
dx2

 = − 2πx . . . (III)

  For, x = l
√ 3

 from (III) we get,

  
d2V
dx2

 
x =

l
√ 3

 
= − 2πl

√ 3
 < 0

  Volume of the cone is maximum when height of the cone is x = l
√ 3

.

  Put x = l
√ 3

 in (I) we get, r = l2 − l
√ 3

2

= l √ 2
√ 3

  Let α be the semi-vertical angle. 

  Then tan α = 
r
x

 = 
l √2
√3
l

√3

 = √ 2

∴  α = tan−1 (√ 2 )

Ex. 7 : Find the height of a covered box of fixed volume so that the total surface area of the box is 
minimum whose base is a rectangle with one side three times as long as the other.

Solution : Given that, box has a rectangular base with one side three times as long as other. 
  Let x and 3x be the sides of the rectangular base.
  Let h be the height of the box and V be its volume.
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  V = (x) (3x) (h) = 3x2h . . . [Observe that V is constant]

  Differentiate w. r. t. x. 

  
dV
dx

 = 3x2  dh
dx

 + h 
d
dx

 (3x2)  

∴  3x2  dh
dx

 + 6xh = 0 ⇒ 
dh
dx

 = − 
2h
x

     . . . (I)

  Let S be the surface area of the box. 
∴  S = (2 × 3x2) + (2 × 3xh) + (2 × xh) = 6x2 + 8xh 
  Differentiate w. r. t. x. 

  
dS
dx

 = 12x + 8 x 
dh
dx

 + h 
d
dx

 (x)   

  
dS
dx

 = 12x + 8 x − 
2h
x

 + h      . . . [ from (I) ]

   = 12x + 8(−2h + h)

∴  
dS
dx

 = 12x − 8h     . . . (II)

  For minimum surface area 

  
dS
dx

 = 0 ⇒ 12x − 8h = 0 ⇒ h = 
3x
2

  Differentiate (II) w. r. t. x. 

  
d2S
dx2

 = 12 − 8 
dh
dx

 = 12 − 8 − 
2h
x

 = 12 + 
16h

x
 . . . (III) . . . [ from (I) ]

  Both x and h are positive, from (III) we get, 

  
d2S
dx2

 = 12 + 
16h

x
 > 0

  Surface area of the box is minimum if height = 
3
2

 × shorter side of base.

(1) Test whether the following functions are 
increasing or decreasing. 

 (i) f (x) = x3 − 6x2 + 12x − 16, x ∈ R
 (ii)  f (x) = 2 − 3x + 3x2 − x3, x ∈ R

 (iii) f (x) = x − 
1
x

, x ∈ R and x ≠ 0  

(2)  Find the values of x for which the following 
functions are strictly increasing - 

 (i) f (x) = 2x3 − 3x2 − 12x + 6

 EXERCISE 2.4

 (ii) f (x) = 3 + 3x − 3x2 + x3

 (iii) f (x) = x3 − 6x2 − 36x + 7 

(3) Find the values of x for which the following 
functions are strictly decreasing -

 (i) f (x) = 2x3 − 3x2 − 12x + 6 

 (ii) f (x) = x + 
25
x

 (iii) f (x) = x3 − 9x2 + 24x + 12 
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(4)  Find the values of x for which the function        
f (x) = x3 − 12x2 − 144x + 13 

 (a) Increasing  (b) Decreasing 

(5) Find the values of x for which 

 f (x) = 2x3 − 15x2 − 144x − 7 is
 (a) strictly increasing  
 (b) strictly decreasing 

(6)  Find the values of x for which f (x) = 
x

x2 + 1 is 

 (a) strictly increasing  
 (b) strictly decreasing 

(7) Show that f (x) = 3x + 
1
3x increasing in 

 
1
3

, 1  and decreasing in 
1
9

, 
1
3

.

(8) Show that f (x) = x − cos x is increasing for 
all x.

(9) Find the maximum and minimum of the 
following functions - 

 (i) y = 5x3 + 2x2 − 3x

 (ii)  f (x) = 2x3 − 21x2 + 36x − 20 

 (iii)  f (x) = x3 − 9x2 + 24x 

 (iv)  f (x) = x2 + 
16
x2

 (v)  f (x) = x log x  (vi)  f (x) = 
log x

x
(10) Divide the number 30 in to two parts such 

that their product is maximum. 

(11) Divide that number 20 in to two parts such 
that sum of their squares is minimum.

(12) A wire of length 36 meters is bent in the form 
of a rectangle. Find its dimensions if the area 
of the rectangle is maximum. 

(13) A ball is thrown in the air. Its height at any 
time t is given by h = 3 + 14t − 5t2. Find the 
maximum height it can reach.

(14) Find the largest size of a rectangle that can be 
inscribed in a semi circle of radius 1 unit, So 
that two vertices lie on the diameter.

(15) An open cylindrical tank whose base is a 
circle is to be constructed of metal sheet so 
as to contain a volume of πa3 cu. cm of water. 
Find the dimensions so that sheet required is 
minimum. 

(16) The perimeter of a triangle is 10 cm. If one of 
the side is 4 cm. What are the other two sides 
of the triangle for its maximum area ? 

(17) A box with a square base is to have an open 
top. The surface area of the box is 192 sq.cm. 
What should be its dimensions in order that 
the volume is largest ?

(18) The profit function P (x) of a firm, selling x 
items per day is given by 

 P (x) = (150 − x)x − 1625. Find the number 
of items the firm should manufacture to get 
maximum profit. Find the maximum profit. 

(19) Find two numbers whose sum is 15 and when 
the square of one multiplied by the cube of 
the other is maximum. 

(20) Show that among rectangles of given area, 
the square has the least perimeter. 

(21) Show that the height of a closed right circular 
cylinder of a given volume and least surface 
area is equal to its diameter. 

(22) Find the volume of the largest cylinder that 
can be inscribed in a sphere of radius 'r' cm. 

(23) Show that y = log (1 + x) − 
2x

2 + x
, x > −1 is

 an increasing function on its domain.

(24) Prove that y = 
4 sin θ

2 + cos θ
 − θ is an increasing 

 function of θ ∈ 0, 
π
2  .
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Let us Remember 

֍ Equations of tangent and Normal at P (x1, y1) respectively are given by 

 y − y1 = m (x − x1) where m =  
dy
dx

 

(x1, y1)

y − y1 = m' (x − x1) where m'  = − 1
dy
dx

(x1, y1)

 , if 
dy
dx

 

(x1, y1)

 ≠ 0

֍ Approximate value of the function f (x) at x = a + h is given by f (a + h) ≑  f (a) + h f ' (a)

֍ Rolle's theorem : If real-valued function f is continous on a closed [a, b], differentiable on the 
open interval (a, b) and f (a) = f (b), then there exists at least one c in the open interval (a, b) 
such that f ' (c) = 0.

֍ Lagrange's Mean Value Theorem (LMVT) : If a real-valued function f is continous on a 
closed [a, b] and differentiable on the open interval (a, b) then there exists at least one c in the 

open interval (a, b) such that   f ' (c) = 
 f (b) − f (a)

b − a
֍ Increasing and decreasing functions :

 (i) A function f is monotonically increasing if f ' (x) > 0.

 (ii)  A function f is monotonically decreasing if f ' (x) < 0. 

 (iii)  A function f is increasing if f ' (x) ≥ 0.

 (iv)  A function f is decreasing if f ' (x) ≤ 0.

֍ (i) First Derivative test : 
 A function f (x) has a maxima at x = c if
 (i) f ' (c) = 0 
 (ii) f ' (c − h) > 0  [ f (x) is increasing for values of x < c ] 
 (iii) f ' (c + h) < 0   [ f (x) is decreasing for values of x > c ]
  where h is a small positive number. 
 A function f (x) has a minima at x = c if 
 (i)  f ' (c) = 0 
 (ii) f ' (c − h) < 0  [ f (x) is decreasing for values of x < c ]
 (iii)  f ' (c + h) > 0  [ f (x) is increasing for values of x > c ] 
  where h is a small positive number.

 (ii) Second Derivative test :
  A function f (x) has a maxima at x = c if f ' (c) = 0 and f " (c) < 0.

  A function f (x) has a minimum at x = c if f ' (c) = 0 and f " (c) > 0.
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MISCELLANEOUS  EXERCISE 2

(I) Choose the correct option from the given alternatives :

 (1) If the function f (x) = ax3 + bx2 + 11x − 6 satisfies conditions of Rolle's theorem in [1, 3] and 

  f ' 2 + 
1

√ 
3

 = 0, then values of a and b are respectively. 

  (A) 1, −6 (B) −2, 1 (C) −1, −6 (D) −1, 6

 (2) If f (x) = 
x2 − 1
x2 + 1

 , for every real x, then the minimum value of f  is -

  (A) 1 (B) 0  (C) −1 (D) 2

 (3) A ladder 5 m in length is resting against vertical wall. The bottom of the ladder is pulled along 
the ground away from the wall at the rate of 1.5 m/ sec. The length of the higher point of 
ladder when the foot of the ladder is 4.0 m away from the wall decreases at the rate of

  (A) 1 (B) 2 (C) 2.5  (D) 3

 (4) Let f (x) and g (x) be differentiable for 0 < x < 1 such f (0) = 0, g (0) = 0, f (1) = 6. Let there 
exist a real number c in (0, 1) such that f ' (c) = 2g' (c), then the value of g (1) must be

  (A) 1 (B) 3 (C) 2.5  (D) −1

 (5) Let f (x) = x3 − 6x2 + 9x + 18, then f (x) is strictly decreasing in -

  (A) (−∞, 1) (B) [3, ∞) (C) (−∞, 1] U [3, ∞) (D) (1, 3)

 (6) If x = − 1 and x = 2 are the extreme points of y = α log x + βx2 + x then

  (A) α = −6, β = 
1
2

  (B) α = −6, β = − 
1
2

  (C) α = 2, β = − 
1
2  (D) α = 2, β = 

1
2

 (7) The normal to the curve x2 + 2xy − 3y2 = 0 at (1, 1) 

  (A) Meets the curve again in second quadrant. (B) Does not meet the curve again.  

  (C) Meets the curve again in third quadrant.   (D) Meets the curve again in  fourth  quadrant.

 (8) The equation of the tangent to the curve y = 1 − e
x
2  at the point of intersection with Y-axis is 

  (A) x + 2y = 0  (B) 2x + y = 0  (C) x − y = 2  (D) x + y = 2

 (9) If the tangent at (1, 1) on y2 = x (2 − x)2 meets the curve again at P then P is

  (A) (4, 4)  (B) (−1, 2)  (C) (3, 6) (D)  
9
4

, 
3
8

 (10) The appoximate value of  tan (44° 30' ) given that 1° = 0.0175.

  (A) 0.8952  (B) 0.9528  (C) 0.9285 (D) 0.9825
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(II) (1) If the curves ax2 + by2 = 1 and a' x2 + b' y2 = 1 intersect orthogonally, then prove that 

  
1
a  − 

1
b  = 

1
a'  − 

1
b' .

 (2) Determine the area of the triangle formed by the tangent to the graph of the function y = 3 − x2 
drawn at the point (1, 2) and the cordinate axes. 

 (3) Find the equation of the tangent and normal drawn to the curve y4 − 4x4 − 6xy = 0 at the 
  point M (1, 2).

 (4) A water tank in the form of an inverted cone is being emptied at the rate of 2 cubic feet per 
second. The height of the cone is 8 feet and the radius is 4 feet. Find the rate of change of the 
water level when the depth is 6 feet. 

 (5) Find all points on the ellipse 9x2 + 16y2 = 400, at which the y-coordinate is decreasing and the 
x-coordinate is increasing at the same rate. 

 (6) Verify Rolle's theorem for the function f (x) = 
2

ex + e− x
 on [−1, 1].

 (7) The position of a particle is given by the function s(t ) = 2t2 + 3t − 4. Find the time t = c in the 
interval 0 ≤ t ≤ 4 when the instantaneous velocity of the particle equals to its average velocity 
in this interval. 

 (8) Find the approximate value of the function f (x) = √ x2 + 3x at x = 1.02. 

 (9)  Find the approximate value of cos −1 (0.51) given π = 3.1416, 
2

√ 3
 = 1.1547.

 (10) Find the intervals on which the function y = xx, (x > 0) is increasing and decreasing. 

 (11) Find the intervals on the which the function f (x) = 
x

log x
 , is increasing and decreasing.

 (12) An open box with a square base is to be made out of a given quantity of sheet of area a2, Show 

the maximum volume of the box is 
a3

6√ 3
. 

 (13) Show that of all rectangles inscribed in a given  circle, the square has the maximum area. 

 (14) Show that a closed right circular cyclinder of given surface area has maximum volume if its 
height equals the diameter of its base. 

 (15) A window is in the form of a rectangle surmounted by a semi-circle. If the perimeter be 30 m, 
find the dimensions so that the greatest possible amount of light may be admitted. 

 (16) Show that the height of a right circular cylinder of greatest volume that can be inscribed in a 
right circular cone is one-third of that of the cone. 

 (17) A wire of length l is cut in to two parts. One part is bent into a circle and the other into a 
square. Show that the sum of the areas of the circle and the square is least, if the radius of the 
circle is half the side of the square. 
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 (18)  A rectangular Sheet of paper of fixed perimeter with the sides having their length in the ratio 
8 : 15 converted in to an open rectangular box by folding after removing the squares of equal 
area from all corners. If the total area of the removed squares is 100, the resulting box has 
maximum valume. Find the lengths of the rectangular sheet of paper. 

 (19)  Show that the altitude of the right circular cone of maximum volume that can be inscribed in 

a shpere of radius r is 
4r
3

. 

 (20)  Show that the height of the cylinder of maximum volume that can be inscribed in a sphere of 

radius R is 
2 R
√ 3

. Also find the maximum volume. 

 (21) Find the maximum and minimum values of the function f (x) = cos2 x + sin x.

v v v


